
 Contents

Liberty BASIC v4.0 Help Document
Copyright 1992-2003 Shoptalk Systems - http://www.libertybasic.com/
"W indows is a registered trademark of Microsoft Corporation in the United States and other countries."

W hat's New!
W hat's new in version 4.

Overview
 An overview of Liberty BASIC.
The Liberty BASIC Language
 Syntax and Usage for the Liberty BASIC Language.

Gui Programming
 Creating and using Graphical User Interfaces.

Command Reference
 Detailed Listing of Liberty BASIC Commands.
API and DLL

 Making API and DLL calls in Liberty BASIC.
Graphical Sprites

 Sprites for Games and Graphics.
Port I/O
 Controlling Hardware Ports.
File Operations
 Accessing Disk Files.

Mathematics
 Mathematical Operators and Functions.
Text

 Text Manipulation and Functions.
Graphics
 Using Color and Drawing Commands.
Troubleshooting
 Solving Problems.

Registering Liberty BASIC
 W hy and how to register Liberty BASIC.

http://www.libertybasic.com/
 The official Liberty BASIC web site.
Installing Liberty BASIC

 Installing and uninstalling Liberty BASIC.

1

 W hat's New!
W hat's new in Liberty BASIC 4 - additions and modifications that m ake Liberty BASIC 4
different from previous versions of Liberty BASIC.

Improvements to DIM
TAB(n)
Printing columns with commas
Handle Variables

Subs for Event Handlers
Global Variables

BYREF - Passing by reference
MAPHANDLE - changing the handle of open devices
Graphics window scrollbar changes
EVAL(code$)
EVAL$(code$)

Breakpoints for debugging
DO LOOP
Printerfont$

Printer Graphics Now Scaled
Debugger Improvements

ON ERROR GOTO and RESUME
ENABLE, DISABLE, SHOW AND HIDE
Groupboxes Accept New Commands

PLAYMIDI, MIDIPOS(), STOPMIDI
Named Drawing Segments
Joystick Support
STYLEBITS
New Sprite Commands

 centersprite
 removesprite

 spriteoffset
 spritetravelxy
 spritetofront
 spritetoback
 spriteround

2

 Glossary
Glossary of General Com puter and Programming Term s

Alphanum eric
Any letter of the alphabet or any digit from 0 to 9.

Application
A completed program that can be executed (the term program is often used).

Application Program m ing Interface (API)

A set of definitions of the ways in which one piece of software communicates with another. One of
the primary purposes of an API is to provide a set of commonly-used functions. For more, see
W hat are APIs.

ASCII

ASCII (pronounced as-key) is short for American Standard Code for Information Interchange. It is
a standard code that assigns a binary number to all the alphanumeric characters (upper and
lower case), all the symbols on the keyboard, and some other symbols not on the keyboard
(such as the cents symbol: ¢). It is also known as "plain text".

Associated File
A file type that has been identified as belonging to a certain program, such as .TXT with Notepad,
.BMP with Paint, or .DOC with W ord.

Binary
An alternative number system which works very well for computers. It is easiest for a computer to
use only two digits (0 and 1) in its number system. A byte is a group of eight bits, and it is the
standard unit by which data is stored. There are 256 different combinations of zeros and ones you

can make with one byte, from 00000000 to 11111111. This is enough to cover all the ASCII
characters.

Binary Access
The name given to the method of accessing the data in a file byte by byte.

Bit

The smallest amount of information that can be transmitted. Bit is short for binary digit. A bit can
be a zero or a one.

Bitmap
An image stored in a disk file. Bitmaps must be loaded into memory from the disk before they

can be displayed.

Boot

Starting your computer by turning on the power.

Border
The edge of a window is called the border. You can resize a window by clicking and dragging the
border with the mouse.

Branch

A conditional jump or departure from the implicit or declared order in which instructions are being
executed.

3

Bug
An error in a computer program.

Byte
Consists of eight binary digits. It is the smallest unit a computer works with at once. The bits of a

byte can be individually modified, but a computer still works with at least one byte at a time.

Click
The act of pushing down and releasing the mouse button.

Clipboard
A temporary storage area inside the computer. It is used to copy or move data from one program
to another, or from one area of a document to another.

Close

To close a program means to end a program. Click the X button in the top right corner of a
window to close that program. W hen you close a program, it is no longer active.

Command
The programming term for an instruction to the computer.

Computer Program

A computer program tells a computer what the computer should do. It is a sequence of
instructions to be executed in order. A computer program consists of a set of instructions that the
computer understands.

Controls

Tools that appear on the user interface that let the user respond to the program, enter data, and
view images and other kinds of output data. Buttons, textboxes and menus are examples of
controls.

Database
An organized collection of information.

Data

Data is information. There are many types of data, including sound, graphics, and text. Most
data on a computer is stored in files on the hard disk, which are made up of bytes. Computer

programs are also data, though many people may use the word data to mean information stored
on the computer by the end user.

Data File
A file that consists of data that has been created in a program, such as a text file typed in

Notepad.

Default

The standard settings in a program.

Desktop
The opening screen in W indows that contains a few objects, the startbutton and the taskbar. This
is what you see on your computer screen when you have no windows open. It may be a solid

color, or it may be graphics. On the desktop, there will be icons, including one called "My

4

Computer" and one called "The Recycle Bin."

Dialog Box

A special kind of window that asks you a question or presents controls that you can choose
from.

Directory
The term "folder" has largely replaced this term. They mean the same thing.

Disk
The permanent storage area for your programs and documents.

Disk Drive
Hardware capable of reading and writing data stored on a disk.

Document

Any data you create with a program.

DPI
Dots Per Inch, a unit of measure describing printer resolution.

Double-Click
Pressing and releasing the left-mouse button two times in quick succession (without moving the

mouse between clicks).

Drag (mouse)

Move the pointer on an item, hold down the left button, slide the pointer to a new location, and
release the button.

Drive
Any data storage device. This includes your CD-ROM drive, floppy disk drive, and hard disk drive.

Event
An activity that occurs during an application's execution. The user normally triggers many events,
such as keypresses, mouse clicks, or mouse movements. The W indows operating environment
can also trigger events such as timer clicks and data transferred from other running programs.

Event-Driven Program m ing

The process of writing programs that respond to triggered events, as opposed to older text-based
programs that were sequential in nature and followed a predetermined flow. Events can come from
many sources, and your program must know which events to respond to and which to ignore.

Explorer

The W indows program that you can use to explore your disk.

Expression

A combination of variables, literals and functions that can be evaluated to a single string or
numeric value.

File
A named collection of information stored on a disk. A file is a long sequence of bytes which

represent data. Each file has a name and an extension which are separated by a dot (a period).

5

The name identifies the file. The extension tells the computer what type of data is contained
within the file.

Filenam e
The name assigned to a collection of data that is stored on a disk.

Filenam e Extension
The optional "period" and up to three characters at the end of a filename.

Focus
Only one of the items in a window can be accepting input from the keyboard at a time. The active

item is said to be the item with the focus.

Folder
A folder can be thought of as a location on your hard disk or floppy disk. Folders used to be
called directories/subdirectories. A folder contains files and can contain nested folders

(subfolders). Folders and subfolders are used to organize your hard disk.

Gigabyte
Roughly a billion bytes or characters. Abbreviated G or GB.

GUI
Graphical User Interface, used to describe windows and controls that use pictures to help you

interact with the computer.

Hard Disk

A large capacity storage area that offers fast access to information.

Hardware
The physical parts of your computer, as opposed to software.

Highlight
To select something by clicking or dragging with the mouse. Once selected, an item usually
turns a different color or becomes outlined.

Icon

An icon is a tiny, clickable picture used to provide a startup link to a program or a file.

Identifier
A lexical unit that names a language object, such as a variable, array, record, label, or procedure.

Literal
A hard-coded text or numeric value that is written in programming source code.

Maxim ize Button
The button in the middle of three button at the right end of the titlebar which enlarges the window

to its greatest possible size.

MB
Abbreviation for megabyte. One MB is approximately one million bytes.

Menu

6

A list of items from which you may choose.

Menu Bar

The bar located under the titlebar that list the available menus.

Minim ize Button

A button located at the right side of the titlebar that you can click to reduce a window to a task
button on the taskbar.

Monitor
The computer's visual output device, similar to a television.

Mouse
A device you can move to select items on the computer screen. On the screen, you will see a
mouse cursor which you can move by moving the mouse.

Multitasking
The ability of an operating system to run more than one program at one time.

My Computer
A program; the obvious, quick way to the files and folders on your computer.

Operating System (OS)

The software responsible for the direct control and management of hardware and basic system
operations.

Parallel Port
A connector through which a computer communicates with a peripheral along parallel wires.

Printers are the most common peripheral to use parallel ports.

Path

The route to a folder or file; it consists of the drive name, a folder and/or subfolder (if any), and the
filename.

Pixel
A "picture element" or dot that the monitor (screen) can display to create the image you see.

Pointer

The arrow-shaped cursor on the screen that moves when you move the mouse.

Program m ing Language
A standardized communication technique for expressing instructions to a computer. It is a set of
syntax and semantic rules used to define computer programs. A language enables a programmer

to precisely specify what kinds of data a computer will act upon, and precisely what actions to
take under various circumstances.

RAM
Random Access Memory, the computer's electronic memory; your work area.

Random Access
The name given to the method of accessing the data in a file by using fixed-length records that

can be written to or read from in any order.

7

Reboot
The computer term for restarting your computer.

Reserved W ord
A word which, in some computer languages, cannot be used as an identifier because it is already

used for some grammatical purpose.

Resolution
The number of pixels the monitor (screen) can use to display an image, or dots your printer can
print.

Restore Button
The button in the middle of three buttons located at the right end of the titlebar on a maximized
window; it returns the window to its previous size and location.

Right-Click
Quickly press and release the right mouse button.

Right-Click Menu
An easy-to-use menu that opens when you right-click an object. Also called a "shortcut menu",
"object menu" or "context menu."

Right-Drag
A mouse action in which you move the pointer on an item, hold down the right mouse button,
drag the pointer to a new location, and release the right mouse button.

ROM

Read Only Memory, the computer's pre-programmed memory.

Save

The command that saves changes to a previously named document.

Save As
A command that opens a dialog that permits you to save a new (unnamed) document or rename
a previously saved one.

Scroll Arrows

The arrows at each end of the scroll bar, used to scroll through the contents of the window.

Scroll Bar
A bar that appears at the right and/or bottom edge of a window whose contents are not
completely visible; termed "horizontal" and "vertical" scroll bars.

Sequential Access
The name given to the method of accessing the data in a file in the order from beginning to end of

file.

Shell
The most generic sense of the term shell means any program that users use to type commands;
it is called a "shell" because it hides the details of the underlying operating system behind the

shell's interface.

8

Short Filenam e
A filename that is no longer than eight characters, and a three character extension.

Sizing Handle
An area in the bottom right corner of a window that can be sized; it is used to size the window.

You can, however, size a window from any corner.

Software
Computer program written to perform specific tasks, such as a word processor or spreadsheet.

Spreadsheet
A program that automates an accountant's worksheet.
.
Status Bar
The bar at the bottom of a program window; it displays information about the program.

Statem ent

A meaningful expression or generalized instruction in a computer programming language.

String
The programming term for a series (string) of text characters.

Subfolder
A folder that is within another folder. Traditionally called a subdirectory.

Subprogram , also called Subroutine
A set of instructions in a computer program which is separated from other code to reduce

reduncancey, and called by other subprograms or other parts of the program.

Taskbar

The portion of your screen including the Start button, the time display, and everything in-between.

Title Bar
The horizontal bar at the top of a window that displays the window's name. The window's name is
usually the name of the program running in the window.

Toolbar

A row of buttons that provide quick access to commonly used commands.

Unzip
To decompress, or expand a file that has been made smaller using a compression utility.

Variable
A name given to a piece of data in a computer program whose value may vary as the program
executes.

.W AV

The extension used on some types of audio file.

W indow

A rectangle portion of the display which is being used for a specific program.

9

W ord Processor
A computer program that helps you create, change, format and print documents such as letters

and reports.

W YSIW YG

Stands for W hat You See Is W hat You Get. It is pronounced "wizzy-wig". It means that what you
see on your screen while you edit your file, looks the same as what you get when you print the

file.

Zipped file

A file that has been made smaller using a compression utility.

10

 Overview of Liberty BASIC v 4

W elcome to our Liberty BASIC overview. In this section we will introduce you to:

Installing and Uninstalling

How to install Liberty BASIC and how to remove it from your system.

Registering Liberty BASIC
W hy and how to register this software.

The Liberty BASIC Editor
This is the place where BASIC programs are written and compiled.

Editor Preferences

How to configure the Liberty BASIC editor.

The Liberty BASIC INI file
How editor preferences are stored.

W riting Programs
Getting started!

Freeform
Creating windows with the visual designer called Freeform.

GUI Programming
Using windows and controls such as buttons, textboxes, etc.

Using the Debugger
How to debug (find errors) in Liberty BASIC programs.

Lite Debug

Run programs normally, and pop up the debugger when there is an error.

Compiler Reporting
The Liberty BASIC Editor looks for potential problems in code.

Creating a Tokenized File
Converting code to a TKN format to be used by the runtime engine.

Using the Runtime Engine

How to create programs for distribution.

Icon Editor
How to create an icon to incorporate into the runtime engine.

Lesson Browser
Using the lesson browser to learn and to teach.

Using a Different Code Editor
Running Liberty BASIC from the command line.

Using Inkey$

11

Trapping and evaluating keyboard input.

Using Virtual Key Constants with Inkey$
A more advanced method for evaluating keyboard input.

Reserved W ord List
A list of keywords, commands, functions and variables used by Liberty BASIC.

Error Messages
Understanding the errors that halt program execution.

Error Log Explained

How to use the error log file.

Port I/O
Controlling hardware ports.

Making API and DLL Calls
Extending the language with Dynamic Link Libraries.

TroubleShooting

W hat to do when a program misbehaves.

12

 Installing and Uninstalling Liberty BASIC

To install Liberty BASIC, simply run the setup program. Either accept the default installation

directory (folder), or specify another directory (folder). Liberty BASIC will be installed in this
folder. Subfolders containing files needed by Liberty BASIC will be installed in the main Liberty

BASIC directory. Do not modify these subfolders or the files contained in them.

To uninstall Liberty BASIC, run "uninstall.exe" which is found in the folder containing Liberty
BASIC. This folder also contains a file called "uninstall.ini". Be careful not to delete or modify
"uninstall.ini", because it contains the information about the installation that will be used by the
uninstall program.

13

 Registering Liberty BASIC
Liberty BASIC v 4 can be registered with two different licenses:

The SILVER license - $29.95
 - Rem ove the size lim itation on com piling so you can create large programs.
 - Turn off the rem inder popups that appear when using Liberty BASIC.
 - Receive tech support

The GOLD license - $49.95
W ith this license you get all these features that com e with the SILVER license:
 - Rem ove the size lim itation on com piling so you can create large programs.
 - Turn off the rem inder popups that appear when using Liberty BASIC.
 - Receive tech support

PLUS...
 - Create applications that run standalone using the runtim e engine. This special
mechanism lets you create programs you can share freely or sell.

Note to registered users of Liberty BASIC v1x and v2.x and 3.x: W e also have low upgrade
prices.

W hat is the runtime engine? It is a program named RUN400.EXE which comes with the
shareware version of Liberty BASIC. It lets you and others run applications that you write in
Liberty BASIC without giving away your painstakingly written BASIC code, and without needing to
distribute the Liberty BASIC development tools. The runtime engine will only run applications
compiled by the registered version of Liberty BASIC.

To order by postal mail, print a copy of "register.txt", which can be found in the directory that

contains your copy of Liberty BASIC.

To order online, visit http://www.libertybasic.com/

14

 The Liberty BASIC Editor
W hen you start Liberty BASIC, you will see a window like this:

This is where code is written, and this is where you will spend most of your time when writing

Liberty BASIC programs. Notice the various pull-down menus along the top of the window.
These are for loading and saving files, editing, running/debugging, setting up configuration, and
getting help.

Running an example program :
Let's begin our exploration of Liberty BASIC by running one of the sample programs we've
provided. Pull down the File menu and select the Open item as shown. To open a program, you

can also click the button on the toolbar that looks like an open file folder. Typical Liberty BASIC
programs have a file extension of *.BAS. You can choose the default extension you prefer in the

Setup Menu.

15

You will see a dialog box similar to the one displayed below. Here you will find a list of files that

you can load. These are text files containing our example BASIC programs. Select the item
named draw1.bas and click on OK.

Liberty BASIC will load the draw1.bas program you selected. The result will look like this
window. This is BASIC code for a W indows drawing program. As you learn to program in Liberty
BASIC you will be able to extend this program and the other included samples to do what you

want. But right now let's see how it runs!

16

Running a Liberty BASIC program is easy. Select the Run menu and mouse click on the Run
item, as illustrated below. You can also run a program by clicking the button on the toolbar that
looks like a blue, running man, or by pressing the "Shift" key and leaving it down while pressing
the "F5" key.

Now Liberty BASIC will take a few seconds to compile and run the drawing program (some
computers will take longer than others). W hen it is finished compiling, a window belonging to the
drawing program will appear:

17

Let's try drawing a little something with Liberty Draw!

Feel free to play with Liberty Draw, and, when you're done close its window.

Customizing the Liberty BASIC Editor
Make the Liberty BASIC editor work the way you want it to work. Select the Set Up menu to

configure Liberty BASIC to your preferences.

The Preferences Dialog:
The Preferences Dialog is described in detail in the section on Editor Preferences.

From the Set Up m enu, you can also:
- set the font face and size that will appear in the editor

- set the printer font face and size that will be used to print code from the editor, and also for lprint
commands.

18

- set up external programs to run from the Run menu. These can be executables, or Liberty
BASIC TKNs.
- run the Icon Editor

19

 Editor Preferences

Liberty BASIC Preferences

See also: The Liberty BASIC Editor

Notification:

Confirm on exit of Liberty BASIC - This causes Liberty BASIC to ask "Are you sure?" when
you try to close down the Liberty BASIC editor.

Display execution notice - This causes Liberty BASIC to display an execution complete notice
in a program's main window (if it has one) when it is finished running.

Starting up:

Start Liberty BASIC Editor full-screen - This causes Liberty BASIC to open the editor so that it

fills the whole screen whenever Liberty BASIC is started up.

Load on startup:

No file - This causes Liberty BASIC to start with no text in the editor, and a filename of
untitled.bas.

Most recent file - This causes Liberty BASIC to start with the file the user was editing when it
was last shut down.

This file - This causes Liberty BASIC to start with the file specified in the text field.

Compiling:

Show Compile Progress Dialog - This causes a popup dialog to appear when compiling for
Run, Debug, Lite Debug, or Make TKN file. The user can press a cancel button on the dialog
to abort the compile action.

Enable Compiler Reporting - This tells the compiler to apply certain compile checks and list
any interesting results at the bottom of the Liberty BASIC editor window. See Compiler

Reporting.

Create *.BAK File On Run/Debug - This activates a backup mechanism so that every time a
program is run, it is also backed up into a file of the same name, but with a BAK extension.
The user can also specify where to save these files by typing the location into the textbox

provided. As an example, a path to a different hard drive could be specified as protection
against hard drive failure.

Environment:

Use Syntax Coloring - This toggles the editor's syntax coloring mechanism. Check this box
to see color syntax in the editor, or uncheck it to use the system default colors for text.

Enable Auto Indenting - This feature causes the Liberty BASIC editor to copy the level of
indenting of the current line to a new line when Enter is pressed. It also has some support for
back-tabbing.

20

Add 'Kill BASIC Apps' to all W indows - This adds a special menu item to the system menu of
each window in the Liberty BASIC environment (this menu item can also be found in the
Liberty BASIC editor Run menu). This feature is useful if your BASIC program will not close or

shut down, because it allows you to kill any BASIC program started from the Liberty BASIC
editor.

Main window columns/rows - This sets the default size of the main window for any BASIC
program started from the Liberty BASIC editor.

Source filename extension - This specifies the filename extension to use for BASIC programs.

 The default is BAS, but the user can change it to something else if desired. This is
especially useful to prevent filename collision if the programmer also uses other versions of
BASIC or other applications that use BAS as a filename extension.

Reload File on Activate - W hen this option is set, Liberty BASIC will check to see if a newer

version of the currently loaded file exists and load it into the editor, replacing what is there.
This only happens on activation of the editor, meaning that some window other than the

Liberty BASIC editor was made active (another editor or GUI drawing program perhaps), and
then the editor is made the active window again by clicking on it or by bringing it to the front in
some other fashion (pressing Alt-Tab for example). W hy this is useful: Some programmers
may prefer to use their favorite text editor to write code, saving the code when they are ready
to try running or debugging it. Liberty BASIC will be open on that file, so after they save in the

other editor and switch to Liberty BASIC, with Reload File on Activate the newest saved
version of the file is automatically reloaded into Liberty BASIC, and all that is needed to run it
is to use the Run menu or to press Shift+F5.

21

 The Liberty BASIC INI file

Liberty BASIC uses a file called lbasic4.ini to store preferences. Even the application runtime

engine uses some of the information in this file (if it finds the file on startup). Here is a detailed
description of its format (descriptive comments are not part of the file information):

editfont courier_new 9 - editor font
printfont courier_new 11 - printer font
preferences
true - confirm exit of Liberty BASIC
false - display execution complete notice
true - put Kill BASIC Programs in all
system menus
true - show compile progress
false - start full screen
true - make backup of source code when
run/debug
true - open with initial file
welcome.bas - initial file to load
true - use syntax coloring
64 - mainwindow columns
24 - mainwindow rows
false - reload more recent file
F:\bak\ - backup pathname
true - enable compiler reporting
bas - source file extension
2 externals - say how many externals there are
Notepad - name of first external program
notepad.exe - external program specification
Error Log - name of second external program
notepad.exe error.log - external program specification
1 recent files - say how many recent files there are
welcome.lba - first recent file
EOF - end of file marker

The runtime engine will use the default values for editfont, printfont, and for the mainwin columns
and rows.

22

 W riting your own Program s

Once you have loaded Liberty BASIC, you can write your own programs. Click on the "File"

menu and then "New File." You see this:

Now type a simple program. Press enter, and then type this line:

 print "Hello World!"

Now click on the Run button.

Your program runs and looks like this:

23

24

 FreeForm
The Gui Designer, FreeForm, has been an important part of Liberty BASIC for a long time. It is a
utility that allows you to lay out your program windows in a graphical way. You can simply click

and drag with the mouse to add controls to a window, move them, and size them. GUI stands for
Graphical User Interface. This interface is all of the controls that appear on a window that allow
the user to interact with the program.

W hen the look of the window is satisfactory, you may save the template for future use. You may
also choose to produce the code to create this window, or choose to produce the code to create
the window, plus an outline that includes stubs for all of the controls included in the window.

FreeForm is included in code form as well as in tokenized form. You can run the tokenized

version from the RUN menu. FreeForm is open source software. Feel free to modify it to suit
your own needs and preferences. Many enthusiastic Liberty BASIC programmers have written
modified versions of FreeForm over the years and many of these modifications are part of the

version of FreeForm that is included with Liberty BASIC.

25

 Using the Debugger
HOW THE DEBUGGER HELPS
You can use the debugger when a program doesn't behave the way you expect, or when there

are errors that prevent it from running. You can watch as each line of code is executed to see if
the variables contain the correct values.

The TRACE command is used in conjunction with the debugger. It allows you to mark places in
code that will cause the debugger to change modes between "step", "animate" and "run." This
allows you to use the "run" button to debug a program, and when it hits a "TRACE 2" command
in the code, it will automatically drop down into "step" mode.

USING THE DEBUGGER

You can write a short program that shows how to use the debugger. In the Liberty BASIC
editor, click on the "File" menu and select "New File." You'll see:

Type in the following simple program:

 for x = 1 to 1000
 print x
 next x

26

Now click on the debug button. The program runs and a special "Debugging" window
also appears. Position the two windows so that you can see them both. Now focus on the
debugger:

27

Notice the pane on the top. This lists your program's variables. There's a lot of information in
there already because each program comes with some special variables already declared.

Scroll down to the bottom of the list where the variable named x is located. Focus on this
variable for this example:

There are buttons for the possible debugging modes:

-Resume runs your program at full speed in the debugger. W hile in this mode, you won't see
variables change or program source code highlighted.
-Stop will cause your program to stop, and it will highlight the line where it stopped, and it will

28

show the current variable contents
-Step Into will execute the next line of code. If the next line is inside a subroutine or function it will
follow execution into the subroutine or function.

-Step Over will execute the next line of code. It will not step into subroutines or functions, but
skips over them.
-Step Out will run until the current subroutine or function exits, and then stops to show the next

line of code and variables.
-Animate runs your program, showing each line as it executes, and also updating variables as it

runs.

Click on the "Step Into" button. You'll see that the first line of code is executed. The the
variable x is no longer 0, but 1. Also the next line of code is highlighted:

Now click on the "Step Into" button again. Notice that the value of x gets printed to the program

window, and also the next line of code is highlighted in the debugger:

29

Click a few more times on the "Step Into" button until the value of x is 3 or maybe 4. The "Step
Into" button must be pressed each time you want the program to execute a new line of code.

Now click on the "Animate" button. This mode causes the program to execute, while still
documenting the current line of code and the values of variables in the debugging window. This

time you'll see the program running really fast, and printing lots of numbers. Quickly press the
"Step Into" button again to stop the program. The program will stop executing and you can see
the current values for variables and the line that is to be executed next:

30

Press the "Resume" button but get ready to press the "Step Into" button again. "Resume"
mode executes the code at normal speed and it doesn't document anything in the panes of the
debugging window. The numbers will start printing really quickly in the program window, but the
debugger doesn't show any activity at all. You should still be able to click on the "Step Into"

button again before the count reaches 1000. The debugger again shows you the current state of
the program.

31

Close the debugger. This will also close the program window.

EXECUTING CODE AGAINST A RUNNING PROGRAM
The combobox in the center of the debug window allows you to type commands to your program
while it is being run for debug. Clicking the "Execute" button will cause the code you have typed
to be executed. In the example above, you might want to change the value of "x". Type into the
code combobox:

x = 50

Start stepping though the code by clicking the Step Into button several times, then click the

"Execute" button. Click the "Step Into" button again. See what happens to the printout in the
mainwindow. It looks like this:

1
2
3
4
50

32

The combobox contains a list of all code that you've typed into it during the course of debugging.
 To go back to a previous line of code, simply choose it from the drop-down list of the combobox
and then click the "Execute" button.

BREAKPOINTS

Liberty BASIC 4 adds the ability to add a breakpoint to your program so that when you are
debugging the program will stop at the breakpoint when it reaches it. To add a breakpoint, point
with your mouse at the breakpoint bar on the left side of the editor and double click. A

breakpoint marker will appear. If you double-click there again, the breakpoint will disappear.
Add as many breakpoints as you like, but keep in mind that adding a breakpoint to a blank line

or a remark will not have any effect during debugging. You can also right click on the breakpoint
bar for a little popup menu.

W hen you launch the debugger it also has a breakpoint bar which will contain all the breakpoints
you added in the editor. You can add and remove breakpoints in the debugger. Note: Changes

you make to the breakpoints in the debugger are not automatically made to the breakpoint bar in
the editor.

Breakpoint in the Debugger
You can also click on a line of code in the debugging window to set the cursor, right-click to pop
up a menu and then select "Run to Cursor" to make your program run at full speed until it

reaches that line of code, just as if you added a breakpoint to that line. This method functions as
a "just once" breakpoint.

33

34

 Lite Debug
"Lite Debug" is an option available in the "Run" menu. W hen run with Lite Debug, a program will
run as usual and you will not see the Debug window. If the program encounters an error during

execution, the Debug window will pop up with the problem line of code highlighted! This incredibly
handy feature allows you to isolate errors quickly.

Lite Debug in Action
To see it in action, type the following code into the Liberty BASIC editor:

for x = 10 to 0 step -1
 print 10/x
next x

Now, choose "Lite Debug" from the RUN menu. The program will run normally at first, and print

the following in the main window:

1
1.11111111
1.25
1.42857143
1.66666667
2
2.5
3.33333333
5
10

W hen the value of x gets to "0", the program halts with an error. The Debug window will pop up
with the title, "Debugging - a ZeroDivide". The problem line of code will be highlighted in the code
pane of the debugger:

 print 10/x

A quick check of the variable list in the top pane shows that x is equal to 0. Substituting the

value of x in the highlighted line of code, shows that it is:

 print 10/0

It is not possible to divide by 0, so the expression "10 / 0" has caused the program to stop
running. You now know that you can fix the problem by preventing the value of x from reaching 0
by changing the loop target from "0" to "1":

for x = 10 to 1 step -1
 print 10/x
next x

 Running the corrected code by choosing Lite Debug, will cause the program to run, and since
there is no longer an error, the Debug window will not pop up. The main window will display the
following results and the program will terminate without an error.

1
1.11111111
1.25

35

1.42857143
1.66666667
2
2.5
3.33333333
5
10

36

 Compiler Reporting

Liberty BASIC includes compiler reporting. This means that the compiler has a mechanism for

reporting interesting things it finds while compiling. For example, if a program has two variable
names which are the same except for their capitalization, the reporter will find this. Here is an

example:

maxnum = 200
MaxNum = 300

Running a program containing the lines above anywhere in the code causes the compiler
reporting pane to appear at the bottom of the Liberty BASIC editor. It reports:

similar variables: maxnum, MaxNum

Another example is variables with similar names. If one variable is called names$, but there is

another string variable name$ (no letter 's', a common mistake), the reporter will mention it.

name$ = "Carl"
names$ = "Gundel"

If the lines above are contained in a program, the compiler reports:

string variable warning: name$, names$

Here is a picture of the compiler report pane:

Hiding the Com piler Report Pane

The compiler report pane takes up a significant amount of workspace at the bottom of the Liberty
BASIC editor. It can be hidden by right-clicking the mouse within the report pane and choosing

"Hide" from the menu.

37

 Creating a tokenized file

Creating a *.tkn file from a *.bas source file, makes a file that:

- starts up much faster (very important for large files)

- can be distributed royalty-free using Liberty BASIC's runtime engine (gold license only)
- can be added to the Liberty BASIC's Run menu as an external program (and run instantly by

selecting it from that menu).

How to Tokenize a Source Code File
You can create a *.tkn file from one of the sample programs. Reopen the drawing program used
in The Liberty BASIC Editor section of this document.

Now pull down the "Run" menu and select "Make *.TKN File", for instance:

38

W hen the file is ready, Liberty BASIC will prompt you to enter a filename in place of the default
(draw1.tkn in this case):

Once the file has been saved to disk, you run the .TKN file from within Liberty BASIC. Pull down
the "Run" menu and select "Run *.TKN File" as shown:

39

A file dialog will be displayed containing a list of .TKN files. Select the draw1.tkn file as shown

and click on Ok.

Now the .TKN application will run:

40

Programmers who have registered with the Gold License can also run the TKN file with the
Runtime Engine.

41

 Using the Runtime Engine
Notice: This part of the help file describes a feature of the registered version of Liberty BASIC.

Although the runtime engine described below does come with the shareware version, it is only

usable by registered users of Liberty BASIC who have purchased the Gold License. W hen you

register Liberty BASIC, Shoptalk Systems will provide you with a password to upgrade your copy

of Liberty BASIC to the registered version.

The RUN400.EXE runtime engine will allow you to create standalone programs from your Liberty

BASIC *.TKN files. This means that your programs can be run on computers that do not have the
Liberty BASIC language installed. To use the runtime engine, you must have the gold license

registered version of Liberty BASIC.

The runtime engine will automatically run a *.TKN file of the same filename as the runtime engine.
 If you make a copy of RUN400.EXE named MYPROG.EXE, then you must name your *.TKN file
as MYPROG.TKN.

Using RUN400.EXE
First make a *.TKN file from your *.BAS file (see Creating a Tokenized File).

Preparing for distribution

You can share or sell programs that you write in Liberty BASIC. No fee or royalty payment is
necessary. The only requirements are:

a) That you limit the files that you distribute to the list below. These files can be found in the
directory in which you have installed Liberty BASIC. If you cannot see all of these files in "My
Computer" or "W indows Explorer", it is likely that your folder options are configured to hide
system files. Go to the TOOLS menu of Explorer and choose FOLDER OPTIONS. Click the
VIEW tab and look for the option to "Show all files" in the "Hidden Files" section. Be sure that

this option is checked. Here is a list of the files:

vbas31w.sll
vgui31w.sll
voflr31w.sll
vthk31w.dll
vtk1631w.dll
vtk3231w.dll
vvm31w.dll
vvmt31w.dll

run400.exe

b)You must rename a copy of RUN400.EXE to your liking. This is recommended. Try to create a
unique name so that it will be unlikely for any File Manager associations to conflict. If you rename
RUN400.EXE to MYPROG.EXE, then renaming your *.TKN file to MYPROG.TKN will cause it to
be automatically run when the runtime engine starts.

c) You can also replace the icon for RUN400.EXE with one of your own design. Use the icon
editor from the Setup menu in the Liberty BASIC editor. This step is optional. Icons for use with
the Liberty BASIC runtime engine can contain only 16 colors.

Important: Make sure that when your program is finished running that it terminates

properly with an END statement. Otherwise your program's windows may all be closed,

42

giving the illusion that it has stopped running.

Your Distribution Packet

Your program's TKN file, plus run400.exe (rename to match your TKN), and all of the other files in
the list above must be included in your distribution. You must also include any other files used by
your program, such as data files, text files and bitmaps. If all of these files are distributed

together, then someone who does not have the Liberty BASIC language installed on his computer
can run your program by clicking on its icon, or by double clicking on the EXE name in the list in

"My Computer" or "W indows Explorer."

Additional Distribution Inform ation for Port I/O
If your application uses INP() and/or OUT to control hardware ports, you will need to distribute and
install certain files on your user's system. For detailed information, see Port I/O.

The LBASIC4.INI File

Liberty BASIC stores default information in a very small text file named LBASIC4.INI. This file is
also read by the runtime engine (RUN400.EXE) if it is present. One of the things that
LBASIC4.INI manages is the default font used for the the Liberty BASIC development environment
and for the runtime engine. If you want your distributed application to use the same font that is
set for the Liberty BASIC development environment, then include the LBASIC4.INI file with your

application. If you want text printed to the printer to use the same printer font that is in use by
the Liberty BASIC development environment, then include the LBASIC4.INI file with the
distribution.

Installing a Liberty BASIC Program

You can distribute your programs on a set of disks or on a CDROM and ask the user to copy
them to his hard drive. You can also place all of the files into a zip archive. This makes the
distribution smaller and insures that all needed program files stay together. The user then simply

43

unzips the files into the folder of his choice. There are freeware and commercial installation
programs that can be used to install programs created with Liberty BASIC. Search the internet
and software download sites to find these programs.

44

 Icon Editor
The Icon Editor can be found in the "Setup" menu. Use it to create or modify icons and embed
them into the runtime engine for your programs.

The icon editor can make new icons or open existing icon files. It can save icons as icon files, or

it can replace the icon in the runtime engine with the icon viewed in the icon editor.

Making Icons

Liberty BASIC requires 16-color icons. Use the Icon Editor to create new icons or to modify
existing icons. To start from an existing icon, choose "Open Icon" from the "File" menu. To start

a new icon, either start drawing with the mouse by holding down the left mouse button and
dragging, or choose "New Icon" from the "File" menu to clear the Icon Editor and begin a new

icon. If the <Paint> radiobutton is checked, drawing will be opaque. If the <Mask> radiobutton
is checked, drawing will will mark transparent areas of the icon. These appear in the color cyan
on the grid in the editor. To change the color of the drawing, choose the desired color from the
"Color" menu.

Icons may be saved by choosing "Save Icon" from the "File" menu.

Changing the Runtim e Icon
The runtime engine is a copy of run.exe that has been renamed to match the TKN for the program

created with Liberty BASIC. W hen you are finshed editing the icon in the icon editor,you can
insert it into the runtime engine by choosing "Save to Runtime EXE" from the "File" menu. You
don't need to save it as an icon file first. W hen an icon has been embedded within the runtime

engine, it will display in file lists in W indows Explorer, it will appear if a desktop shortcut is
created, and it will appear in the titlebar of the running program.

Here is an example that starts with a copy of the runtime engine called freeform.exe. To install
an icon which already been created:

- Start Liberty BASIC if needed

- Click on the "Setup" menu and choose "Icon Editor"

45

- Click on the "File" menu in the Icon Editor and open the icon file, named freeform.ico
- To install the icon in the freeform.exe file, Click on "File" and then choose "W rite Icon To
Module"

- Find the freeform.exe file in the file dialog that appears, select it, and click on Ok

See also: Using the Runtime Engine

46

 Lesson Browser

Lesson Browser Setup

Liberty BASIC includes a lesson browser. The lesson browser has the ability to link tutorials and
comments with executable code, making it a perfect venue for creating lessons and
demonstration programs. If a file selected with OPEN from the FILE menu has an extension of

"lsn", it will open in the lesson browser.

Here is the Liberty BASIC lesson browser in action:

The left side of the lesson browser has a Table Of Contents (TOC). There are chapters, and

sections inside the chapters. Clicking on one of the names in the TOC causes that part of the
lesson to display. The text or comments for the lesson will display in the upper right pane. The

comments can be scrolled if the text doesn't all fit in the pane. Any accompanying code goes in
the bottom right pane. Choosing RUN, either with the RUN button on the toolbar, or the RUN
command in the RUN menu, causes the code in the code pane to be executed. The code can be
modified as desired, and run multiple times.

W riting Lessons

A new lesson can be created by selecting NEW from the FILE menu, which offers the choice of

creating a new BASIC program, or a new LESSON. If LESSON is chosen, a default empty lesson
displays in the lesson browser. It looks like this:

47

A right-click in the TOC pane on the left pops up a menu with choices to give the lesson a name,

or to add a chapter. If "Rename" is chosen from this menu, an input box will pop up. The desired
name should be entered there. If "New Chapter" is chosen from the menu, an input box will pop
up to input name the chapter.

Once a chapter has been added, a right-click activates a new menu with choices to rename the

chapter, delete it, or add a section.

A click on the lesson name, chapter name, or section name in the TOC causes the comments for
that item to display in the comment pane and the code to display in the code pane. It is easy to
add to or edit the comments and code.

The lesson is saved by choosing SAVE from the FILE menu. It will be saved with the extension
"lsn."

48

 Using a different code editor
You may use a third-party editor to create and modify Liberty BASIC code. You can even write
your own code editor in Liberty BASIC! In order to run the code with Liberty BASIC from another

program, use the following startup options to LIBERTY.EXE:

 -R Run a BAS file on startup
 -D Debug a BAS file on startup
--------the following three are in the registered version only--------
 -T Make a TKN file from a BAS file on startup
 -A Automatically Exit LB on completion of BAS file
 -M Minimize the Liberty BASIC editor on startup

 Examples:

 LIBERTY -R -M PROG.BAS 'run PROG.BAS with editor minimized
 LIBERTY -T -A PROG.BAS 'create a TKN file from PROG.BAS then
exit
 LIBERTY -D PROG.BAS 'run the debugger on PROG.BAS

As it appears when used in a code editor written in Liberty BASIC:

 RUN "LIBERTY -R -M PROG.BAS" 'run PROG.BAS with editor minimized
 RUN "LIBERTY -T -A PROG.BAS" 'create a TKN file from PROG.BAS
then exit
 RUN "LIBERTY -D PROG.BAS" 'run the debugger on PROG.BAS

49

 Using Inkey$

Liberty BASIC has a special variable named Inkey$ which can be used to fetch keys pressed.

This only works with the graphicbox and with windows opened for graphics. Graphics controls
handle an event called characterInput, which copies pressed-key codes into the Inkey$ variable.

See Graphics Commands, Inkey$, Reading Mouse Events and Keystrokes, and Using Virtual
Key Contants with Inkey$ for more details. Here is a very short program demonstrating Inkey$:

 'Inkey$ example
 print "Keys pressed:"
 open "Inkey$ example" for graphics as #graph
 print #graph, "when characterInput [keyPressed]"
 print #graph, "trapclose [quit]"

[loopHere]
 'make sure #graph has input focus
 print #graph, "setfocus"
 'scan for events
 scan
 goto [loopHere]

[keyPressed]
 key$ = Inkey$
 if len(key$) < 2 then
 print "pressed: "; key$
 else
 print "Unhandled special key"
 end if
 goto [loopHere]

[quit]
 print "Quitting"
 close #graph
 end

50

 Using virtual key constants with Inkey$
Keyboard input can only be trapped in graphics windows or graphicboxes. W hen a key is
pressed, the information is stored in the variable Inkey$. To check for keypresses, send the

command "when characterInput [branchLabel]" to the graphics window or graphicbox and
evaluate Inkey$ at the designated branch label.

Special keys like Alt, Ctrl, Shift, the Arrow keys, etc. are not coded like the letters, numbers
and other symbols. They have special values, and are preceded by a value of 32 (or less) when

they are trapped by Inkey$. W indows has values defined for these special keys, which are
expressed in virtual key constants. You can use these constants (and other special W indows

constants) in your Liberty BASIC programs. See also: Graphics Commands Inkey$, Reading
Mouse and Keyboard Input, and Using Inkey$. (See Inkey$ for a discussion of the meaning of
the first character of Inkey$ when it is longer than one character.)

Key Up and Key Down

Special keys trigger a new value for Inkey$ when they are pressed and again when they are
released.

Virtual Keys
A virtual key is the key that is actually pressed on the keyboard. The VK value for a letter, say

'a' is the same for lower case 'a' and upper case 'A' because it refers to the key pressed on the
keyboard, not to the ASCII value of the input. Most keys have a graphical representation.
Pressing the 'a' key in a text window causes the letter 'a' to be displayed in the window. There

are some keys that do not have a graphical representation. It is necessary to use Virtual Key
Codes to discover which of these keys has been pressed. They include the arrow keys, the
F-keys, Shift, Ctrl, Alt, Del, etc.

Here is a program that gives a quick example:

 'Inkey$ example, part two
 ctrl$ = chr$(_VK_CONTROL)
 print "Keys pressed:"
 open "Inkey$ example" for graphics as #graph
 print #graph, "when characterInput [keyPressed]"
 print #graph, "trapclose [quit]"

[loopHere]
 'make sure #graph has input focus
 print #graph, "setfocus"
 'scan for events
 scan
 goto [loopHere]

[keyPressed]
 key$ = left$(Inkey$, 2)
 if len(key$) < 2 then
 print "pressed: "; key$
 else
 if right$(key$, 1) = ctrl$ then
 print "CTRL was pressed"
 else
 print "Unhandled special key"
 end if

51

 end if
 goto [loopHere]

[quit]

 print "Quitting"
 close #graph
 end

Some other virtual key code constants:

 F1 through F16 _VK_F1 through _VK_F16

 0 through 9 on regular keyboard _VK_0 through _VK_9
 0 through 0 on number pad _VK_NUMPAD0 through _VK_NUMPAD9
 a through z _VK_A through _VK_Z

 Alt _VK_MENU
 Shift _VK_SHIFT

 Home _VK_HOME
 End _VK_END
 Insert _VK_INSERT

 Delete _VK_DELETE
 NumLock _VK_NUMLOCK
 Arrow Up _VK_UP
 Arrow Down _VK_DOW N
 Arrow Left _VK_LEFT

 Arrow Right _VK_RIGHT

52

 Error Messages

Sometimes when using Liberty BASIC, there are error messages presented while compiling

(called compile-time errors) and while running a program (called run-time errors).

Here are some compile-time errors:

Syntax error - This means that some error was made while typing in a BASIC statement. You
should examine the line and look for typing mistake.

Type mismatch error - This means that you tried to use a string where a number should be
used, or a number where a string should be used.

Here are some run-time errors:

Branch label [exampleLabel] not found - The program tried to GOTO or GOSUB to a label that

doesn't exist.

Float divide by zero exception - The program tried to divide a number by zero, which is not
possible to do.

File filename not found - This error can occur when attempting to load a bitmap image from a
disk file into memory using the LOADBMP statement, and when no file of the specified filename
is found to exist.

Bitmap named bitmapname not found - This error can occur when attempting to save a bitmap
from memory to a disk file using the BMPSAVE statement, or when attempting to use the

DRAW BMP command, and a bitmap name is specified which doesn't exist in the program's
memory.

Control type fonts are set with: !FONT face_Name width height - An error was made specifying
the font for a control (controls which return this error include button, textbox, radiobutton,

checkbox).

undefined struct: structname - An expression referred to the name of an undefined struct (see
the help file for information about the STRUCT statement).

root.field.struct undefined - An expression referred to a field which is undefined for a struct which
is defined (named root in this example).

Errors when using serial communications - There are a handful of run-time error messages which
terminate program execution. These usually correlate to API function call failures that occur
when attempting different operations. In this case, the error is reported by W indows, but the
description of the reported error is generated by Liberty BASIC. Here is a list of the error

messages:

 Port must be open
 SetCommState failed

 Unable to get DCB
 Output queue full
 Unable to send RTS

 Unable to clear RTS
 Unable to clear DTR

53

 Unable to set DTR
 Byte size too small
 Byte size too large

 Invalid port, or port not open
 Unable to get max port
 Unable to set break

 The device is already open
 The device identifier is invalid or unsupported

 The device's baud rate is unsupported
 The specified byte size is invalid
 The default parameters are in error

 The hardware is not available (is locked by another device)
 The function cannot allocate the queues
 The device is not open

The following run-time errors are indications of more subtle problems in Liberty BASIC. If you
see one of these errors, send email to carlg@ libertybasic.com describing in as much detail how
the error happened. If you have BASIC code that can reproduce the error, please include it in

your message.

 Index: n is outside collection bounds
 The collection is empty
 Object is not in the collection

54

 Error Log Explained
Sometimes the Liberty BASIC compiler finds a problem with your code, and it will stop and give
you an error message of some kind. Usually this will appear on the status line at the bottom of

the Liberty BASIC editor window. At other times you may see a popup error notice when running
a program that you've written. There are a variety of programmer errors which can give rise to
such error messages. For example, perhaps a program tries to divide a number by zero (which is
mathematically impossible to do), or maybe a program closes a file, and then tries to close it
again (it isn't possible to close a file that isn't open). These kinds of programmer bugs result in a

popup error message.

However, sometimes you will get a popup error notice that mentions the ERROR.LOG file. This
means that you have stumbled across a nastier sort of bug in Liberty BASIC itself, and Liberty
BASIC has written something about that bug in the ERROR.LOG file.

W hat should you do with the information in the ERROR.LOG file? Some people have contacted

us more than a little confused after looking at the contents of the this file. Don't worry. This
information is much more useful to us, since it contains details about the internals of Liberty
BASIC. W e have a pretty good idea what it means. If you are so inclined, you can send it to us

and we'll take a look at it and try to help you with the bug, and also use the information to fix
bugs in new releases of Liberty BASIC.

To do this, send email to support@ libertybasic.com and explain in as much detail as you can
how the error happened. If you aren't sure how it happened, see if you can make the error happen

again. It can be very hard, or nearly impossible to fix bugs when they cannot be recreated.
Sometimes it helps us to figure out the cause of the error when we have access to the source
code and other files that you were using when the error happened. If you can, please provide us
with these things so that we can serve you best. W e realize of course that sometimes you may
not want to share your code and files for privacy reasons or because your company policy may

forbid it, and this is perfectly understandable.

Now that you have a better understanding of what ERROR.LOG is and how to make use of it, you
will be able to help us improve the quality of the Liberty BASIC programming language!

55

 Port I/O
Distributing your application using INP() and/or OUT to control hardware ports.

Because 32-bit versions of W indows do not have a built-in API for doing hardware I/O, you will
need to distribute driver files with your Liberty BASIC application if it requires the use of INP() and

OUT. You can find all runtime files you need to distribute in the ntport subdirectory of your
Liberty BASIC v3.0 install.

They are:

 ntport.dll (Application Dynamic Link Library)
 zntport.sys (W indows NT/2000/XP driver)

For W indows 95/98/ME

W hen you install your application to a W indows 95/98/ME system, you should install ntport.dll to
your client's W indows\System directory. You need not distribute the zntport.sys.

For W indows NT/2000/XP

W hen you install your application to a W indows NT/2000/XP system, you have two choices:

1) If all the users have administrative rights (which is usually the case unless someone in your IT
department has not given you administrative rights) you can install ntport.dll and zntport.sys to
your client's W inNT\System32 directory. In this case, you need not do any other configuration.

2) If some users don't have administrative rights, you need to create an installation program to

install the NTPort Library driver. The installation program should do following steps:

 - Install ntport.dll to W inNT\System32 directory

 - Install zntport.sys to W inNT\System32\drivers directory
 - Import the registry settings from ntport2.reg - this file is in the ntport directory

 - Restart W indows

In this case, you still need administrative rights to run the installation program, but after the
reboot, any normal user can use your program.

56

 Making API and DLL Calls

Liberty BASIC can make 32-bit W indows API calls and also bind to third party

Dynamic-Link-Libraries. Liberty BASIC programmers now have access to hundreds of functions
provided in W indows and from third-party sources that can greatly increase productivity.

Calling APIs and DLLs

Informational resources about APIs/DLLs
W hat are APIs/DLLs?
How to make API/DLL calls
Example Programs
Using hexadecimal values

Using Types with STRUCT and CALLDLL
Passing Strings into API Calls
Caveats

57

 TroubleShooting

Low m em ory situtations

Most computers today have enough memory to run Liberty BASIC. If you find that you are
getting low memory errors, try the following:

 - Close other running W indows and DOS applications.

 - Reduce the size of your Smartdrive disk cache or eliminate it.
 - Increase the size of your W indows swapfile.

General Protection Faults

Most general protection faults in Liberty BASIC are caused by:
 - Video drivers. A major problem with environments like W indows and OS/2, video drivers are
often immature and/or incompletely implemented according to spec. Try to get the most recent
version of the W indows drivers for your video card. If it isn't a showstopper for you, try the
standard 16 color drivers that come with W indows.

 - Low memory (see above). If you are getting a general protection fault in VSTUB.EXE, you
need either a bigger swapfile, more physical RAM, or both.

58

 Liberty BASIC Language
This section of the help system deals with the the structure, syntax and usage of the Liberty
BASIC language. It contains information on the following topics:

Logic and Structure

Arrays and Variables
File Operations
Mathematics
Text Usage
Graphics

Sprites
API and DLL Calls

59

 Logical Line Extension

Liberty BASIC supports a technique called logical-line-extension, which allows one line of code

to be split over several lines of text in the editor. For example:

open "user32" for dll as #u

calldll #u, "GetWindowRect", hMain as long, Rect as struct, result as long

close #u

A line can get long and difficult to read! Consider the following equivalent.

 Open "user32" For DLL As #u
 CallDLL #u, "GetWindowRect",_
 hMain As long,_
 Rect As struct,_
 result As long
 Close #u

W hen the line is broken up with the _ character, the code is more readable.

60

 The NOMAINW IN com m and

W hen a Liberty BASIC program is run, a simple text window called the mainwin appears. It can

be used to display text and to ask the user for input. To suppress the mainwin, a nomainwin
statement is used:

 nomainwin 'don't open a mainwin
 menu #draw, "Draw", "Draw now", [drawNow]
 open "No man's land, er... nomainwin" for graphics as #draw
 print #draw, "trapclose [quit]"
 wait
[drawNow]
 print #draw, "cls ; home ; down ; north"
 for x = 1 to 100
 print #draw, "turn 122 ; go "; str$(x*2)
 next x
 print #draw, "flush"
 wait
[quit]
 confirm "Do you want to quit Buttons?"; quit$
 if quit$ = "no" then wait
 close #draw
 end

The mainwin can be used when a program is under development. If a program locks up or

crashes, it can still be closed by clsoing the mainwin. It is important that a program have
trapclose handlers for all of its windows when the nomainwin command is used, otherwise the
program may still be running with no way to close it. All programs should finish executing with
an END statement (like the example above) to ensure that programs actually do clean up by
themselves.

If a program continues running with no way to close it, it may be ended by clicking on the Run

menu on the Liberty BASIC editor and selecting Kill BASIC Programs.

61

 Functions and Subroutines

See also: Function, Sub, Branch Labels, GOTO and GOSUB, GOSUB, RETURN, GOTO,

GLOBAL, BYREF

Liberty BASIC supports user defined functions and subroutines. They look similar to their
QBASIC equivalents:

 'define a function for returning a square root
 function squareRoot(value)
 squareRoot = value ^ 0.5
 end function

and...

 'create a subroutine for logging to an event log
 sub logToFile logString$
 open "c:\logdir\event.log" for append as #event
 print #event, time$()
 print #event, logString$
 close #event
 end sub

A user-defined function such as the one above can be treated like any built-in function:

 print "The square root of 5 is "; squareRoot(5)

Subroutines in Liberty BASIC are accessed using the CALL statement. For example:

 'Now log some info to disk
 call logToFile "The square root of 5 is " + squareRoot(5)

The variable scoping in subroutines and functions is local. This means that by default, the
names given to variables inside the definition of a subroutine or function are only meaningful
inside that definition. For example, a variable named "counter" can exist in the main program
code. The program can use a function which also contains a variable named "counter" in its

code. W hen the function is used, the "counter" variable in the calling code doesn't lose its value
when the function changes the value of its variable named "counter". They are in fact different
variables, although they share the same name. Variables passed into subroutines may be

passed by reference, which allows them to be changed in the subroutine or function, and the
change is reflected in the main program. For more on passing byref, please see below.

Here is an example that uses a function:
 'set my variable counter
 for counter = 1 to 10
 print loop(counter)
 next counter
 end

function loop(limit)
 for counter = 1 to limit
 next counter
 loop = counter

62

end function

Exceptions to the variable scoping mechanism include the following things which are globally
visible everywhere in a Liberty BASIC program:

- Arrays
- Things with handles (files, windows, DLLs, communications ports)

- Structs

GLOBAL

In general, variables used in the main program code are not visible inside functions and
subroutines. Variables inside functions and subroutines are not visible in the main program.

Liberty BASIC 4 introduces the GLOBAL statement to create global variables. Variables
declared as GLOBAL can be seen everywhere in a program. See GLOBAL. The special system
variables lW indowW idth, W indowHeight, UpperLeftX, UpperLeftY, ForegroundColor$,

BackgroundColor$, ListboxColor$, TextboxColor$, ComboboxColor$, TexteditorColor$,
DefaultDir$, Joy1x, Joy1y, Joy1z, Joy1button1, Joy1button2, Joy2x, Joy2y, Joy2z, Joy2button1,

Joy2button2, and Com now have true global status. GLOBALS are specified and used like this:

'define a global string variable:
global title$
title$ = "Great Program!"

'Special system variables don't
'need to be declared as global,
'since they have that status automatically
BackgroundColor$ = "darkgray"
ForegroundColor$ = "darkblue"

'call my subroutine to open a window
 call openIt
 wait

sub openIt
 statictext #it.stext, "Look Mom!", 10, 10, 70, 24
 textbox #it.tbox, 90, 10, 200, 24
 open title$ for window as #it
 print #it.tbox, "No hands!"
end sub

NOTE: Branch labels inside functions and subroutines are not visible to code outside those

functions and subroutines. If code in the main program tries to access a branch label inside a
function or subroutine, this will cause get an error. Likewise, functions and subroutines cannot
use branch labels defined outside their scope.

Passing Arguments into Subroutines and Fuctions - by value and BYREF
Through Liberty BASIC 3, values can only be passed into a user subroutine or function by value.
"Passing by value" is a common term meaning that once a value is passed into a subroutine or
function, it is just a copy of the passed value and has no relationship to the original value. If the

value is changed in the called subroutine or function, it does not change in the main program.

Now Liberty BASIC 4 allows us to pass variables by reference. This means that if a subroutine or
function so declares, it can modify the value of a variable passed in, and when the subroutine or

63

function ends and execution returns to the caller the change will be reflected in the variable that
was used as a parameter in the call.

By default and without any direct instruction by the programmer, parameters passed into user
defined functions and subroutines in QBasic and Visual Basic are passed by reference. That is

not true in Liberty BASIC, where values are passed by value as the default. Passing by reference
is only done when the BYREF keyword is used.

 Exam ple of passing by value
This example shows how passing by value works. The only value that comes back from the

function is the one assigned to result$ when the function call returns.

 'this is the way it always worked
 x = 5.3
 y = 7.2
 result$ = formatAndTruncateXandY$(x, y)
 print "x = "; x
 print "y = "; y
 print result$
 end

function formatAndTruncateXandY$(a, b)
 a = int(a)
 b = int(b)
 formatAndTruncateXandY$ = str$(a)+", "+str$(b)
end function

 Exam ple of passing by reference

In contrast to the "passing by value" example, each of the parameters in the function in this
example are to be byref (pass by reference). This means that when the value of a and b are
changed in the function that the variables used to make the call (x and y) will also be changed to
reflect a and b when the function returns. Try stepping through this example in the debugger.

 'now you can pass by reference
 x = 5.3
 y = 7.2
 result$ = formatAndTruncateXandY$(x, y)
 print "x = "; x
 print "y = "; y
 print result$

 'and it works with subroutines too
 wizard$ = "gandalf"
 call capitalize wizard$
 print wizard$

 end

function formatAndTruncateXandY$(byref a, byref b)
 a = int(a)
 b = int(b)
 formatAndTruncateXandY$ = str$(a)+", "+str$(b)
end function

64

sub capitalize byref word$
 word$ = upper$(left$(word$, 1))+mid$(word$, 2)
end sub

 More about pass by reference
Passing by reference is only supported using string and numeric variables as parameters. You
can pass a numeric or string literal, or a computed number or string, or even a value from an

array, but the values will not come back from the call in any of these cases. Step through the
example in the debugger to see how it works!

 'you can also call without variables, but the changes
 'don't come back
 result$ = formatAndTruncateXandY$(7.2, 5.3)
 print result$

 'and it works with subroutines too
 call capitalize "gandalf"

 a$(0) = "snoopy"
 call capitalize a$(0)

 end

function formatAndTruncateXandY$(byref a, byref b)
 a = int(a)
 b = int(b)
 formatAndTruncateXandY$ = str$(a)+", "+str$(b)
end function

sub capitalize byref word$
 word$ = upper$(left$(word$, 1))+mid$(word$, 2)
end sub

65

 Branch Labels, GOTO and GOSUB
See also: GOSUB, RETURN, GOTO, Functions and Subroutines, Function, Sub

Branch Labels
Liberty BASIC will accept numbers as branch labels. This is useful when using old BASIC code.

The numbers don't change the order of the code. The following two short programs are
essentially the same:

10 REM count to ten
20 for x = 1 to 10
30 print x
40 next x
50 end

20 REM count to ten
40 for x = 1 to 10
10 print x
30 next x
50 end

Instead of using numeric branch labels, it is better to use alphanumeric ones, because they are
descriptive and help the programmer remember what is happening in a block of code. In Liberty
BASIC, alphanumeric branch labels are surrounded by square braces: [myBranchLabel] Spaces
and numbers are not allowed as part of branch label names, and names may not start with a

numeral.

Here are some valid branch labels: [mainMenu] [enterLimits] [repeatHere]
Here are some invalid branch labels: [enter limits] mainMenu [1moreTime]

In QBASIC, branch labels end with a colon and looks like this: myBranchLabel:

The above program doesn't really need branch labels. It looks like this without them:

 'count to ten
 for x = 1 to 10
 print x
 next x
 end

A program to count without a for/next loop looks like this:

 'count to ten
[startLoop]
 x = x + 1
 print x
 if x < 10 then [startLoop]
 end

Just for comparison, in QBASIC it looks like this:

 'count to ten
startLoop:
 x = x + 1

66

 print x
 if x < 10 then goto startLoop
 end

NOTE: Branch labels inside functions and subroutines are not visible to code outside those
functions and subroutines. Likewise, functions and subroutines cannot use branch labels defined
outside their scope.

GOTO

To continue program execution at a specified branch lable, issue a GOTO command. See
GOTO.

 GOTO [startLoop]

Do not use GOTO to exit a FOR/NEXT or W HILE/W END loop prematurely.

GOSUB

To continue program execution at a specifed GOSUB routine, issue a GOSUB command. The
GOSUB routine ends with a RETURN statement that returns program execution to the line of

code following the GOSUB command. See GOSUB, RETURN.

GOSUB [initialize]

67

 Conditional Statements
Conditional statements are implemented with the IF...THEN...ELSE...END IF structure.

See also: Boolean Evaluations, IF...THEN, Select Case

IF test expression THEN expression(s)

IF test expression THEN expression(s)1 ELSE expression(s)2

IF test expression THEN
 expression(s)1
END IF

IF test expression THEN

 expression(s)1
ELSE
 expression(s)2
END IF

Description:

The IF...THEN statement provides a way to change program flow based on a test expression. For
example, the following line directs program execution to branch label [soundAlarm] if fuel runs

low.

if fuel < 5 then [soundAlarm]

Another way to control program flow is to use the IF...THEN...ELSE statement. This extended
form of IF...THEN adds expressiveness and simplifies coding of some logical decision-making
software. Here is an example of its usefulness.

Consider:

[retry]
 input "Please choose mode, (N)ovice or e(X)pert?"; mode$
 if len(mode$) = 0 then print "Invalid entry! Retry" : goto [retry]

 mode$ = left$(mode$, 1)

 if instr("NnXx", mode$) = 0 then print "Invalid entry! Retry" : goto [retry]
 if instr("Nn", mode$) > 0 then print "Novice mode" : goto [main]
 print "eXpert mode"

[main]

 print "Main Selection Menu"

The conditional lines can be shortened to one line as follows:

if instr("Nn",mode$)> 0 then print "Novice mode" else print "eXpert mode"

Some permitted forms are as follows:

 if a < b then statement else statement
 if a < b then [label] else statement
 if a < b then statement else [label]
 if a < b then statement : statement else statement

 if a < b then statement else statement : statement

68

 if a < b then statement : goto [label] else statement
 if a < b then gosub [label1] else gosub [label2]

Any number of variations on these formats are permissible. The (a < b) BOOLEAN expression is
of course only a simple example chosen for convenience. It must be replaced with the correct

expression to suit the problem.

IF...THEN...END IF is another form using what are called conditional blocks. This allows great

control over the flow of program decision making. Here is an example of code using blocks.

 if qtySubdirs = 0 then
 print "None."
 goto [noSubs]
 end if

A block is merely one or more lines of code that are executed as a result of a conditional test.
There is one block in the example above, and it is executed if qtySubdirs = 0.

It is also possible to use the ELSE keyword as well with blocks:

 if qtySubdirs = 0 then
 print "None."
 else
 print "Count of subdirectories: "; qtySubdirs
 end if

This type of coding is easy to read and understand. There are two blocks in this example. One
is executed if qtySubdirs = 0, and one is executed if qtySubdirs is not equal to 0. Only one of

the two blocks will be executed (never both as a result of the same test).

These conditional blocks can be nested inside each other:

 if verbose = 1 then
 if qtySubdirs = 0 then
 print "None."
 else
 print "Count of subdirectories: "; qtySubdirs
 end if
 end if

In the example above, if the verbose flag is set to 1 (true), then display something, or else skip
the display code entirely.

Comparison to QBasic Conditional Statements
Liberty BASIC supports conditional blocks very similar to those in QBasic. The format looks like
the following silly example:

 if blah blah blah then
 some code here
 end if

or like:

69

 if blah blah blah then
 some code here
 else
 some other code here
 end if

Blocks may be nested:

 if sis boom bah then
 if blah blah blah then
 some code here
 end if
 else
 some other code here
 end if

The elseif keyword is not supported. Here is an example using elseif (QBasic):

 'QBasic only
 if sis boom bah then
 print "Yippie!"
 elseif la dee da then
 print "So what!"
 end if

Instead in Liberty BASIC, it looks like this:

 'Liberty BASIC - no elseif
 if sis boom bah then
 print "Yippie!"
 else
 if la dee da then
 print "So what!"
 end if
 end if

70

 Select Case Statement

Many BASICs have a Select Case statement, and Liberty BASIC 3 adds that capability also. It

is a good alternative when many possible conditions must be evaluated and acted upon. The
Select Case construction also provides a Case Else statement for implementing a routine when

the evaluated condition meets none of the cases listed. For more, see SELECT CASE.

SELECT CASE is a construction for evaluating and acting on sets of conditions. The syntax for
Select Case is:

SELECT CASE var
 CASE x
 'basic code
 'goes here

 CASE y
 'basic code
 'goes here

 CASE z
 'basic code
 'goes here
 CASE else
 'basic code

 'goes here
 END SELECT

Details:

SELECT CASE var - defines the beginning of the construct. It is followed by the name variable
that will be evaluated. The variable can be a numeric variable or a string variable, or an

expression such as "a+b".

CASE value - following the SELECT CASE statement, are individual CASE statements,
specifying the conditions to evaluate for the selected variable. Code after the "case" statement is

executed if that particular case evaluates to TRUE. There is no limit to the number of conditions
that can be used for evaluation.

CASE ELSE - defines a block of code to be executed if the selected value does not fulfil any other
CASE statements.

END SELECT - signals the end of the SELECT CASE construct.

Example usage:

num = 3

select case num
 case 1
 print "one"
 case 2
 print "two"
 case 3
 print "three"

71

 case else
 print "other number"
 end select

The example above results in output in the mainwin of:

three

Strings
SELECT CASE can also evaluate string expressions in a similar way to numeric expressions.

String example:

var$="blue"

select case var$
 case "red"
 do stuff
 case "green","yellow"
 do stuff
 case else
 do stuff
end select

MULTIPLE CASES - may be evaluated when separated by commas.
For example:

 select case a+b
 case 4,5
 do stuff
 case 6,7,8
 do other stuff
 end select

Once one of the CASEs has been met, no other case statements are evaluated. In the following
example, since the value meets the condition of the first CASE statement, the second CASE
statement isn't considered, even though the value meets that condition also.

num = 3

select case num
 case 3, 5, 10
 print "3, 5, 10"
 case 3, 12, 14, 18
 print "3, 12, 14, 18"
 case else
 print "Not evaluated."
end select

The example above results in output in the mainwin of:

72

3, 5, 10

Evaluating m ultiple conditions in the CASE statement
Omitting the expression (or variable) in the SELECT CASE statement causes the conditions in
the CASE statements to be evaluated in their entirety. To omit the expression, simply type

"select case" with no variable or expression after it. In the following example, since "value"
evaluates to the first CASE statement, the printout says "First case"

'correct:
value = 58

select case
 case (value < 10) or (value > 50 and value < 60)
 print "First case"

 case (value > 100) and (value < 200)
 print "Second case"

 case (value = 300) or (value = 400)
 print "Third case"

 case else
 print "Not evaluated"
end select

If the expression "value" is placed after "select case", then none of the CASE statements is met,
so CASE ELSE is triggered, which prints "Not evaluated". The expression must be omitted to

evaluate multiple values in a SELECT CASE statement:

'wrong:
select case value

'correct:
select case

Nested statements
Nested select case statements may be used. Example:

 select case a+b
 case 4,5
 select case c*d
 case 100
 do stuff
 end select
 do stuff
 case 6,7
 do other stuff
 end select

73

 Bitwise Operations
W hat are bitwise operations?
Bitwise operations modify the pattern of bits in an object. Computers use binary numbers. A

binary number consists ofone ormore digits,which represent two differentstates, such as on/off.

An example of a binary number looks like this:

10010

The first digit on the RIGHT side of the number is in the one's column. The second digit from the
right is in the two's column, then comes the four's column, the eight's column, the sixteen's

column and so on. Each column contains a "bit",orbinary digit.

16 8 4 2 1

This example binary number, "10010", converted toa decimal number, evaluates likethis.

16 8 4 2 1
 1 0 0 1 0

16 * 1 = 16
 8 * 0 = 0
 4 * 0 = 0
 2 * 1 = 2
 1 * 0 = 0

total = 18 in decimal numbers

It is possible to operate on the bits using BOOLEAN operators.

AND

The AND operator will set a bit only if both input bits are set.

'Bitwise AND
'This operation sets a bit only if
'both inputs have the bit set.

print 7 and 11 ' yields 3

'16 8 4 2 1 '
'-------------- '
' 0 0 1 1 1 ' 7 in binary
' 0 1 0 1 1 ' 11 in binary
'
' ^ ^ ' These are the place values where both
numbers are 1.
' ' Hence, 2 + 1 = 3

OR
The OR operator will set a bit if either input bit is set.

74

'Bitwise OR
'This operation sets a bit if
'either input has the bit set.

print 7 or 11 ' yields 15

'16 8 4 2 1 '
'-------------- '
' 0 0 1 1 1 ' 7 in binary
' 0 1 0 1 1 ' 11 in binary
'
' ^ ^ ^ ^ ' These are the place values where either
number has a 1.
' ' Hence, 8 + 4 + 2 + 1 = 15

XOR

The Bitwise XOR operation sets a bit only if exactly one of the inputs has the bit set.

'Bitwise XOR
'This operation sets a bit only if
'exactly one of the inputs has the bit set.

print 7 xor 11 ' yields 12

'16 8 4 2 1 '
'-------------- '
' 0 0 1 1 1 ' 7 in binary
' 0 1 0 1 1 ' 11 in binary
'
' ^ ^ ' These are the place values where exactly one
of the
' ' numbers has a 1. Hence, 8 + 4 = 12

See also: BOOLEAN

75

 Boolean Evaluations
W hat are booleans evaluations?
A boolean value is either true or false. W hen used as types in CallDLL, booleans evaluate to (0 =

false), (nonzero = true). A true value is any value not zero, but is usually considered to be either
"1" or "-1".

Boolean Conditions
Tests that are placed into conditional clauses like IF/THEN, W HILE/W END, and CASE
statements return a boolean value. Here is an evaluation:

if x < 3 then [doSomething]

The code is evaluating the condition (x < 3) and branching to the [doSomething] label if the
condition is TRUE. If the value of x is 1, then the condition evaluates to TRUE and the program

branches to [doSomething]. If the value of x is 7, then the condition evaluates to FALSE and the
program does NOT branch to [doSomething].

Boolean Operators
= a = b a is equal to b
< a < b a is less than b
<= a <= b a is less than or equal to b
> a > b a is less than b
>= a >= b a is less than or equal to b
<> a <> b a is not equal to b

Multiple Conditions

W hen evaluating multiple conditions, each condition must be placed inside parentheses, as in the
examples below.

AND - both conditions must be met for the test to evaluate to TRUE.

a = 2 : b = 5
If (a<4) and (b=5) then [doSomething]

In this code, (a must be less than 4) AND (b must be equal to 5) for the program to branch to
[doSomething]. Since both of these conditions are true, the program will advance to
[doSomething]

a = 14 : b = 5
If (a<4) and (b=5) then [doSomething]

This similar example evaluates to FALSE because (a is not less than 4), so the program will not
advance to [doSomething]

OR - at least one of the conditions must be met for the test to evaluate to TRUE.

a = 14 : b = 5
If (a<4) OR (b=5) then [doSomething]

In this code, at least one of the conditions (a must be less than 4) OR (b must be equal to 5)
must evaluate to TRUE for the program to branch to [doSomething]. Since the example shows

76

that (b is equal to 5), the program will advance to [doSomething], because at least one of the
conditions evaluates to TRUE.

XOR - only one of the conditions must be met for the test to evaluate to TRUE.

a = 14 : b = 5
If (a<4) XOR (b=5) then [doSomething]

In this code, only one of the conditions (a is less than 4) OR (b is to 5) must evaluate to TRUE for
the program to branch to [doSomething]. In the example, only the second condition evaluates to
true, so the program will advance to [doSomething].

a = 2 : b = 5
If (a<4) XOR (b=5) then [doSomething]

In the second XOR example, both conditions evaluate to true, so the program will NOT advance to
[doSomething].

NOT - reverses the value.

If NOT((a<4) AND (b=5)) then [doSomething]

In this code, both of the conditions (a must NOT be less than 4) AND (b must be equal to 5) must
evaluate to TRUE for the program to branch to [doSomething].

BOOLEAN TRUTH TABLE

Input1 OP Input2 = Result

0 AND 0 = 0
0 AND 1 = 0
1 AND 0 = 0
1 AND 1 = 1

0 OR 0 = 0
0 OR 1 = 1
1 OR 0 = 1
1 OR 1 = 1

0 XOR 0 = 0
0 XOR 1 = 1
1 XOR 0 = 1
1 XOR 1 = 0

See also: Bitwise Operations

77

 Looping
Liberty BASIC provides three constructions for looping. One is FOR/NEXT another is
W HILE/W END, and the third is DO LOOP.

FOR/NEXT executes a loop a set number of times, which is determined by the starting and

ending values in the FOR statement and by the size of the STEP. For more on For...Next loops,
click here.

W HILE/W END executes a loop as long as a specified condition evaluates to TRUE. For more on
W hile...W end loops, click here.

DO LOOP provides a loop that always executes once and then only loops back as long as a
condition is met. For more on DO LOOPs, click here.

W ARNING: In loops, an "exit" statement is provided for instances where it is necessary to exit
the loop before the counter variable has reached its max, or the "while" condition evaluates to
false. Do not attempt to exit a loop prematurely by issuing a "goto" statement.

FOR/NEXT

The FOR . . . NEXT looping construct provides a way to execute code a specific amount of times.
 A starting and ending value are specified:

 for var = 1 to 10
 {BASIC code}
 next var

In this case, the {BASIC code} is executed 10 times, with var being 1 the first time, 2 the second,
and on through 10 the tenth time. Optionally (and usually) var is used in some calculation(s) in
the {BASIC code}. For example if the {BASIC code} is print var ̂ 2, then a list of squares for var
will be displayed upon execution.

The specified range could just as easily be 2 TO 20, instead of 1 TO 10, but since the loop

always counts +1 at a time, the first number must be less than the second. The way around this
limitation is to place STEP n at the end of for FOR statement:

 for index = 20 to 2 step -1
 {BASIC code}
 next index

This loops 19 times returning values for index that start with 20 and end with 2. STEP can be
used with both positive and and negative numbers and it is not limited to integer values. For

example:

 for x = 0 to 1 step .01
 print "The sine of "; x; " is "; sin(x)
 next x

For more on For...Next loops, click here.

W HILE/W END
As shown above, Liberty BASIC includes a for/next looping construct. It also has a while/wend
looping construct. Here is the above program rewritten using while/wend.

78

 'count to ten
 x = 0
 while x < 10
 x = x + 1
 print x
 wend
 end

One useful thing that can be done with while/wend is to wrap the boolean expression in a NOT()
function, which effectively turns while/wend into a "while condition is false" do construct:

 'count to ten
 while not(x = 10)
 x = x + 1
 print x
 wend
 end

 For more on W hile...W end loops, click here.

DO LOOP
Liberty BASIC also provides a DO LOOP structure for cases when you want a loop that always
executes once and then only loops back as long as a condition is met. It will continue looping

back and executing the code as long as the booleanExpr evaluates to true. Here is the routine
that counts to 10 using DO LOOP with while and DO LOOP with until.

 'count to 10 using "loop while" and "loop until"

 do
 print a
 a = a + 1
 loop while a < 11
 print

 do
 print b
 b = b + 1
 loop until b = 11

For more on DO LOOPs, click here.

79

 Recursion

Liberty BASIC supports recursive subroutine and function calls. This means that a function can

call itself. W hen it does this it makes a copy of itself, reusing its variable names. The values
are not overwritten. It is important to place an evaluation statement inside a recursive function

that causes the function to finish and return to the main code. Care should be taken to avoid
creating an endlessly looping recursive function. The two examples below contains an
"IF...THEN" evaluation that, when met, causes the function to stop calling itself and return
control to the main program.

Here is an example of a subroutine which counts down from a number.

 'countdown
 print "Let's count down from three."
 call countDown 3
 end

sub countDown number
 print number
 if number > 1 then call countDown number-1
end sub

Now here's an example of a recursive function that returns the factorial of a number. A factorial
is obtained by taking a number and multiplying it in turn by each integer less than itself. The

factorial of 5 is 5x4x3x2x1=120. The factorial of 7 is 7x6x5x4x3x2x1=5040. The numbers get
big in a hurry after this. For example, the factorial of 15 is 1307674368000!!

 'factorial
 input "Compute factorial for?"; n
 print factorial(n)
 end

function factorial(a)
 factorial = 1
 if a > 1 then factorial = a*factorial(a-1)
end function

80

 The Timer Statement

Liberty BASIC includes a timer statement which uses the computer's hardware timer. Most

PCs have a timer with a resolution of approximately 56 milliseconds which ticks 18 times a
second. The timer allows the addition of a clock to a program, or or it allows the program to

wake up every few seconds to check for some condition, or it can be used to control the rate of
animation of a game. There are other uses as well.

The TIMER command specifies how many milliseconds to wait between timer signals. One
second is 1000 milliseconds. It also specifies a routine to serve as an event handler. The timer
may be turned off and then back on.

Here is a short example:

 timer 3000, [threeSeconds]
 wait
[threeSeconds]
 timer 0
 confirm "Three seconds have passed. Do it again?"; repeat
 if repeat then
 timer 3000, [threeSeconds]
 wait
 end if
 end

See also: TIMER

81

 Callbacks for API Functions

Liberty BASIC 3 supports the use of a callback address that can be passed into an API function

so that a function within a program can be called by an API function. The syntax:

callback address, functionNameProc(type, ...type), return type

For more, see CALLBACK.

82

 Variables
See also: Numeric Variables, String Literals and Variables, GLOBAL

LITERALS
A literal value is hard-coded into a program. Here are two literals, printed to the mainwin. The

first is a number. The second is a string of text characters.

 print 57
 print "Hello World"

 produces

 57
 Hello World

VARIABLES
A variable is a name used in the code that represents a string or numeric value. The value
assigned to the variable name may change as the program runs. The program can always

access the current value of the variable by refering to its name. In this example, a value of "3" is
assigned to a variable called myNumber:

 myNumber=3
 print myNumber

 produces

 3

If a different value is later assigned to the variable called myNumber:

 myNumber=17
 print myNumber

 produces

 17

In Liberty BASIC variables are either string or numeric. A variable name can start with any letter
and it can contain both letters and numerals, as well as dots (for example: user.firstname).
There is no practical limit to the length of a variable name. The variable names are uppercase
and lowercase sensitive, so these are not the same variable:

 supercalifragilisticexpialadocious
 superCaliFragilisticExpialaDocious

As in most versions of BASIC, string variable names end in a "$" character for example:

 boast$ = "String variables can contain 2 million characters!"

The boast above is correct. In Liberty BASIC, string variables can be huge, containing as many
as 2 million characters.

83

Unlike some BASICs, Liberty BASIC does not require variables to be declared before they may
be used in code. It is importatnt to check the spelling/capitalization of variables, because
variable names are case sensitive. If 'Compiler Reporting' is enabled in the options dialog,

Liberty BASIC will give an alert in a special pane at the bottom of the editor when a program
contains variables with similar names, like (name$ and names$) or (name$ and Name$.)

GLOBAL
In general, variables used in the main program code are not visible inside functions and

subroutines. Variables inside functions and subroutines are not visible in the main program.
Liberty BASIC 4 introduces the GLOBAL statement to create global variables. Variables

declared as GLOBAL can be seen everywhere in a program. The special system variables like
W indowW idth, W indowHeight, etc. now have true global status. GLOBALS are specified and
used like this:

global true, false, filename$
true=1
false=0
filaname$ = "readme.txt"

84

 Arrays

Liberty BASIC supports single and double dimensioned arrays. These can be defined as string

or numeric arrays. The extents of the dimensions can be in excess of 2 million elements, if
there is enough RAM available.

Arrays that contain more than 10 elements must be dimensioned before they can be used.

Arrays are dimensioned with the DIM statement.

DIM students$(20)
DIM ages(100)

Resizing is done to any array with the REDIM statement, but doing so will erase the contents of
the array.

REDIM students$(30)

Double dimensioned arrays must always be dimensioned with the DIM statement before use.

DIM scores$(20, 10)

The equal sign (=) is used to assign a value to an element in an array. The element is referred
to by its index number. The index may be expressed as a literal number or as a numeric
variable. The element at index 2 in the following example is filled with "John." The element at
index 7 is filled with the number 12.

students$(2) = "John"
ages(7) = 12

Arrays can be used in most places where a variable or literal value can be used. To access the
value of an element in an array, the index for that element is placed inside the parentheses. In

this example, the value at index 4 is retrieved from the array:

thisKid$ = students$(4)
or
print students$(4)

Using Arrays in Loops
One of the great advantages of arrays is their ability to be accessed in loops, as in the following
example, which prints the names of elements 1 - 30 that are contained in the array.

for i = 1 to 30
 print students$(i)
next

Input to Arrays

In earlier versions of Liberty BASIC, it wasn't possible to input directly into arrays. That limitation
no longer exists in Liberty BASIC 3. It is now possible to use both Input and Line Input to read
data from opened files directly into arrays.

'now works:

open "myfile.dat" for input as #f

85

input #f, itemArray$(1)
close #f

It is still necessary to READ data into a variable, then fill an array element, however:

'wrong:
read numericArray(1)

'correct:
read num1
numericArray(1) = num1

For more, see ARRAYS, DIM, SORT, and Sorting Arrays.

86

 Sorting Arrays

Liberty BASIC provides a built-in sorting command for arrays. Here is an example:

 'sort 100 numbers
 dim numbers(100)
 for x = 0 to 99
 numbers(x) = int(rnd(1)*100)
 next x
 sort numbers(), 0, 99 'sort items 0 through 99
 for x = 0 to 99
 print numbers(x)
 next x
 end

Double dimensioned arrays can also be sorted. To do so, it is necessary to add an extra

parameter to the command to specify the column:

 'sort by the value in column 2
 sort numbers(), 0, 99, 2

See also: SORT

87

 Arrays with More than Two Dim ensions

Although Liberty BASIC only allows arrays with one or two dimensions, arrays with three or

more dimensions can be easily simulated. To simulate an array of 10 by 10 by 10, it is possible
to stack the third dimension on top of the second:

'create an array big enough to hold 10x10x10 elements
dim myArray$(10, 100)

'set a value in the array in 3 dimensions
call setMyArray$ 5, 6, 7, "Here I am!"

'now fetch and print out the value
print getMyArray$(5, 6, 7)
end

sub setMyArray$ x, y, z, value$
 myArray$(x, y + z * 10) = value$
end sub

function getMyArray$(x, y, z)
 getMyArray$ = myArray$(x, y + z * 10)
end function

88

 READ and DATA
DATA statements can be embedded in Liberty BASIC programs to make access to string and
numeric data easier. DATA is accessed by the program with the READ statement, which reads

the DATA items in sequence. The RESTORE statement causes the next READ statement to
start at the first DATA statement listed, or at the first DATA statement following a specified
branch label if one is included in the RESTORE statement. These methods can be used to put
data into arrays, thus providing an easy method for filling arrays.

DATA
The DATA statement provides a convenient way to insert data into programs. The DATA can be

read once or many times using the READ statement. A DATA statement doesn't actually
perform an action when it is encountered in the program's code.

 data "one", 1, "two", 2, "three", 3, "end", 0

One or more DATA statements form the whole set of data elements. For example, the data
represented in the example above can also be listed in more than one DATA statement:

 'here is our data in two lines instead of one
 data "one", 1, "two", 2
 data "three", 3, "end", 0

DATA is local to the subroutine or function in which it is defined.

READ
This fetches the next strings and/or numeric values from DATA statements in a program. The

READ statement will fetch enough items to fill the variable names that the programmer
specifies. The values fetched will be converted to fit the variables listed (string or numeric).

Example:

 'read the numbers and their descriptions
 while desc$ <> "end"
 read desc$, value
 print desc$; " is the name for "; value
 wend
 'here is our data
 data "one hundred", 100, "two", 2, "three", 3, "end", 0
 end

You can also read numeric items:

 'read the numbers and their descriptions
 while desc$ <> "end"

 read desc$, value$
 print desc$; " is the name for "; value$; ", length="; len(value$)

 wend
 'here is our data

 data "one hundred", 100, "two", 2, "three", 3, "end", 0
 end

RESTORE

RESTORE will reset the reading of DATA statements so that the next READ will get information

89

from the first DATA statement in the program (or the first DATA statement in a function or
subprogram, if this is where the RESTORE is executed).

Example:

 'show me my data in all uppercase
 while string$ <> "end"
 read string$
 print upper$(string$)
 wend
 string$ = "" 'clear this for next while/wend loop

 'now reset the data reading to the beginning
 restore

 'show me my data in all lowercase
 while string$ <> "end"
 read string$
 print lower$(string$)
 wend

 data "The", "Quick", "Brown", "Fox", "Jumped"
 data "Over", "The", "Lazy", "Dog", "end"

 end

RESTORE [branchLabel]

Optionally, you can choose to include a branch label:

 'show me my data in all uppercase
 while string$ <> "end"
 read string$
 print upper$(string$)
 wend
 string$ = "" 'clear this for next while/wend loop

 'now reset the data reading to the second part
 restore [partTwo]

 'show me my data in all lowercase
 while string$ <> "end"
 read string$
 print lower$(string$)
 wend

 data "Sally", "Sells", "Sea", "Shells", "By", "The", "Sea", "Shore"
[partTwo]
 data "Let's", "Do", "Only", "This", "A", "Second", "Time", "end"

 end

Reading DATA into Arrays

90

DATA is READ into variables. It cannot be READ directly into arrays. To fill arrays with DATA
items, first READ the item into a variable, then use that variable to fill an index of the array.

'wrong
read numericArray(1)

'correct:
read num1
numericArray(1) = num1

Error Handling
An attempt to read more DATA items than are contained in the DATA lists causes the program

to halt with an error. Notice that in the examples above, an "end" tag is placed in the DATA and
when it is reached, the program stops READing DATA. This is an excellent way to prevent

errors from occuring. If an end tag or flag of some sort is not used, be sure that other checks
are in place to prevent the READ statement from trying to access more DATA items than are
contained in the DATA statements.

See also: READ, RESTORE, DATA

91

 File Operations
Liberty BASIC supports sequential, binary and random access file operations.

See also: OPEN, Sequential Files, Binary Files, Random Access Files, CLOSE, INPUT,
INPUT$, INPUTTO$, LINE INPUT, PRINT

Files can be created with the OPEN command.

Files can be renamed with the NAME command.

Files can be removed with the KILL command.

W hen a file is being read, the EOF function returns 0 if the end of the file has been reached,
otherwise it returns -1.

The length of a file can be retrieved with the LOF function.

The drive specifications for the computer on which a program is running are contained in the

special variable Drives$.

The directory in which a program resides on disk is contained in the special variable DefaultDir$.

Folders, also called Directories, can be created with the MKDIR command.

Folders, also called Directories, can be removed with the RMDIR command.

Different Methods of File Access

Sequential Files
Sequential Files are accessed from beginning to end, sequentially. It is not possible to read

or write a piece of data to the center of the file. Files opened for INPUT can only be read.
Files opened for OUTPUT or APPEND can only be written. For more, see Sequential Files.

Binary Files
Files opened for binary access may be read or written, beginning at any location within the
file. For detailed information on using binary files, see Binary Files.

Random Files
Files opened for random access are read or written one record at a time. The length of

records in the file is determined in the OPEN statement. For detailed information on using
random files see Random Access Files.

String and Numeric Data

All data, whether strings of text or numbers, is printed as ASCII text characters in files, as the
following example illustrates:

open "test.txt" for output as #f
print #f, "12345"
print #f, 12345
close #f

92

open "test.txt" for input as #g
txt$ = input$(#g, lof(#g))
close #g

print txt$
end

'produces
12345
12345

93

 Sequential Files
Sequential files are opened with the OPEN statement. W hen they are no longer needed, or when
the program ends, they must be closed with the CLOSE statement.

Sequential file access allows data to be read from a file or written to a file from beginning to end.

It is not possible to read data starting in the middle of the file, nor is it possible to write data to
the file starting in the middle using sequential methods.

Data is read from a file opened for INPUT starting at the beginning of the file. Each subsequent
input statement reads the next piece of data in the file. Data is written to a file opened for
OUTPUT with a PRINT statement starting at the beginning of the file, and each subsequent
PRINT statement writes data to the end of the open file. W hen a file is opened for APPEND,

each PRINT statement writes data to the end of the open file.

Sequential File Access

INPUT

Files opened for INPUT can be read from. They cannot be written to. A file opened for INPUT
must exist on disk, or the program will halt with an error. See Testing For File Existence.

The INPUT statement reads a piece of data up to the next comma or carriage return. The

LINE INPUT statement reads a piece of data that contains commas that are not delimiters,
and stops reading data at the next carriage return. The INPUT$ statement reads data of a
specified length from a file. the INPUTTO$ statement reads data up to a specified delimiter.
Here is an illustration of the differences between the various forms of INPUT statements.

Exam ple Program:
'create a sample file
open "test.txt" for output as #1
print #1, "123 Sesame Street, New York, NY"
close #1

'INPUT
open "test.txt" for input as #1
INPUT #1, txt$
print "INPUT item is: ";txt$
close #1

'LINE INPUT
open "test.txt" for input as #1
LINE INPUT #1, txt$
print "LINE INPUT item is: ";txt$
close #1

'INPUT$
open "test.txt" for input as #1
txt$ = INPUT$(#1, 10) 'read 10 characters
print "INPUT$ item is: ";txt$
close #1

'INPUTTO$
open "test.txt" for input as #1
txt$ = INPUTTO$(#1, " ") 'use a blank space as delimiter

94

print "INPUTTO$ item is: ";txt$
close #1

Produces:

INPUT item is: 123 Sesame Street
LINE INPUT item is: 123 Sesame Street, New York, NY
INPUT$ item is: 123 Sesame
INPUTTO$ item is: 123

INPUT Multiple Items
Here is a short program which opens a text file and reads a line at a time, printing each line to
the mainwin.

filedialog "Open ","*.txt", file$
if file$="" then end

open file$ for input as #1
while eof(#1) = 0
 line input #1, text$
 print text$
wend
close #1

'print a notice that the end of file is reached:
print:print:print "EOF"

OUTPUT
Files opened for OUTPUT can be written to sequentially. If a file opened for OUTPUT does not
exist, it will be created. If the file does exist on disk, the previous contents will be overwritten,
and therefore lost. Care should be taken when opening files for OUTPUT so that critical data

is not accidentally erased. See Testing For File Existence.

Data is written to a file opened for OUTPUT with a PRINT statement. A line delimiter or
carriage return is written to the file with each PRINT statement. The carriage return may be
suppressed by ending the line of code with a semi-colon.

Exam ple Program:
'create a sample file
open "test.txt" for output as #1

'write some data with line delimiters
print #1, "line one "
print #1, "line two "

'write some data without line delimiters
print #1, "item three ";
print #1, "item four ";

95

'more data with line delimiters added
print #1, "item five"
print #1, "done"
close #1

'INPUT to see what we wrote
open "test.txt" for input as #1
txt$ = input$(#1, lof(#1))
print "Contents of file: "
print
print txt$
close #1

Contents of file:

line one
line two
item three item four item five
done

APPEND

Files opened for APPEND can be written to sequentially. If a file opened for APPEND does
not exist, it will be created. If the file does exist on disk, any data written to the file with a
PRINT statement will be added to the end. W riting data to the file works in the same way
when a file is opened for APPEND as when it is opened for OUTPUT, but rather than
overwriting data contained in the file, the new data is appended to the end of the file, but does

not overwrite data previously written to the file the last time it was opened as open for OUTPUT
does.

.

Exam ple Program:
open "test.txt" for append as #1

'write some data with line delimiters
print #1, "line one "
print #1, "line two "

'write some data without line delimiters
print #1, "item three ";
print #1, "item four ";

'more data with line delimiters added
print #1, "item five"
print #1, "done"
close #1

File Copy
A file may be copied using sequential file operations. The file to be copied is opened for INPUT.
The file that is to be a copy is then opened for OUTPUT. The contents of the original file are

retrieved with the INPUT$ statement and written to the copy with the PRINT statement. Both files
are then closed. Here is an example:

96

 open "mybytes.bin" for input as #original
 open "copybyte.bin" for output as #copy
 print #copy, input$(#original, lof(#original));
 close #original
 close #copy
 end

97

 Binary Files
To access a file in binary mode, it must be opened with the OPEN statement. W hen it is no
longer needed, and before the program ends, it must be closed with the CLOSE statement.

See also: Filedialog, File Operations, Path and Filename.

In binary access mode, bytes are written to the file or read from the file as characters. See
Chr$(n). Use the SEEK command to seek to the desired point in the file for reading or
writing. This sets the file pointer to the location specified. Use the LOC(#handle) function to
retrieve the current position of the file pointer. The current position of the file pointer is used
when reading or writing data to a binary file.

Data is read from the file with the INPUT statement.

Data is written to the file with the PRINT statement. Binary mode never writes line delimiters

when printing to the file. Line delimiters include carriage returns, which are chr$(13) and line
feeds, which are chr$(10).

Usage:

 'binary file access
open "myfile.ext" for binary as #handle

'seek to file position
seek #handle, fpos

'get the current file position
fpos = loc(#handle)

'write a byte to the file
print #handle, chr$(143)

'read the data at the current location
input #myfile, txt$

Example Program:

'binary file example
open "myfile.bin" for binary as #myfile

txt$ = "I like programming with Liberty BASIC."
print "Original data in file is: ";txt$

'write some data to the file
print #myfile, txt$

'retrieve the position of the file pointer
nowPos = LOC(#myfile)

'move the filepointer
nowPos = nowPos - 14
seek #myfile, nowPos

98

'read the data at the current location
input #myfile, txt$

'print txt$ in mainwin
print "Data at ";nowPos;" is: ";txt$

'move the filepointer
seek #myfile, 2

'write some data to the middle of the file
print #myfile, "love"
print str$(loc(#myfile) - 2); " bytes written"

'move the file pointer to the beginning
seek #myfile, 0

'read the data
input #myfile, txt$

'print data in mainwin
print "New Data is: ";txt$

'close the file
close #myfile
end

99

 Random Access Files
OPEN filename FOR RANDOM AS #handle LEN=n

To access a file in random access mode, it must be opened with the OPEN statement. W hen it

is no longer needed, and before the program ends, it must be closed with the CLOSE statement.
See also: Filedialog, File Operations, Path and Filename , PUT, FIELD, GET, GETTRIM

Random Access files consist of RECORDS. The entire file is divided into many records. Each
record has the same length. The length is specified when the file is opened with the LEN

parameter. The example below opens a file called "members.dat" and sets the record length to
256:

OPEN "members.dat" FOR RANDOM AS #1 LEN=256

Reading and writing to a file opened for random access is done one record at a time. A record
may be read or written anywhere in the file. A record is read with either the GET statement, or
with the GETTRIM statement. A record is written to the file with the PUT statement. These

statements are explained in more detail below.

FIELD Statem ent

Each record is subdivided into "fields", each with a given length. The FIELD statement must be
included after the OPEN statement to set up the size of each of the fields. Each field is

designated by a variable name and given a specified length. W hen the lengths of all fields are
added together, their sum must be equal to the length that was set with the LEN parameter in
the OPEN statement. In the above case, the field lengths must total 256. A "$" character

indicates that a field holds data that will be accessed as a string. If there is no "$" character,
the field will be accessed as a number. The fields for "members.dat" might look like this:

OPEN "members.dat" FOR RANDOM AS #1 LEN=256

 FIELD #1,_ ' set up the fields for file opened as #1
 90 AS Name$,_ ' 1st 90 bytes contains Name$, string
 110 AS Address$,_ ' 2nd 110 bytes contains Address$, string
 50 AS Rank$,_ ' 3rd 50 bytes contains Rank$, string
 6 AS IDnumber ' 4th 6 bytes contains IDnumber, numeric

The value after "LEN=" is 256, which is obtained by adding 90 + 110 + 50 + 6 or the total length

of all the fields in FIELD#. The FIELD statement must follow the OPEN statement and must be
used before trying to read or write data to the file with GET or PUT.

PUT
PUT #handle, number

This statement is used to write the data that is contained in the variables listed in the FIELD
statement to the specified record number. Records in RANDOM files are numbered beginning at
1, not 0. If the length of a variable in a given field is shorter than the field length specified, blank

spaces are added to pad it. If the length of the variable is larger, it will be truncated to the length
specified in the FIELD statement. To add this data as RECORD number 3 to the file referenced

above:

Name$ = "John Q. Public"

100

Address$ = "456 Maple Street, Anytown, USA"
Rank$ = "Expert Programmer"
IDnumber = 99

PUT #1, 3

GET

GET #handle, number

This statement reads an entire record and fills the variables listed in the FIELD statement.

GET #1,3

Print Name$ would produce "John Q. Public
 "
Print Address$ would produce "456 Maple Street, Anytown, USA
 "
Print Rank$ would produce "Expert Programmer "
print IDnumber would produce "99"

and so on.

GETTRIM
GETTRIM #handle, number

This command retrieves the record in the same manner as GET, but it removes any blank
leading or trailing spaces in the record:

GETTRIM #1,3

Print Name$ would produce "John Q. Public"
' no blank spaces are included

101

 Testing for File Existence

Here is a short user-defined function which can be used to test if a file exists on disk. It is

important to know if a file exists because attempting to access a nonexistent file can cause a
program to crash.

function fileExists(path$, filename$)
 'dimension the array info$(at the beginning of your program
 files path$, filename$, info$()
 fileExists = val(info$(0, 0)) 'non zero is true
end function

If the file is to be in the default directory, and named users.dat this example shows how to test

for its existence with the fileExists function:

 dim info$(10, 10)
 if fileExists(DefaultDir$, "users.dat") then
 notice "It's alive!"
 else
 notice "Igor! I need more power!"
 end if

The dim info$(10, 10) statement is important because the files command in the function needs
to have a double dimensioned array ready to accept its list of files and their information. See
FILES.

102

 Path and Filename
Com plete Path and Filenam e

References to a complete path and filename indicate that the drive letter and all folders and sub
folders are included in the file specification. A complete path and filename is returned by the

FILEDIALOG. An example of a complete path and filename is as follows:

 C:\My Documents\My Programs\Games\mygame.bas

Filenam e Alone
References to a filename without path information indicate that the disk filename is used with no
drive or folder information. In Liberty BASIC, use of a filename without path information assumes
that the file exists on disk in the DefaultDir$. An example is as follows:

 mygame.bas

Sub Folder
A file that exists in a subfolder of the DefaultDir$ is written by first identifying the sub folder(s),
each followed by a backslash, then the filename, like this:

 images\background.bmp
 gamefiles\images\badguy.bmp

Relative Path
Relative paths to files that exist in folders at the same level in the directory tree, (or in a higher
level), use the ".." designation to indicate "go up one level from the DefaultDir$". Filenames are

usually designated by including a dot and a file extension that specifies the type of file.
Filenames ending in ".txt" are text files, (for instance), while filenames ending in ".bmp" are

bitmaps. Folders do not typically have extensions. The names below with extensions indicate
files, while the names without extensions indicate folders. Here are some examples of relative
paths:

..\smiley.bmp 'go up one level to access the file

..\images\redbox.bmp 'go up one level to access the file in the
images folder
..\..\customer.txt 'go up two levels to access the file
..\..\data\names.dat 'go up two levels to access the file in the data
folder

Hard-coding Path and Filenam e
The phrase "hard-coding" when referring to path and filename information indicates that the
pathname specified in the progarm code contains the entire file specification, including the drive
letter and all folder information as well as the filename. If a program is meant for use by the
programmer alone, on a single computer, this method works, as long as no changes are made to

the directory structure. W hen any changes are made to the directory structure or filename, the
program code must be changed as well.

Caveat

It is very unlikely that other users of a program will have the same directory structure on their
computers as the programmer who writes the code. For this reason, it is best to use one of the
other path naming options listed above that does not depend upon all users having the same

directory structure on their computers.

103

Filenam es Used in Code
Some commands that use path and filename specifications are:

LOADBMP
OPEN

PLAYW AVE
BMPBUTTON

104

 Mathematics
See also Numeric Variables, Mathem atical Operations, Trigonometry, Numbers and
Strings

Numbers and Numeric Expressions

Most mathematical operations in Liberty BASIC can be performed on literal numbers, numeric
variables, or numeric expressions that consist of literal numbers, numeric variables, or both.
Functions that require a numeric input can also use any of these forms, as long as the
expression evaluates to a number. Here is the ABS function used as an example:

print ABS(-2) 'a literal number

x = 13
print ABS(x) 'a numeric variable

print ABS(7-233) 'a literal numeric expression

print ABS(x/13) 'a numeric expression containing a variable

Arithmetic
Arithmetic operators are as follows:

+ addition
- subtraction
* multiplication
/ division

 ̂ power

Examples:

print 2 + 3 'addition

print 6 - 2 'subtraction

print 4 * 7 'multiplication

print 9 / 3 'division

print 2 ^ 3 'power - (two to the third power)

print (4+2)*6^2 'multiple expressions are evaluated according to
the following rules of order:

Order

Expressions are evaluated in this order:

() expressions within parentheses are evaluated first

 ̂ exponents are evaluated next

* / multiplication and division are evaluated next

105

+ - addition and subtraction are evaluated last

See also:

SIN
COS
TAN
ASN
ACS

ATN
ABS

EXP
LOG
HEXDEC

DECHEX$
INT

MAX
MIN
RND
SQR
VAL

STR$
USING

106

 Numeric variables

In Liberty BASIC, numeric variables hold either a double-precision floating point value, or an

integer. A floating point value will be converted to an integer if its fractional part is zero when it
is assigned to a variable. Integers in Liberty BASIC can be huge.

Only nine digits are displayed when floating point values are printed, unless the USING() function

is used to force the display of the number of digits desired after the decimal point.

W hen first referenced, numeric variables equal 0. Values are assigned to variables with the
equals sign "=".

myVar = 42

In the following code, the variable "totalNum" is 0 to begin, so adding 3 to it gives it a value of 3.

Adding 8 to it in the next line gives it a value of 11.

totalNum = totalNum + 3
'totalNum now contains the value 3

totalNum = totalNum + 8
'totalNum now contains the value 11

NOTE: Liberty BASIC does not support the CONST keyword that is common in some other
forms of BASIC such as QBASIC.

Negative numbers.
Liberty BASIC does not support changing the sign of a variable directly by preceding it with a
negative sign "-". Instead the variable must be multiplied by -1

'WILL NOT WORK!
num1 = 7
num2 = -num1
print num2

'USE THIS METHOD
num1 = 7
num2 = -1 * num1
print num2

GLOBAL
In general, variables used in the main program code are not visible inside functions and

subroutines. Variables inside functions and subroutines are not visible in the main program.
Liberty BASIC 4 introduces the GLOBAL statement to create global variables. Variables
declared as GLOBAL can be seen everywhere in a program. See GLOBAL. The special system

variables like W indowW idth, W indowHeight, etc. now have true global status. GLOBALS are
specified and used like this:

global true, false, maxNum
true=1
false=0
maxNum = 128

107

108

 Mathematical Operations
ABS(n)
Description:

This function returns | n | (the absolute value of n). "n" can be a number or any numeric
expression.

Usage:

print abs(-5) produces: 5

print abs(6 - 13) produces: 7

print abs(2 + 4) produces: 6

print abs(3) produces: 3

print abs(3/2) produces: 1.5

print abs(5.75) produces: 5.75

SQR(n)
Description:
This function returns the square root of the number or numeric expressioin n.

Usage:

 print "The square root of 2 is: ";
 print SQR(2)

EXP(n)

Description:
This function returns e ^ n, with e being 2.7182818 . . .

Usage:

 print exp(5) produces: 148.41315

LOG(n)
Description:

This function returns the natural log of n.

Usage:

 print log(7) produces: 1.9459101

INT(n)

Description:
This function removes the fractional part of number, which is the part of the number after the
decimal point, leaving only the whole number part behind.

109

Usage:

[retry]
 input "Enter an integer number>"; i
 if i<>int(i) then
 print i; " isn't an integer! Re-enter."
 goto [retry]
 end if

MAX(expr1, expr2)

Description:
This function returns the greater of two numeric values.

Usage:

 input "Enter a number?"; a
 input "Enter another number?"; b
 print "The greater value is "; max(a, b)

MIN(expr1, expr2)
Description:
This function returns the smaller of two numeric values.

Usage:

 input "Enter a number?"; a
 input "Enter another number?"; b
 print "The smaller value is "; min(a, b)

RND(number)
Description:

This function returns a random number between 0 and 1. The number parameter is usually set to
1, but the value is unimportant because it is not actually used by the functoin. The function will

always return an arbitrary number between 0 and 1.

Usage:

 ' print ten numbers between one and ten
 for a = 1 to 10
 print int(rnd(1)*10) + 1
 next a

RANDOMIZE n

Description:
This function seeds the random number generator in a predictable way. The seed numbers must
be greater than 0 and less than 1. Numbers such as 0.01 and 0.95 are used with RANDOMIZE.

Usage:

 'this will always produce the same 10 numbers
 randomize 0.5

110

 for x = 1 to 10
 print int(rnd(1)*100)
 next x

111

 Trigonometry

Tip: There are 2 * pi radians in a full circle of 360 degrees. A formula to convert degrees to

radians is: radians = degrees divided by 57.29577951 Here are some helpful functions to
convert degrees to radians, radians to degrees and to calculate PI.

function pi()
 pi = asn(1) * 2
end function

function rad2deg(num)
 rad2deg = 90 / asn(1) * num
end function

function deg2rad(num)
 deg2rad = asn(1) / 90 * num
end function

ACS(n)
Description:

This function returns the arc cosine of the number or numeric expression n. The return value
is expressed in radians.

Usage:

print "The arc cosine of 0.2 is "; acs(0.2)

ASN(n)
Description:

This function returns the arc sine of the number or numeric expression n. The return value is
expressed in radians.

Usage:

print "The arc sine of 0.2 is "; asn(0.2)

ATN(n)
Description:

This function returns the arc tangent of the number or numeric expression n. The return value
is expressed in radians.

Usage:

print "The arc tangent of 0.2 is "; atn(0.2)

COS(n)

Description:

This function returns the cosine of the angle n. The angle n should be expressed in radians.

112

Usage:

 for c = 1 to 45
 print "The cosine of "; c; " is "; cos(c)
 next c

SIN(n)

Description:
 This function returns the sine of the angle n. The angle n should be expressed in radians.

Usage:

 for t = 1 to 45
 print "The sine of "; t; " is "; sin(t)
 next t

TAN(n)
This function returns the tangent of the angle n. The angle n should be expressed in radians

Usage:

 for t = 1 to 45
 print "The tangent of "; t; " is "; tan(t)
 next t

113

 Num bers and Strings
Liberty BASIC has several functions that convert numeric values and strings.

VAL(stringExpression)
Description:

This function returns a numeric value for stringExpression if stringExpression represents a valid
numeric value or if it begins with a valid numeric value. If not, then zero is returned.

Usage:

 print 2 * val("3.14") Produces: 6.28

 print val("hello") Produces: 0

 print val("3 blind mice") Produces: 3

STR$(numericExpression)

Description:
This function returns a string expressing the result of numericExpression.

Usage:

age = 23
age$ = str$(age)
price = 2.99
price$ = str$(price)
totalApples = 37
print "Total number of apples is " + str$(totalApples)

USING(templateString, numericExpression)
Description:
This function formats numericExpression as a string using templateString. The rules for the

format are similar to those in Microsoft BASIC's PRINT USING statement, but since using() is a
function, it can be used as part of a larger BASIC expression instead of immediate output only.

The template string consists of the character "#" to indicate placement for numerals, and a single
dot "." to indicate placement for the decimal point. The template string must be contained within
double quotation marks. If there are more digits contained in a number than allowed for by the
template string, the digits will be truncated to match the template.

A template string looks like this:

amount$ = using("######.##", 1234.56)

As part of a larger expression:

notice "Your total is $" + using("####.##", 1234.5)

A template string can be expressed as a string variable:

template$ = "######.##"
amount$ = using(template$, 1234.56)

114

Using() may be used in conjunction with 'print'. The following two examples produce the same
result:

amount$ = using("######.##", 123456.78)
print amount$

print using("######.##", 123456.78)

The using() function for Liberty BASIC 3 has been modified so that it rounds its output like

PRINT USING does in other BASICs.

Usage:

' print a column of ten justified numbers
for a = 1 to 10
 print using("####.##", rnd(1)*1000)
next a

'sample output from the routine above:
 72.06
 244.28
 133.74
 99.64
 813.50
 529.65
 601.19
 697.91
 5.82
 619.22

HEXDEC("value")
Description:
Returns a numeric decimal from a hexadecimal number expressed in a string. Hexadecimal

values are represented by digits 0 - F. the hexadecimal number can be preceded by the
characters "&H". The hexadecimal string must be enclosed in quote marks.

Usage:

 print hexdec("FF")

or:

 print hexdec("&HFF")

DECHEX$(num ber)

Description:
Returns a string representation of a decimal number converted to hexadecimal (base 16)

Usage:

115

 print dechex$(255)

prints...

 FF

EVAL$(code$) and EVAL(code$)

Description:
Liberty BASIC now has two functions for evaluating BASIC code inside a running program. The
eval() function evaluates the code and returns a numeric value, and the eval$() function works the

same way but returns a string value. Both will execute the very same code, but the string
function converts the result to a string if it isn't already one, and the numeric version of the

function converts it to numeric values.

Evaluating to a string

Here we show how to evaluate code to a string, and what happens if you try to evaluate it to be a
number.

 'Let's evaluate some code that produces a non-numeric result
 a$(0) = "zero"
 a$(1) = "one"
 a$(2) = "two"
 code$ = "a$(int("+str$(rnd(1))+"*3))"
 print "We will evaluate the code: "; code$
 result$ = eval$(code$)
 print result$

 'Now let's use the eval function, which effectively does a
 'val() to the result of the calculation. Converting a non
 'numeric string to a numeric value results in zero.
 result = eval(code$)
 print result

Evaluating to a num ber
Here's an example of the most common type of code evaluation users will want to do: Numeric
computation. Let's just make a short example that asks you to type an expression to evaluate.

 'ask for an expression
 input "Type a numeric expression>"; code$
 answer = eval(code$)
 print answer

116

 Date and Time Functions
Liberty BASIC provides several ways to retrieve date and time information. Date$() and Time$()
are functions that return values that can be used in mathematical operations. See also Date$

and Time$

Date$()
 'This form of date$() produces this format
 print date$() ' Nov 30, 1999
 print date$("mm/dd/yyyy") ' 11/30/1999
 print date$("mm/dd/yy") ' 11/30/99
 print date$("yyyy/mm/dd") ' 1999/11/30 for sorting
 print date$("days") ' 36127 days since Jan 1, 1901
 print date$("4/1/2002") ' 36980 days since Jan 1, 1901 for
given date
 print date$(36980) ' 04/01/2002 mm/dd/yyyy string returned
 ' when given days since Jan
1, 1901

Date$() Math

Here is a small program that demonstrates one way that Date$() can be used with math
operators.

 today = date$("days")
 target = date$("1/1/2004") 'subsititute value for next year
 print "Days until the new year: ";
 print target - today

Time$()
'this form of time$() produces this format
print time$() 'time now as string "16:21:44"
print time$("seconds") 'seconds since midnight as number 32314
print time$("milliseconds") 'milliseconds since midnight as number
33221342
print time$("ms") 'milliseconds since midnight as number
33221342

Time$() Math

Here is a small program that demonstrates one way that Time$() can be used with math
operators.

'get start time
startTime = time$("ms")

'do some computations
for i = 1 to 40000
 x = x + i
next

'get end time

117

endTime=time$("ms")

print "Computations took ";
print endTime-startTime; " milliseconds"
end

118

 Text and Characters
This section of the help system explains the use and manipulation of text as literal strings of
characters or as string variables. It also details commands for text windows and text editors.

String Literals and Variables

Manipulating Characters
Text Mode Display in the Mainwin
Text Commands

See also:

Sending text to the Printer with LPRINT

119

 String Literals and Variables
Literal Strings
A string literal always starts with a quotation mark and always ends with a quotation mark. No

quotation marks are allowed in between the starting and ending quotation marks. Here is an
example that prints a string literal in the mainwin.

 print "Hello World"

The program above would produce this in the mainwin:

 Hello World

String Variables
There are special variables for holding words and other non-numeric character combinations.
These variables are called string variables (they hold strings of characters*).

 *Characters are:

 Letters of the alphabet ; abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVW XYZ

 Digits 0123456789 ;

 Any other special symbols like: , . < > / ? ; : ' " [] { } ̀~ ! @ # $ % ^ & * () + - \ | etc . . .

String variable names must end with a $ (dollar sign). Text is assigned to a string variable using
the equals sign (=). This example assigns "Hello W orld" to the string variable hello$ and then
prints it in the mainwin.

 hello$ = "Hello World"
 print hello$

The program above produces this in the mainwin:

 Hello World

NOTE - A string can have zero characters. Such a string is often called an empty string. In
BASIC, an empty string can be expressed in a string literal as two quotation marks without any
characters between them. For example (noCharactersHere$ is the name of our string variable):

 let noCharactersHere$ = ""

Concatenation
Two strings of text can be joined together (concatenated), either as variables, literals or both.

This is accomplished by use of the plus sign (+).

 varOne$ = "Hello"
 varTwo$ = "World"
 varThree$ = varOne$ + " " + varTwo$
 print varThree$

The program above produces this in the mainwin:

 Hello World

120

It is also possible to use the semi-colon (;) to add, or concatenate strings.

 varOne$ = "Hello"
 varTwo$ = "World"
 varThree$ = varOne$; " " ; varTwo$
 print varThree$

NON-PRINTING CHARACTERS
Some characters do not display on the screen, but instead they format the text output. A
combination of carriage return and line feed causes text printed after it to display on the next line

down. These non-keyboard characters can be accessed with the CHR$(n) function. "n" is be the
ascii value of the desired character. In the case of a CRLF as described here, the character for
"carriage return" is chr$(13). The character for "line feed" is chr$(10). The following code inserts

a carriage return, forcing the text to print on two lines.

 print "Hello" + chr$(13) + chr$(10) + "World"

Produces:

 Hello
 World

PRINTING DOUBLE QUOTATION MARKS
The double quotation mark is represented by CHR$(34). To cause a double quotation mark to
print, the character 34 is included, like this:

 print chr$(34) + "Hello World" + chr$(34)

Produces:

 "Hello World"

GLOBAL

In general, variables used in the main program code are not visible inside functions and
subroutines. Variables inside functions and subroutines are not visible in the main program.
Liberty BASIC 4 introduces the GLOBAL statement to create global variables. Variables

declared as GLOBAL can be seen everywhere in a program. See GLOBAL. The special system
variables like W indowW idth, W indowHeight, etc. now have true global status. GLOBALS are
specified and used like this:

global filename$, author$, title$
filename$ = "readme.txt"
author$ = "John Q. Programmer"
title$ = "Great Idea"

121

 Manipulating Characters
CHR$(n)
Description:

This function returns a one character long string, consisting of the character represented on the
ASCII table by the value n (0 - 255).

Usage:

 print chr$(77)
 print chr$(34)
 print chr$(155)

Produces:

M
"

›

INSTR(string1, string2, starting)
Description:

This function returns the position of string2 within string1. If string2 occurs more than once in
string1, then only the position of the leftmost occurance will be returned. If the starting parameter
is included, then the search for string2 will begin at the position specified by starting.

Usage:

 print instr("hello there", "lo")
 produces: 4

 print instr("greetings and meetings", "eetin")
 produces: 3

 print instr("greetings and meetings", "eetin", 5)
 produces: 16

If string2 is not found in string1, or if string2 is not found after starting, then INSTR() will return 0.

 print instr("hello", "el", 3)
 produces: 0

and so does:

 print instr("hello", "bye")

LEN(string)
Description:
This function returns the length in characters of string, which can be any valid string expression.

Usage:

122

 prompt "What is your name?"; yourName$
 print "Your name is "; len(yourName$); " letters long"

LEFT$(string, number)
Description:
This function returns from string the specified number of characters starting from the left. If string
is "hello there", and number is 5, then "hello" is the result.

Usage:

[retry]
 input "Please enter a sentence>"; sentence$
 if sentence$ = "" then [retry]
 for i = 1 to len(sentence$)
 print left$(sentence$, i)
 next i

Produces:

 Please enter a sentence>That's all folks!
 T

 Th
 Tha

 That
 That'
 That's

 That's_
 That's a

 That's al
 That's all
 That's all_
 That's all f
 That's all fo

 That's all fol
 That's all folk
 That's all folks

 That's all folks!

Note: If number is zero or less, then "" (an empty string) will be returned. If number is greater
than or equal to the number of characters in string, then string will be returned.

RIGHT$(string, number)
Description:
This function returns a sequence of characters from the right hand side of string using number to
determine how many characters to return. If number is 0, then "" (an empty string) is returned. If

number is greater than or equal to the number of characters in string, then string will itself be
returned.

Usage:

 print right$("I'm right handed", 12)

123

Produces:

 right handed

And:

 print right$("hello world", 50)

Produces:

 hello world

MID$(string, index, [number])
Description:
This function permits the extraction of a sequence of characters from string starting at index.
[number] is optional. If number is not specified, then all the characters from index to the end of

the string are returned. If number is specified, then only as many characters as number specifies
will be returned, starting from index.

Usage:

 print mid$("greeting Earth creature", 10, 5)

Produces:

 Earth

And:

 string$ = "The quick brown fox jumped over the lazy dog"
 for i = 1 to len(string$) step 5
 print mid$(string$, i, 5)
 next i

Produces:

 The_q
 uick_
 brown

 fox
 jumpe_

 d_ove
 r_the
 _lazy

 _dog

LOW ER$(string)
Description:
This function returns a copy of the contents of string, but with all letters converted to lowercase.

Usage:

124

 print lower$("The Taj Mahal")

Produces:

 the taj mahal

UPPER$(string)
Description:
This function returns a copy of the contents of string, but with all letters converted to uppercase.

Usage:

 print upper$("The Taj Mahal")

Produces:

 THE TAJ MAHAL

TRIM$(string)

Description:

This function removes any spaces from the start and end of string. This can be useful for
cleaning up data entry among other things.

Usage:

 sentence$ = " Greetings "
 print len(trim$(sentence$))

Produces: 9

SPACE$(n)
Description:

This function will a return a string of n space characters (ASCII 32). It is useful when producing
formatted output to a file or printer.

Usage:

 for x = 1 to 10
 print space$(x); "*"
 next x

Produces:

 *
 *
 *
 *
 *
 *
 *
 *

125

 *
 *

126

 Text mode display
TEXT DISPLAY IN THE MAINW IN
Liberty BASIC is designed for building W indows programs. It is also possible to write

rudimentary text mode programs.

By default, each Liberty BASIC program has a main window, called the "mainwin." This is a
simple text display with scrollbars.

Displaying Text
The standard PRINT command causes text to be displayed in the mainwin.

 print "Hello World"

produces

 Hello W orld

After the expressions are displayed, the cursor (that blinking vertical bar |) will move down to the
next line, and the next time information is sent to the window, it will be placed on the next line
down. To prevent the cursor from moving immediately to the next line, add an additional
semicolon to the end of the list of expressions. This prevents the cursor from being moved down

a line when the expressions are displayed. The next time data is displayed, it will be added onto
the end of the line of data displayed previously.

Usage: Produces:

 print "hello world" hello world

 print "hello "; hello world
 print "world"

 age = 23
 print "Ed is "; age; " years old" Ed is 23 years old

Getting User Input
User input is obtained by use of the INPUT command in the mainwin. Here is a simple

example:

 'Ask the user a question
 input "Hi! What's your name?"; yourName$
 print "Nice to meet you "; yourName$
 end

The prompt may be expressed as a string variable, as well as a literal string:

 prompt$ = "Please enter the upper limit:"
 input prompt$; limit

Most versions of Microsoft BASIC implement INPUT to automatically place a question mark on
the display in front of the cursor when the user is prompted for information:

 input "Please enter the upper limit"; limit

127

 produces:

 Please enter the upper limit ? |

Liberty BASIC makes the appearance of a question mark optional.

 input "Please enter the upper limit :"; limit

 produces:

 Please enter the upper limit: |

 and:

 input limit

 produces simply:

 ? |

In the simple form input limit, the question mark is inserted automatically, but if a prompt is

specified, as in the above example, only the contents of the prompt are displayed, and nothing
more. If it is necessary to obtain input without a prompt and without a question mark, then the
following will achieve the desired effect:

 input ""; limit

Additionally, in most Microsoft BASICs, if INPUT expects a numeric value and a non numeric or
string value is entered, the user will be faced with a comment (something like 'Redo From Start'),
and be expected to reenter. Liberty BASIC does not automatically do this, but converts the entry

to a zero value and sets the variable accordingly.

Mainwin Size

It is possible to set the number of columns and rows in the mainwindow using the MAINW IN
statement. Here is how to set 40 columns and 20 rows:

 'Set a custom size!
 mainwin 40 20
 for x = 1 to 4 : for y = 0 to 9
 print y;
 next y : next x
 print
 print "1 This screen is forty columns"
 print "2 and twenty lines."
 for x = 3 to 19
 print x
 next x

Clearing the Mainwin
The CLS statement clears previous text from the mainwin:

128

 'show a range of values
 for x = 0 to 4
 cls
 print "The sine of "; x + 0.1; " to "; x + 1
 for y = 0.1 to 1 step 0.1
 print "sine("; x + y; ") = "; sin(x + y)
 next y
 input "Press enter for more..."; go$
 next x
 end

Locating Text

Using LOCATE in the mainwin causes text to be printed at the x, y location specified. These
coordinates refer to the column and row of text, not to screen pixels. This command functions in

the same way as the QBasic LOCATE command and is used to position text on the mainwin.
Here is a short demo:

 'plot a wave
 for x = 1 to 50
 i = i + 0.15
 locate x, 12 + int(cos(i)*10)
 print "*";
 next x

Print TAB(n)
Liberty BASIC 4 has the ability to use the TAB function for formatting output. "n" is the character

location where the next output will be printed. "tab(7)" causes the next output to print beginning
at column (character) 7, while "tab(21)" causes the next output to print beginning at column 21.

 'show how tab() works
 print "x"; tab(7); "sine"; tab(21); "cosine"
 for x = 1 to 10
 print x; tab(7); sin(x); tab(21); cos(x)
 next x
 end

Printing columns with commas

A new feature of Liberty BASIC 4 is the use of commas for columnar printing in the main window.
Commas placed between outputs signal the starts of new columns. Commas contained within

quotation marks do not signal new columns.

 'a demonstration of printing columns using commas
 print "x", "sine", "cosine"
 for x = 1 to 10
 print x, sin(x), cos(x)
 next x
 end

129

 Text W indow Com m ands

The commands in this topic work with the text window and texteditor control. Anything printed to

a text window is displayed exactly as sent. To distinguish commands sent to a text window from
text that is to be diplayed in the window, the ! character should be the first character in the string.

 It is no longer necessary to add a semicolon to the end of a printed command line to suppress a
carriage return. The semicolon at the end of a printed command is now optional. W hen printing
text, rather than commands, a carriage return is added to the text with each print statement,
unless the statement ends with a semicolon.

Note: for instructions on sending text to the printer, see LPRINT.

Using variables in text commands:
Literal values are placed inside the quotation marks:

print #handle, "!line 3 string$"

Variables must be places outside the quotation marks, with blank spaces preserved:

lineNum=3
print #handle, "!line ";lineNum;" string$"

See also: Understanding Syntax - how to use literals and variables in commands.

For example:

'open a text window
 open "Example" for text as #1

'print Hello World in the window
 print #1, "Hello World"

'change the text window's font
 print #1, "!font helv 16 37"

'read line 1
 print #1, "!line 1"
 input #1, string$
 print "The first line is:"
 print string$
 input "Press 'Return'"; r$

'close the window
 close #1

Proper use of semicolons and the 'print' com m and.
In the following example, semicolons are omitted in printed commands. They are used to force
carriage returns when printing text. It is also possible to omit the word "print" and to omit the

comma after the handle when printing to a text window or texteditor. This means that the word
"print" and the comma following the handle are optional.

nomainwin
open "Example" for text as #1

130

print #1, "!trapclose [quit]"

'carriage return suppressed by semicolon:
print #1, "Hello";

'this line will have a carriage return:
#1 " World"

'this command omits the word 'print'
#1 "!font courier_new 12"

'print some more text into the window, no carriage return:
print #1, "This is a font called ";

'print text with carriage returns:
print #1, "courier_new."

'blank line:
print #1, ""
#1 "Done!"

wait

[quit]
close #1 : end

Note: Most of the commands listed below work with windows of type "text" and also with the

"texteditor" control except where noted.

Here are the text window commands:

print #handle, "!cls" ;

This command clears the text window of all text.

print #handle, "!contents varnam e$";
print #handle, "!contents #handle";

This command has two forms as described above. The first form causes the contents of the text
window to be replaced with the contents of varname$, and the second form causes the contents
of the text window to be replaced with the contents of the stream referenced by #handle. This
second form is useful for reading large text files quickly into the window.

Here is an example of the second form:

 open "Contents of AUTOEXEC.BAT" for text as #aetext
 open "C:\AUTOEXEC.BAT" for input as #autoexec
 print #aetext, "!contents #autoexec";
 close #autoexec
 'stop here

131

 input a$

print #handle, "!contents? string$";

This command returns the entire text of the window. After this command is issued, the entire
text is contained in the variable string$.

print #handle, "!copy" ;

This command causes the currently selected text to be copied to the W INDOW S clipboard.

print #handle, "!cut" ;

This command causes the currently selected text to be cut out of the text window and copied to
the W INDOW S clipboard.

print #handle, "!font fontName pointsize" ;

This command sets the font of the text window to the specified name and size. If an exact match

cannot be found, then Liberty BASIC will try to match as closely as possible, with size taking
precedence over name in the match. Note that a font with more than one word in its name is
specified by joining each word with an underscore _ character. For example, the font Times New
Roman becomes Times_New_Roman, and the font Courier New becomes Courier_New.

Example:

print #handle, "!font Times_New_Roman 10";

For more on specifying fonts read How to Specify Fonts

print #handle, "!insert varnam e$";

This command inserts the contents of the variable at the current caret (text cursor) position,
leaving the selection highlighted.

print #handle, "!line n string$" ;

Returns the text at line n. In the code above, n is standing in for a literal number. If n is less than
1 or greater than the number of lines the text window contains, then "" (an empty string) is
returned. After this command is issued, the line's text is contained in the variable string$.

This sample code retrieves the contents of line number 7 and places them into a variable called
string$:
 print #textwindow, "!line 7 string$"

print #h, "!lines countVar" ;

132

This command returns the number of lines in the text window, placing the value into the variable
countVar.

print #handle, "!modified? answer$" ;

This command returns a string (either "true" or "false") that indicates whether any data in the text
window has been modified. The variable answer$ holds this returned string. This is useful for
checking to see whether to save the contents of the window before closing it.

print #h, "!origin? colum nVar rowVar" ;

This command causes the current text window origin to be returned. The origin is the upper left
corner of the texteditor or textwindow. W hen a text window is first opened, the result would be
row 1, column 1. The result is contained in the variables rowVar and columnVar.

print #handle, "!origin column row" ;

This command forces the origin of the window to be row and column. This means that the row
and column specified will appear in the upper left corner of the texteditor or text window. Row and
column must be literal numbers. To use variables for these values, place them outside the
quotation marks, preserving the blank spaces, like this:

print #handle, "!origin ";column;" ";row

print #handle, "!paste" ;

This causes the text in the W INDOW S clipboard (if there is any) to be pasted into the text
window at the current cursor position.

print #handle, "!select column row" ;

This command puts the blinking cursor at column row. Column and row must be literal numbers.
To express them as variables, place the variables outside the quotation marks and preserve the

blank spaces, like this:

print #handle, "!select ";column;" ";row

print #handle, "!selectall" ;

This causes everything in the text window to be selected (highlighted).

print #handle, "!selection? selected$" ;

This command returns the highlighted text from the window. The result will be contained in the
variable selected$.

133

print #handle, "!setfocus";

This causes W indows to give input focus to this control. This means that,ifsome other control in

the same window was highlighted and active,thiscontrol now becomes the highlighted and active
control, receiving keyboard input.

print #handle, "!trapclose branchLabel" ;

This command tells Liberty BASIC to continue execution of the program at branchLabel if the
user double clicks on the system menu box or pulls down the system menu and selects "close."

134

 Graphics
See also: graphics commands

Liberty BASIC supports drawing operations. There are two kinds of controls that accept drawing
commands; one is a kind of window, and the other is a control called a graphicbox. They both

support the same drawing operations. Here is an example of a graphics window:

 open "I'm a graphics window!" for graphics as #g
 print #g, "home ; down"
 print #g, "fill green"
 print #g, "circle 100"
 wait

And here's the same drawing operation in a graphicbox which has been inserted into a window.

 graphicbox #w.g, 5, 5, 250, 250
 open "I'm a window!" for window as #w
 print #w.g, "home ; down"
 print #w.g, "fill green"
 print #w.g, "circle 100"
 wait

The graphics operations are performed by a pen. The pen can be up or down. If the pen is up,
the drawing operations will not appear. The pen moves, but does not draw. The pen defaults to
the up position.

Possible drawing operations include:

Turtle Graphics
Turtle graphics are drawn by a pen that moves about the screen from one location to
another, drawing if is in the DOW N position. Turtle graphics are good for drawing graphics
and iterative objects.

Drawn Objects

Objects such as boxes, lines and circles may be drawn, and they may be either filled with
an opaque color, or they may be drawn as an outline only.

Drawn Text
Graphics commands include the ability to place text on the graphics control at the location

desired.

Color and Size
The size (width) of the drawing pen may be set. The color that covers the control may be
set, as well as the outline color of drawn objects, and the color that fills drawn objects.

Drawing Segments and FLUSH
Drawing happens in segments. Drawing operations are queued up into the current drawing
segment. A FLUSH command closes the current segment and opens a new one. The
segments which have been closed will be used to redraw the drawn graphics when the window

needs to be repainted. Any drawing that does not exist in a closed segment will not be redrawn
when the window is repainted.

135

FLUSH
Drawing commands can be made to persist, or "stick" when the FLUSH command is used:

 graphicbox #w.g, 5, 5, 250, 250
 open "I'm a window!" for window as #w
 print #w.g, "home ; down"
 print #w.g, "fill green"
 print #w.g, "circle 100"
 print #w.g, "flush"
 wait

Deleting Drawing Segments
If a graphics window or graphicbox has received many drawing commands, it is advisable to

delete unwanted segments. If drawing segments are not deleted, the computer's RAM will
eventually fill with drawing commands. There are two ways to delete these unwanted drawing
commands.

CLS

The simplest way to delete drawing commands is to issue the CLS command before new
graphics drawing commands are issued:

 print #w.g, "cls"

W hen this method is used, the screen goes blank for an instant before new drawn items are
displayed, causing a flickering or blinking effect.

Segm ent and Delsegment

It is possible to delete any segments that are no longer needed. This method will not clear the
graphics, so no flickering effect will be visible. Each segment has a number, and each time a

segment is closed with a FLUSH command, the next segment has a number that is 1 greater
than the last. The first segment ID is 1, the second flushed segment ID is 2, the third is 3 and
so on.

The number of the currently active segment is retrieved with the segment command:

 print #w.g, "segment drawSegment"

This gets the segment number of the current segment and places it into the variable
drawSegment. Subtracting 1 from the current segment number will reference the last segment
that has been FLUSHed. It can then be deleted with the DELSEGMENT command, as in this
example:

 print #w.g, "delsegment "; drawSegment - 1

DISCARD

The DISCARD command will remove any unflushed drawing commands. An example is as
follows:

 'demonstrate discard
 open "Sine wave" for graphics as #sine
 print #sine, "home ; down ; posxy x y"
 print #sine, "place 0 "; y
 width = x * 2

136

 for x = 0 to width
 print #sine, "goto "; x; " "; y + (y * sin(x/40))
 next x
 print #sine, "discard" 'no redraw info kept
 wait
 end

The program above draws a sine wave, discarding drawn graphics. If the graphics window is
maximized after the drawing is complete, it is possible to see that the graphics are not redrawn.
This is similar to the effect achieved when FLUSH is not used, but in fact it throws away the

graphics instructions so memory does not get filled up.

W hen a window is closed, all graphics drawing operations are deleted from memory.

See also: graphics commands

137

 Reading Mouse Events and Keystrokes

A graphics window or graphicbox is able to read mouse and keyboard input. Here is the world's

smallest painting program!

 open "Paint something!" for graphics as #w
 print #w, "when leftButtonMove [paint]"
 print #w, "when characterInput [letter]"
 print #w, "down ; size 3"
 wait
[paint]
 print #w, "set "; MouseX; " "; MouseY
 wait
[letter]
 print #w, "\"; Inkey$
 wait

The mouse location within the graphics area can be retrieved from the MouseX and MouseY
variables. The Inkey$ variable holds the character of the key pressed. In order to capture
keyboard input the graphics device must have focus. Sometimes it is necessary to force the

input focus using the setfocus command:

 print #w.g, "setfocus"

 Mouse actions exam ple with subroutine event handler
Here's a really simple illustrative example of a paint program. W hen the leftButtonDown event
happens the draw subroutine gets called, and the graphicbox handle and mouse x and y values
get passed in.

 'a simple drawing program

 open "drawing example" for graphics_nsb as #draw
 #draw "vertscrollbar on 0 "; DisplayHeight
 #draw "horizscrollbar on 0 "; DisplayWidth
 #draw "down"
 #draw "size 2"
 #draw "when leftButtonMove draw"
 wait

sub draw handle$, x, y
 #handle$, "set "; x; " "; y
end sub

 Mouse actions exam ple with branch label event handler
Here's a really simple illustrative example of a paint program. W hen the leftButtonDown event
happens the program branches to the [draw] routine. Mouse coordinates are contained in

MouseX and MouseY.

 'a simple drawing program

 open "drawing example" for graphics_nsb as #draw
 #draw "vertscrollbar on 0 "; DisplayHeight
 #draw "horizscrollbar on 0 "; DisplayWidth

138

 #draw "down"
 #draw "size 2"
 #draw "when leftButtonMove [draw]"
 wait

[draw]
 #draw, "set "; MouseX; " "; MouseY
 wait

 Keyboard input exam ple with subroutine event handler
Here's a simple program that monitors user keypresses. W hen the characterInput event happens
the keyCheck subroutine gets called, and the graphicbox handle and Inkey$ values get passed

in.
 'a simple keycheck program

 open "Press some keys!" for graphics_nsb as #draw
 #draw "setfocus;place 10 20"
 #draw "when characterInput keyCheck"
 wait

 sub keyCheck handle$, key$
 #handle$, "\";key$
 end sub

 Keyboard input exam ple with branch label event handler

Here's a simple program that monitors user keypresses. W hen the characterInput event happens
the program branches to the [keyCheck] routine, and Inkey$ contains the information about the

key(s) pressed by the user.
 'a simple keycheck program

 open "Press some keys!" for graphics_nsb as #draw
 #draw "setfocus;place 10 20"
 #draw "when characterInput [keyCheck]"
 wait

[keyCheck]
 #draw, "\";Inkey$
 wait

See also: graphics commands, Inkey$, and Using Virtual Key Contants with Inkey$ for more
details.

139

 Graphics Com m ands
See also: Understanding Syntax - how to use literals and variables in commands.

New for Liberty BASIC 4: scrollbars may be turned on and off, and the scroll range may be set.
 See HORIZSCROLLBAR and VERTSCROLLBAR commands below. The slider on the scrollbar

now opens at the top for vertical scrollbars and at the left for horizontal scrollbars, rather than in
the middle as they did in previous versions of Liberty BASIC. Also new: drawing segments can be
given names. In previous versions of Liberty BASIC, segment ID's were numbers assigned by
Liberty BASIC. For more on using named drawing segments, see the FLUSH command, below.

Most of these commands work only with windows of type graphics and with the graphicbox
control.

It should be noted that graphics windows and graphicboxes are intended for drawing graphics. It

is not advisable to place controls within them, since some controls do not work properly when
placed in graphicboxes or graphics windows. If there is a need for text display within a
graphicbox or graphics window, use the graphics text capabilities rather than a statictext control.

IMPORTANT NOTE: In order to draw, you must make sure that the drawing pen in down, and not

up. See below for more information.

Here is an example using a graphics window:

 open "Drawing" for graphics as #handle
 print #handle, "home" 'center the pen
 print #handle, "down" 'ready to draw
 print #handle, "fill red" 'fill the window with red
 print #handle, "circle 50" 'draw a circle
 print #handle, "flush" 'make the graphics stick
 wait

And here is an example using a graphicbox:

 graphicbox #handle.gbox, 10, 10, 150, 150
 open "Drawing" for window as #handle
 print #handle.gbox, "home" 'center the pen
 print #handle.gbox, "down" 'ready to draw
 print #handle.gbox, "fill red" 'fill the graphics area red
 print #handle.gbox, "circle 50" 'draw a circle
 print #handle.gbox, "flush" 'make the graphics stick
 wait

Because graphics can involve many detailed drawing operations, Liberty BASIC allows mutliple

commands to be listed in a single command statement if they are separated by semicolons. The
following example shows several graphics commands, each on its own line:

 print #handle, "up"
 print #handle, "home"
 print #handle, "down"
 print #handle, "north"
 print #handle, "go 50"

The same commands can be issued on a single line, and will execute slightly faster:

140

print #handle, "up ; home ; down ; north ; go 50"

If text is displayed using graphics commands, a semicolon may not be used after the command
to display the text. W hen graphictext is designated by the use of the (\) or (|) character, any
semicolons that follow in the same line are considered to be part of the text string to display.

Important: W hen drawing to a graphics window or graphic box, the operations that are performed
are stored in memory by Liberty BASIC so that lightning fast redraws can be performed. This
storage function uses memory. If an application continually draws raphics, the system will

eventually run out of memory and even potentially crash the computer. To prevent this, the
application should only store those drawing operations which are needed to display its current

state. The cls, delsegment, discard and flush commands help to manage graphics memory.
See also: Graphics

Liberty BASIC supports sprites in graphic windows and in graphicbox controls. Only one

graphicbox or graphics window in a program m ay use sprites. To learn more about using
sprites, see Sprites.

Using variables in commands:
To use literal values, place them inside the quotation marks:

print #handle, "box 12 57"

To use variables, place them outside the quotation marks, preserving spaces:

x=12 : y = 57
print #handle, "box ";x;" ";y

For more, see Understanding Syntax.

GRAPHICBOX COMMANDS
The following commands are sent to a graphicbox. W hen a graphicbox is disabled, it can no
longer capture keyboard and mouse events.

print #handle.ext, "setfocus"
This causes the control to receive the input focus. This means that any keypresses will be
directed to the control.

print #handle.ext, "enable"

This causes the control to be enabled.

print #handle.ext, "disable"

This causes the control to be inactive. It can no longer capture mouse and keyboard events.

print #handle.ext, "show"
This causes the control to be visible.

print #handle.ext, "hide"
This causes the control to be hidden or invisible.

print #handle, "autoresize"

141

This causes the edges of the control to maintain their distance from the edges of the overall
window. If the user resizes the window, the graphicbox control also resizes.

Graphics commands (in alphabetical order):

print #handle, "backcolor COLOR"
This command sets the color used when drawn figures are filled with a color. The same colors

are available as with the COLOR command below.

print #handle, "backcolor red(0-255) green(0-255) blue(0-255)"

The second form of backcolor specifies a pure RGB color. This only works with display modes
greater than 256 colors. To create a green blue color for example, mix green and blue:

print #handle, "backcolor 0 127 200"

print #handle, "box x y"
This command draws a box using the pen position as one corner, and x, y as the other corner.

print #handle, "boxfilled x y"

This command draws a box using the pen position as one corner, and x, y as the other corner.
The box is filled with the color specified using the other BACKCOLOR command.

print #handle, "circle r"
This command draws a circle with radius r at the current pen position.

print #handle, "circlefilled r"
This command draws a circle with radius r, and filled with the color specified using the
BACKCOLOR command.

print #handle, "cls"
This command clears the graphics window, erasing all drawn elements and flushed segments

(and releasing all the memory they used).

print #handle, "color COLOR"
This command sets the pen's color to be COLOR

Here is a list of valid colors (in alphabetical order):

black, blue, brown, buttonface, cyan, darkblue, darkcyan, darkgray, darkgreen, darkpink, darkred,

green, lightgray, palegray, pink, red, white, yellow

Palegray and Lightgray are different names for the same color. Buttonface is the default
background color currently set on a user's system, so it will vary according to the desktop color
scheme. Here is a graphical representation of the named colors:

142

print #handle, "color red(0-255) green(0-255) blue(0-255)"
The second form of color specifies a pure RGB color. This only works with display modes

greater than 256 colors. To create a violet color for example, mix red and blue:

print #handle, "color 127 0 127"

print #handle, "delsegment n"

This causes the drawn segment with segment ID number "n" to be removed from the window's list
of drawn items. The memory that was used by the drawn segment is reclaimed by the operating
system. W hen the window is redrawn the deleted segment will not be included in the redraw.
See the SEGMENT command for instructions on retrieving a segment ID number.

print #handle, "delsegment segmentName"
This causes the drawn segment that has been assigned "segmentName" to be removed from the

window's list of drawn items. The memory that was used by the drawn segment is reclaimed by
the operating system. W hen the window is redrawn the deleted segment will not be included in
the redraw. See the FLUSH command for instructions on assigning segment names.

print #handle, "discard"

This causes all drawn items since the last flush to be discarded (this also reclaims memory used
by the discarded drawn items). Discard does not force an immediate redraw, so the items that
have been discarded will still be displayed until a redraw (see redraw).

print #handle, "down"
This command is the opposite of UP. This command reactivates the drawing process. The pen

must be DOW N to cause graphics to be displayed.

print #handle, "drawbm p bm pnam e x y"
This command draws a bitmap named bmpname (loaded beforehand with the LOADBMP

statement, see command reference) at the location x y.

143

print #handle, "ellipse w h"
This command draws an ellipse centered at the pen position of width w and height h.

print #handle, "ellipsefilled w h"
This command draws an ellipse centered at the pen position of width w and height h. The ellipse
is filled with the color specified using the command backcolor (see above).

print #handle, "fill COLOR"
or...
print #handle, "fill red(0-255) green(0-255) blue(0-255)"

This command fills the window with COLOR. For a list of accepted colors see the COLOR
command above. The second form specifies a pure RGB color. This only works with display

modes greater than 256 colors.

print #handle, "flush"
This command ensures that drawn graphics 'stick'. Each time a flush command is issued after

one or more drawing operations, a new group (called a segment) is created. Each segment of
drawn items has an ID number. The segment command retrieves the ID number of the current

segment. Each time a segment is flushed, a new empty segment is created, and the ID number
increases by one. See also the commands cls, delsegment, discard, redraw, and segment.

print #handle, "flush segmentName"
This command ensures that drawn graphics 'stick', and assigns a name to the flushed segment.

Each time a flush command is issued after one or more drawing operations, a new group (called a
segment) is created. This assigned name can be used in later commands to manipulate the
segment. See also the commands cls, delsegment, discard, redraw, and segment.

print #handle, "font facenam e pointSize"

This command sets the pen's font to the specified face and point size. If an exact match cannot
be found, then Liberty BASIC will try to find a close match, with size taking precedence over face.

 For more on specifying fonts read How to Specify Fonts

Example:

print #handle, "font Times_New_Roman 10"

print #handle, "getbmp bm pNam e x y width height"
This command will make a bitmap copied from the graphics window at x, y and using width and
height. It resides in memory. This bitmap can be drawn using the DRAW BMP command, just as

a bitmap loaded with LOADBMP. It is also possible to get a W indows handle to this bitmap with
the HBMP() function.

print #handle, "go D"
This causes the drawing pen tomove forward D distance from the current position, moving inthe

current direction.

144

print #handle, "goto X Y"
This command moves the pen to position X Y. A line will be drawn if the pen is down.

print #handle, "home"
This command centers the pen in the graphics window.

print #handle "horizscrollbar on/off [m in m ax]"
This command manages the horizontal scrollbar. If the value is "on", the scrollbar is visible. If
the value is "off", the scrollbar is not displayed. If the optional paramters for min and max are
used, they set the minimum scrollbar range and the maximum scrollbar range in pixels. A large

scrollbar range allows the graphics window to scroll a long distance, while a short range allows it
to scroll a short distance.

print #handle, "line X1 Y1 X2 Y2"
This command draws a line from point X1 Y1 to point X2 Y2. If the pen is up, then no line will be
drawn, but the pen will be positioned at X2 Y2.

print #handle, "locate x y width height"
This command is for a graphicbox, not a graphics window, and it repositions the control in its

window. This is effective when the control is placed inside a window of type "window". The
control will not update its size and location until a refresh command is sent to the window. See
the included RESIZE.BAS example program.

print #handle, "north"
This command sets the current direction to 270 (north). Zero degrees points to the right (east),

90 points down (south), and 180 points left (west).

print #handle, "pie w h angle1 angle2"

This command draws a pie slice inside an ellipse of width w and height h. The pie slice will begin
at angle1, and sweep clockwise angle2 degrees if angle2 is positive, or sweep counter-clockwise
angle2 degrees if angle2 is negative.

print #handle, "piefilled w h angle1 angle2"
This command draws a pie slice inside an ellipse of width w and height h. The pie slice will begin

at angle1, and sweep clockwise angle2 degrees if angle2 is positive, or sweep counter-clockwise
angle2 degrees if angle2 is negative. The pie slice is fillled with the color specified using the
BACKCOLOR command.

print #handle, "place X Y"
This command positions the pen at X Y. No graphics will be drawn, even if the pen is DOW N.

print #handle, "posxy xVar yVar"
This command assigns the pen's current position to xVar & yVar.

145

print #handle, "print"
This command sends the plotted image to the W indows Print Manager for output. Liberty BASIC
4 now scales graphics when sending them to a printer. Until version 4.0, Liberty BASIC printed
the contents of graphics windows at 1:1, which resulted in tiny printed versions of what was

visible on the screen. Now it will scale the graphics based on the size they appear on the display
monitor, and the resolution of the printed page. Only TrueType fonts scale when printing. Bitmap
fonts stay at their native resolution when printing. W hen printing a graphics window which has had

the fill command applied, it will cause an entire printed page to be filled with that color, which may
be highly undesireable. W hen graphics will be sent to the printer, consider using the boxfilled

command rather than the fill command so that the absolute size of the filled area can be
specified.

print #handle, "redraw"

or
print #handle, "redraw "; idNum

or
print #handle, "redraw "; segmentName
This command causes the window to redraw all flushed drawn segments, or a specific drawn
segment. The specific segment can be identified by the ID number assigned by Liberty BASIC
and retrieved with a SEGMENT command, or it can be a segment name assigned by the program

when the FLUSH command is issued. Any deleted segments will not be redrawn (see
DELSEGMENT). Any items drawn since the last flush will not be redrawn either, and will be lost.

print #handle, "rule rulenam e"

or
print #handle, "rule "; _R2_NOTXORPEN

This command specifies whether drawing overwrites (rulename OVER) graphics already on the
screen or uses the exclusive-OR technique (rulename XOR). It is also possible to use W indows
constants to select a drawing rule (as shown above). Here are the constants that W indows
defines:

 _R2_BLACK
 _R2_W HITE

 _R2_NOP
 _R2_NOT
 _R2_COPYPEN <- the default LB drawing rule

 _R2_NOTCOPYPEN
 _R2_MERGEPENNOT

 _R2_MASKPENNOT
 _R2_MERGENOTPEN
 _R2_MASKNOTPEN

 _R2_MERGEPEN
 _R2_NOTMERGEPEN
 _R2_MASKPEN
 _R2_NOTMASKPEN
 _R2_XORPEN

 _R2_NOTXORPEN <- the xor LB drawing rule

print #handle, "segment variableNam e"

146

This causes the window to set variableName to the segment ID of the currently open drawing
segment. To get the segment ID of the last segment flushed, subtract one. Segment ID
numbers are useful for manipulating different parts of a drawing.

print #handle, "set x y"
This command draws a point at x, y using the current pen color and size.

print #handle, "setfocus"
This causes W indows to give input focus to this control. This means that,ifsome other control in

the same window was highlighted and active,thiscontrol now becomes the highlighted and

active control, receiving mouse and keyboard input.

print #handle, "size S"

This command sets the size of the pen to S. The default is 1. This will affect the thickness of
lines and figures plotted with most of the commands listed in this section.

print #handle, "stringwidth? varToMeasure$ widthInPixels"

This command retrieves the width in pixels of a string, based on the current font of the graphicbox
or graphic window.

 open "my stringwidth" for graphics as #g
 name$ = "Carl Gundel"
 print #g, "stringwidth? name$ width"
 print width
 print #g, "font courier_new 30"
 print #g, "stringwidth? name$ width"
 print width
 close #g
 end

print #handle, "\text"

This command displays the specified text at the current pen position. The text is located with its
lower left corner at the pen position.

Each additional \ in the text will cause a carriage return and line feed. For example, print
#handle, "\text1\text2" will cause text1 to be printed at the pen position, and then text2 will be

displayed directly under text1.

also... print #handle, "|text"

This command works like print #handle, "\text" above, but uses the | character instead of the \
character, which allows display of the character a (\).

print #handle, "trapclose branchLabel"

This will tell Liberty BASIC to continue execution of the program at branchLabel if the user double
clicks on the system menu box or pulls down the system menu and selects close (this command

does not work with graphicbox controls).

147

print #handle, "turn A"

This command causes the drawing pen to turn from the current direction, using angle A and
adding it to the current direction. A can be positive or negative.

print #handle, "up"

This command lifts up the pen. All GO or GOTO commands will now only move the pen to its
new position without drawing. Any other drawing commands will simply be ignored until the pen
is put back down.

print #handle "vertscrollbar on/off [m in m ax]"
This command manages the vertical scrollbar. If the value is "on", the scrollbar is visible. If the
value is "off", the scrollbar is not displayed. If the optional paramters for min and max are used,
they set the minimum scrollbar range and the maximum scrollbar range in pixels. A large

scrollbar range allows the graphics window to scroll a long distance, while a short range allows it
to scroll a short distance.

print #handle, "when event eventHandler"

This tells the window to process mouse and keyboard events. These events occur when a user
clicks, double-clicks, drags, or just moves the mouse inside the graphics window. An event can

also be the user pressing a key while the graphics window or graphicbox has the input focus (see
the setfocus command, above). This provides a really simple mechanism for controlling flow of a
program which uses the graphics window.

The eventHandler can be a valid branch label or the name of a subroutine. See also: Controls

and Events

Sending print #handle, "when leftButtonDown [startDraw]" to a graphicbox or graphics window will
tell that window to force a goto [startDraw] if the mouse is inside that window when the user
presses the left mouse button. Sending "when leftButtonDown startDraw" to a graphics window

or graphicbox tells the window to call the subroutine startDraw if the mouse is inside that window
when the user presses the left mouse button. The graphicbox handle, MouseX and MouseY
variables are passed into the designated subroutine. If keyboard input is trapped, the graphicbox
handle and the value of the key pressed are passed into the designated subroutine. See Reading
Mouse Events and Keystrokes.

W henever a mouse event is trapped, Liberty BASIC places the x and y position of the mouse in

the variables MouseX, and MouseY. The values represent the number of pixels in x and y the
mouse was from the upper left corner of the graphic window display pane.

W henever a keyboard event is trapped, Liberty BASIC places the value of the key(s) pressed into
the special variable, Inkey$. See Using Inkey$.

If the expression print #handle, "when event" is used with no branch label designation, then
trapping for that event is discontinued. It can however be reinstated at any time. Example of
turning off the leftButtonDown event handler:

print #handle, "when leftButtonDown"

148

Events that can be trapped:

 leftButtonDown - the left mouse button is now down
 leftButtonUp - the left mouse button has been released
 leftButtonMove - the mouse moved while the left button is down
 leftButtonDouble - the left button has been double-clicked
 rightButtonDown - the right mouse button is now down

 rightButtonUp - the right mouse button has been released
 rightButtonMove - the mouse moved while the right button is down

 rightButtonDouble - the right button has been double-clicked
 mouseMove - the mouse moved when no button was down
 characterInput - a key was pressed while the graphics window has

 input focus (see the setfocus command, above)

W ARNING: using graphicboxes in dialog-type windows is fine, but they do not properly accept
the input focus for keyboard input. If a program needs graphicboxes that trap keyboard events,

then a window of type "window" must be used.

See also: Graphics, Inkey$, Using Virtual Key Contants wiht Inkey$., Using Inkey$, Reading
Mouse Events and Keystrokes

149

 Sprite Table of Contents
Only one graphicbox or graphics window in a program m ay use sprites.

Sprite Commands

W hat is a Sprite?
How Do Sprites W ork?

Start with the Background
Designate Sprites
Sprite Properties
Drawing and Collision Detection
Flushing Sprite Graphics

Pauses and Timing
Add a Mask
Step by Step

Simple Demo Program
Lander.bas

Sprite images used in some demos are by Ari Feldman.

User License: 209.83.123.9-971442511
http://www.arifeldman.com

150

 Sprite Com m ands
Only one graphicbox or graphics window in a program m ay use sprites.

ADDSPRITE
print #w.g, "addsprite SpriteName BmpName";

This adds a sprite with name SpriteName from loaded bitmap called BmpName.
print #w.g, "addsprite SpriteName bmp1 bmp2 bmp3 ... bmpLast";
This adds a sprite with name SpriteName from loaded bitmaps - may include any number of

bitmaps.

BACKGROUND
print #w.g, "background BmpName";

This sets the background for sprites to be the loaded bitmap called BmpName.

BACKGROUNDXY
print #w.g, "backgroundxy 25 20";
OR
x=25:y=20
print #w.g, "backgroundxy ";x;" ";y
This places the point x, y from the background bitmap at location 0, 0 of the sprite graphicbox or
graphics window.

CENTERSPRITE
print #w.g, "centersprite SpriteName"
This causes a sprite's x, y location to refer to the center of the sprite, rather than the default
upper left corner.

CYCLESPRITE
print #w.g, "cyclesprite SpriteName 1"
print #w.g, "cyclesprite SpriteName -1"
print #w.g, "cyclesprite SpriteName 1 once"
This causes a sprite to cycle through its image list automatically. Using "1" will cause the list to
cycle forward. Using "-1" will cause the list to cycle backwards. Using the optional "once"
parameter will cause the sprite to cycle through its image list only one time, other wise it cycles

continuously.

DRAW SPRITES
print #w.g, "drawsprites";
This causes all visible sprites to be drawn on the background and it updates the display.

REMOVESPRITE
print #w.g, "removesprite SpriteName";

This causes the named sprite to be removed from the collection of sprites.

SPRITECOLLIDES
print #w.g, "spritecollides SpriteName";
input #w.g, list$
OR
print #w.g, "spritecollides SpriteName list$";
This causes a list of all sprites that collided with the sprite named SpriteName to be contained in
the variable called "list$".

SPRITEIMAGE

151

print #w.g, "spriteimage SpriteName BmpNameX";
This causes the sprite called SpriteName to be shown as the image from its image list called
BmpNameX.

SPRITEMOVEXY
print #w.g, "spritemovexy SpriteName 5 5";
OR
x=5:y=5
print #w.g, "spritemovxy SpriteName ";x;" ";y
This causes a sprite called SpriteName to move x pixels in the x direction, and y pixels in the y

direction each time a DRAW SPRITES command is issued to update the display.

SPRITEOFFSET
print #w.g, "spriteoffset SpriteName 20 20";
OR
x=20:y=20
print #w.g, "spriteoffset SpriteName ";x;" ";y

This causes the sprite x, y display location to be offset by the values indicated in x and y from its
coded x, y location.

SPRITEORIENT
print #w.g, "spriteorient SpriteName normal";
print #w.g, "spriteorient SpriteName flip";
print #w.g, "spriteorient SpriteName mirror";
print #w.g, "spriteorient SpriteName rotate180";
This causes the sprite called SpriteName to be oriented in one of the four directions: normal, flip,

mirror, rotate180.

SPRITEROUND
print #w.g, "spriteround SpriteName";
This causes the sprite called SpriteName to be assumed to be a rounded area within the
rectangular bitmap when collisions are evaluated.

SPRITESCALE
print #w.g, "spritescale SpriteName 150";
OR
percent=150
print #w.g, "spritescale SpriteName ";percent
This causes the sprite called SpriteName to be scaled by the percentage designated in both
width and height.

SPRITETOBACK
print #w.g, "spritetoback SpriteName ";
This causes the sprite called SpriteName to be drawn first, so that it appears underneath other
sprites

SPRITETOFRONT
print #w.g, "spritetofront SpriteName ";
This causes the sprite called SpriteName to be drawn last, so that it appears on top of other
sprites

SPRITETRAVELXY
#w.g "spritetravelxy SpriteName 200 250 5 [landed]"

152

or
#w.g "spritetravelxy SpriteName " ;X; " " ;Y; " " ;speed; "
[branchHandler]"
or
#w.g "spritetravelxy SpriteName " ;X; " " ;Y; " " ;speed; "
subHandler"
This causes the sprite called SpriteName to travel to the x, y location specified at the speed
indicated, and to fire an event when it reaches the destination. The event can be handled at a
[branchLabel] or a sub.

SPRITEVISIBLE
print #w.g, "spritevisible SpriteName on";
print #w.g, "spritevisible SpriteName off";
This causes the sprite called SpriteName to be visible if "on" is used, or to be invisible if "off" is
designated.

SPRITEXY
print #w.g, "spritexy SpriteName 100 137";
OR
x=100:y=137
print #w.g, "spritexy SpriteName ";x;" ";y
This causes the sprite called SpriteName to be drawn at position x, y the next time the display is

updated with the DRAW SPRITES command.

SPRITEXY?
print #w.g, "spritexy? SpriteName"
input #w.g, x, y
OR
print #2.g "spritexy? SpriteName x y"
This obtains the coordinates of the sprite called SpriteName and places them into the variables x
and y.

153

 W hat is a Sprite?

Here is a background image:

Bitmaps are rectangular images, like the one above.

A program might need to put a picture of a hopping frog onto this background.

Here is the picture of a frog:

The frog is a bitmap also, and bitmaps are rectangular.

Here is the bitmap of the frog, drawn onto the background:

That doesn't look very convincing!

It is possible to make it look like the frog is part of the picture by using sprites. W hen done with
sprites, the picture looks like this:

154

 How Do Sprites W ork?

As was explained in the previous section, bitmaps are rectangular. Realistic graphics require a

way to place the image from a bitmap onto a background without including the image's own
background. If this were to be done with an actual picture on a piece of paper, desired parts of

the image could be cut out, and the remaining parts of the picture could be discarded. This
cutout could then be pasted onto the background. This can be done with bitmaps.

MASKS
Images are added to a background in layers. There are two versions of the image, which are
called a mask and a sprite. The mask is put on first. A mask has a white background. The
shape of the image is the actual mask, and it is all black. A mask is a black and white image.

Here is a mask for the frog image:

SPRITES
The sprite is the image as it will appear, with a completely black background:

SPRITES W ITH MASKS
Here is the bitmap for the frog sprite. The mask is directly above the sprite, and together these

will be used to draw sprites in Liberty BASIC. This is a single bitmap:

It is possible to add a mask to the sprite image using Paint, PaintBrush, or any other painting

utility, but the easiest way to add the mask is to use the Liberty BASIC program provided as part
of this help file. Add a mask here.

LAYERING
Sprites are displayed by combining the pixels of the background with the pixels of the mask and

sprite bitmaps, using bitwise operations. The programmer does not need to deal with these
operations, because they are done by Liberty BASIC. A Liberty BASIC sprite bitmap contains
the mask above the sprite. The mask is placed on the background bitmap in memory. It is not
displayed on the screen in this form:

155

The mask is now in place. The next layer adds the sprite, and results in this picture, which is
displayed on the screen when a DRAW SPRITES command is issued:

IMPORTANT!
To avoid flickering, sprite animation is done invisibly, in memory. W hen an entire frame of
animation is built, it is then transferred to the screen. IT W ILL COVER ANY PREVIOUS
GRAPHICS IN THE GRAPHICBOX OR ON THE GRAPHICW INDOW . See the section on
Drawing and Collision Detection for information about adding graphics to a window with Liberty

BASIC graphic commands during sprite animation.

SPRITES MAY BE PLACED IN ONLY ONE GRAPHICS W INDOW OR GRAPHICBOX IN A
PROGRAM.

156

 Start with the Background

 WindowHeight = 320
 WindowWidth = 400
 graphicbox #w.g, 0, 0, 400, 300
 open "sprite test" for window_nf as #w

A window that contains sprites must include a graphicbox, or it must be a graphics window.

Only one graphicbox or graphics window in a program m ay use sprites.

BACKGROUND FROM LOADED BITMAP
There are several ways to designate a background image. One way is to use a loaded bitmap as
the background. The bitmap must first be loaded with the LOADBMP command:

 loadbmp "landscape", "bg1.bmp"

The BACKGROUND command sets the bitmap called "landscape" to be the background:

 print #w.g, "background landscape";

Note that simply setting the background bitmap does not cause the background image to display
on the screen. See the section on Drawing and Collision Detection to find out about updating the

display.

NOTE ABOUT BACKGROUND BITMAP SIZE

If the loaded bitmap is the same width and height as the graphicbox, or the client area of the
graphics window, it is used just as it is. If the width of the bitmap is less than the width of the

graphicbox or graphics window, then it is stretched to fit. If the height of the bitmap is less than
the height of the graphicbox or graphics window, then it is stretched to fit.

Here is an example. The width of the following bitmap is greater than the width of the graphicbox,
so it remains unchanged. The height of the bitmap is less than the height of the graphicbox, so it
is stretched to fit.

IMPORTANT NOTE ABOUT BACKGROUND SIZE

The background bitmap image will be stretched to fit the width of the graphicbox if the width is
smaller than the width of the graphicbox, and the height is stretched if the height of the bitmap is
smaller than the height of the graphicbox. THESE NUMBERS REFERS TO THE HEIGHT AND
W IDTH INDICATED W HEN THE GRAPHICBOX IS CREATED, NOT THE VISIBLE PORTION OF
THE GRAPHICBOX. It is possible to create a graphicbox whose dimensions are much larger

than the window that contains it. The background image will be stretched to fit the given
dimensions, not the visible dimensions of the graphicbox.

BACKGROUND FROM SCREEN

157

The background may be drawn into the graphicbox or graphics window with Liberty BASIC
graphics commands, such as FILL, LINE, BOXFILLED, DRAW BMP, etc. This bitmap is loaded
into memory and given a name with the GETBMP command. This example uses a graphicbox

whose width is 400 and height is 300. The example gets the bitmap from the graphicbox at 0,0
and with a width of 399 pixels and a height of 299 pixels, and gives it the name "landscape".
(Note that the width and height appear to be less than the width and height of the graphicbox, but

the graphicbox dimensions include the frame, and the background bitmap should only include the
inside area.) It can then be used as the designated background bitmap in the same way as a

bitmap loaded with the LOADBMP command:

 print #w.g, "getbmp landscape 0 0 399 299";
 print #w.g, "background landscape";

DEFAULT BACKGROUND
If no BACKGROUND command is issued, a plain white background will be used.

CHANGING THE BACKGROUND

The background can be changed at any time. It may be changed to a bitmap that has been
loaded into memory with the LOADBMP command, or with the GETBMP command. It is also

possible to draw on the screen to create a new GETBMP bitmap during program execution, and
then designate it to be the background.

To set a new bitmap called "mountains" as the background, just use the BACKGROUND
command after loading the bitmap:

 loadbmp "mountains", "mts.bmp"
 print #w.g, "background mountains";

IMPORTANT!
The background will not appear in the graphicbox or graphics window until the DRAW SPRITES
command is given. This command updates the display. Even if there are no sprites in use, or if
no sprites are visible, the DRAW SPRITES command must be issued to display the background

onscreen. W henever the BACKGROUND command is issued, it must be followed by a
DRAW SPRITES command to cause it to show on the screen.

SCROLLING THE BACKGROUND
The background image can be moved within the graphicbox or graphics window with the

BACKGROUNDXY command. The x, y location specified on the background image will be
placed at point 0, 0 of the graphicbox or graphics window. Positive and negative numbers are
acceptable for the x and y locations.

 print #handle.ext, "backgroundxy 25 20"

OR
 x=25:y=20
 print #handle.ext, "backgroundxy ";x;" ";y

OR
 x=x+5:y=y-10

158

 print #handle.ext, "backgroundxy ";x;" ";y

See how to set up the sprites in Designate Sprites.

Here is a small program that uses GETBMP to get a background, and then scrolls it. Notice that
no sprites have been added to the program, but to update the background a DRAW SPRITES
command is issued.

nomainwin
WindowWidth=410
WindowHeight=340
graphicbox #w.g, 0,0,400,300
open "Window" for window_nf as #w

print #w.g, "down;fill blue"
print #w.g, "color red;backcolor red"

print #w.g, "boxfilled 200 150"
print #w.g, "getbmp landscape 0 0 399 299";
print #w.g, "background landscape";
print #w, "trapclose [quit]"

timer 100,[scroll]
wait

[scroll]
x=x+5:y=y+5
print #w.g, "backgroundxy ";x;" ";y
print #w.g, "drawsprites"
[loop]
wait

[quit]
close #w:end

159

 Designate Sprites

A sprite bitmap must include a mask above and a sprite below, like this:

The bitmap must be loaded with the LOADBMP command:

 loadbmp "smiley", "smiley.bmp"

NAME
The command to add the sprite to the program is ADDSPRITE. It designates the NAME to give

this sprite, and then the name for the sprite bitmap that was given with LOADBMP. These names
can be the same, as in this example:

 print #w.g, "addsprite smiley smiley";

Or, the designated sprite NAME can be different from the LOADBMP name. Below, the bitmap is
named "smiley" when it is loaded, and it is given the spritename, "guy".

 loadbmp "smiley", "smiley.bmp"
 print #w.g, "addsprite guy smiley";

The spritename is used to refer to this sprite when setting its properties, or issuing commands to
it. The image for a designated sprite can be changed by issuing the ADDSPRITE command

again:

 loadbmp "frown", "frown.bmp"
 print #w.g, "addsprite guy frown";

None of the properties of the "guy" sprite change when the image is changed.

VISIBILITY

All added sprites will be drawn in each frame of animation. The SPRITEVISIBLE command is
used to specify whether a sprite is visible or not.

A sprite is hidden by issuing SPRITEVISIBLE, the sprite name, and "off".

 print #w.g, "spritevisible guy off";

A sprite is shown by issuing SPRITEVISIBLE, the sprite name, and "on".

 print #w.g, "spritevisible guy on";

INVISIBLE SPRITES AND COLLISIONS
Invisible sprites still trigger collisions. For more, see the section on Drawing and Collision
Detection.

160

MULTIPLE VERSIONS OF A SPRITE
It is possible to have several different versions of a sprite image. W hen the image moves, it

cycles through these versions to create the illusion of real movement. The versions might look
like this:

The individual bitmaps for the sprite images must be loaded with LOADBMP. The bitmaps for the

frog look like this:

The code to load them looks like this:

 loadbmp "frog1", "frog1.bmp"
 loadbmp "frog2", "frog2.bmp"
 loadbmp "frog3", "frog3.bmp"

 print #w.g, "addsprite frog frog1 frog2 frog3";

Now the sprite with the NAME of "frog" contains three individual frog images. To see how to
make Liberty BASIC cycle through these images when drawing the frog sprite, see the section on
Sprite Properties. Bitmaps can be used multiple times within one sprite designation. Note that

"frog2" is used twice here:

 print #w.g, "addsprite frog frog1 frog2 frog3 frog2";

ACCESSING INDIVIDUAL IMAGES FROM SPRITE LIST
In the example above, the "frog" sprite consists of three separate frog images. By default, the
first image is shown when the sprite is drawn. To show any image from the list, the

SPRITEIMAGE command is issued, specifying the image name to be used. In the following
example, when the sprite is drawn after this command, it will be drawn as the "frog2" image. In
this manner, the image can be changed at any time.

 print #w.g, "spriteimage frog frog2";

The individual images of a sprite can be cycled automatically by issuing a CYCLE command,

which is discussed along with other sprite properties in Sprite Properties.

IMPORTANT!

161

To avoid flickering, sprite animation is done invisibly, in memory. A frame of animation is built
entirely off-screen. A frame of animation is displayed on the screen only when the command
DRAW SPRITES is called. For each frame of animation, perform all functions to set the

background image, and to set or change a sprite's properties, then call the DRAW SPRITES
command. Learn about updating the display in Drawing adn Collision Detection.

162

 Sprite Properties

Sprite properties include NAME, VISIBLE, SCALE, ORIENTATION, CYCLE, LOCATION,

MOTION, TRAVEL, Z ORDER.

The properties VISIBLE and NAME are discussed in Designating Sprites. Sprites have several
other properties that can be set by the programmer.

CYCLE
Liberty BASIC will automatically cycle through the image list for a sprite, if given the

CYCLESPRITE command. The command also requires the sprite's NAME and a value for the
frame count. A value of "1" will cause the sprite to cycle through all images in its list from first
listed to last listed. A value of "-1" will cause the sprite to cycle through all of its images in the
reverse order from which they were listed. A value equal to one of the images in the list will
cause the sprite to cycle to that image. To cycle forward through all images:

 print #w.g, "cyclesprite smiley 1"

or backwards:

 print #w.g, "cyclesprite smiley -1"

For the example with three frogs, Liberty BASIC will cycle through these three images when
drawing frames of animation:

 loadbmp "frog1", "frog1.bmp"
 loadbmp "frog2", "frog2.bmp"
 loadbmp "frog3", "frog3.bmp"

 print #w.g, "addsprite frog frog1 frog2 frog3";
 print #w.g, "cyclesprite frog 1"

CYCLE ONCE

Adding ONCE to the CYCLESPRITE command causes the sprite to cycle through its frames of
animation, either forward, or backward, only one time, and then stop at the last (or first) frame.
After the single cycle through frames, the sprite will appear as the last (or first) frame until a
different cycle command is issued. This is useful for animations such as explosions.

 print #w.g, "cyclesprite frog 1 once"

SCALE
A sprite may be scaled to a percentage of its original width and height with the SPRITESCALE

command. A percentage of 200 will cause the sprite to appear twice the original width and
height, while a percentage of 50 will cause it to be half as large as the width and height of the

163

loaded bitmap. To change the size of a sprite to be one and one-half times the width and height
of the loaded bitmap:

 print #w.g, "spritescale smiley 150";

ORIENTATION
By default, sprites are shown just as they appear in the loaded bitmap. It is easy to cause them

to appear as a mirror image of the loaded bitmap, or flipped, or rotated 180 degrees. It is not
possible to rotate 90 or 270 degrees, so these rotations will require separate sprites/bitmaps.

Sprites can have alterations in both scale and orientation at one time.

 print #w.g, "spriteorient smiley normal";
 print #w.g, "spriteorient smiley flip";
 print #w.g, "spriteorient smiley mirror";
 print #w.g, "spriteorient smiley rotate180";

POSITION AND MOVEMENT
A sprite can be moved to the x, y position indicated in the SPRITEXY command. The following
example places the sprite named "smiley" at x=100, y=137:

 print #w.g, "spritexy smiley 100 137";

Liberty BASIC will automatically move a sprite each time a new frame is drawn, if the

SPRITEMOVEXY command is issued. The following command moves the sprite named "smiley"
5 pixels in the x direction and 2 pixels in the y direction each time a new animation frame is
drawn.

 print #w.g, "spritemovexy smiley 5 2";

A sprite is stopped from moving automatically by the SPRITEMOVEXY command and values of 0
for the x and y movement:

 print #w.g, "spritemovexy smiley 0 0";

The spritetravelxy command sets up a condition where a sprite moveS to a given location at a
certain speed. Each time a drawsprites command is issued, the sprite moves the appropriate

amount towards its goal. W hen it reaches its destination, it will fire an event using the handler
specified, and it will stop moving.

164

 print #w.g, "spritetravelxy smiley 300 200 5 [landed]";

The centersprite command causes any commands that refer to the sprite's location to use the
center of the sprite as the x, y location, rather than using the default upper left corner of the sprite

as the x, y location.

 print #w.g, "centersprite smiley";

The spriteoffset command causes the displayed location of the sprite to be offset by the values

indicated from the actual coded x, y location. If a sprite is given a spritexy command that calls for
it to be located at 100, 100, but the spriteoffset command is in force, giving offsets of 20x and

50y, the sprite appears at 120, 150. This alters the display coordinates of the sprite, but not its
actual coordinates, which remain 100,100 in this example.

 print #w.g, "spriteoffset smiley 20 50";

Z ORDER
Z order means the order in which the sprites are drawn. A sprite on the bottom of the z order is
drawn first, so sprites drawn after it will appear to be on top of it. A sprite at the top of the z order
is drawn last, so other sprites appear underneath it. To bring a sprite to the top of the z order:

 print #w.g "spritetofront smiley";

To send a sprite to the bottom of the z order:

 print #w.g "spritetoback smiley";

IMPORTANT!
To avoid flickering, sprite animation is done invisibly, in memory. A frame of animation is built
entirely off-screen. A frame of animation is displayed on the screen only when the command
DRAW SPRITES is called. For each frame of animation, perform all functions to set the
background image, and to set or change a sprite's properties, then call the DRAW SPRITES

command. Now, we're ready to start drawing the animated sprites! See the section on Drawing
and Collision Detection!

165

 Drawing and Collision Detection

UPDATING THE DISPLAY

The DRAW SPRITES command updates the display, causing all VISIBLE sprites to be drawn at

their current LOCATIONS, moving them if the SPRITEMOVEXY command has been issued.
They will display in their current SCALE and ORIENTATION. This command must be given each

time it is necessary to draw another frame of animation. Sprite attributes may be changed in
between the DRAW SPRITES commands, including their location, orientation, and scale. If the
background image is to be moved, the BACKGROUNDXY command must be issued before the
DRAW SPRITES command.

 print #w.g, "drawsprites";

DRAW ING W ITH GRAPHICS COMMANDS
After the display has been updated with the DRAW SPRITES command, graphics may be drawn

with regular Liberty BASIC graphics commands, like LINE, CIRCLE, BOXFILLED, etc. These
commands must be reissued after each DRAW SPRITES command. Liberty BASIC graphics
commands should be used sparingly, because this may result in flickering images.

To cause Liberty BASIC graphic entities to become a permanent part of the background the

program must use the GETBMP command, and then the BACKGROUND command to reset the
background. See the section on backgrounds for more information.

COLLISION DETECTION
Most games require some form of collision detection, to ascertain when two sprites have touched.
 Liberty BASIC does this automatically! The SPRITECOLLIDES command is used with INPUT to
get a string with names of sprites that overlap the current frame of the sprite named. The INPUT

statement can be avoided if the list receiver variable is placed inside the quotation marks for the
SPRITECOLLIDES command. The sprite names are returned in a single string with spaces
between them.

 print #w.g, "spritecollides smiley";
 input #w.g, list$

OR

 print #w.g, "spritecollides smiley list$";

In the following example, the first line reports that "smiley" collided with "smiler", "smiled", and

"smiles" during that frame of animation. The second line reports that "smiley" collided with
"smiler" and "smiles" during that frame of animation. The third line reports that "smiley" collided

only with the sprite named "smiler" during that frame of animation. The fourth line reports that
"smiley" did not collide with any other sprites during that frame of animation.

 list$ = "smiler smiled smiles"
 list$ = "smiler smiles"
 list$ = "smiler"
 list$ = ""

Here is a picture of a sprite collision. The frog sprite has touched one of the bug sprites.
Knowing this, the program would probably change the bug sprite's visibility property to OFF and

move it away from the active playing field, or simply reset the location of the bug so that it

166

appeared to be a new bug. If this were a game, a point would probably be added to the score
here also.

Collision detection provided by Liberty BASIC uses the entire sprite image, all the way to the

corners, to determine collisions,unless a SPRITEROUND command is issued.

ROUNDED SPRITES AND COLLISIONS
Sprite collisions are triggered when two sprites touch one another. If a sprite image fills the
rectangle that contains it, the collision is triggered properly. Many sprite images do not fill the
corners of the rectangles containing them, but are actually more rounded shapes. If a

SPRITEROUND command is issued to a sprite and it collides with another sprite that has
received the SPRITEROUND command, collisions are detected in an area that rounds off the
corners, assuming that the actual sprite images are generally elliptical or round in shape. A

SPRITEROUND command is issued like this:

 print #w.g, "spriteround smiley"

INVISIBLE SPRITES AND COLLISIONS
Invisible sprites still trigger collisions. If a sprite is to be out of action for a time, in addition to

being made invisible, it should also be located to a spot outside the active viewing area. Invisible
sprites may be used to set up a screen area for collision detection. For instance, if it is

necessary to know when a sprite is touching a doorway, an invisible sprite can be placed at that
spot on the screen so that it can be checked for collisions.

REMOVING SPRITES

It is sometimes necessary to remove sprites from the collection of sprites so that they no longer
appear and so that they no longer trigger collisions. This might be done after a sprite collides with

another sprite, so that it is no longer in play in the game. Remove sprites with the
REMOVESPRITE command.

 print #w.g, "removeSprite smiley"

DETECT SPRITE LOCATION

The SPRITEXY? command retrieves the current location of a sprite. If a CENTERSPRITE
command has been issued, the x, y location returned indicate the center of the sprite, otherwise
they indicate the upper left corner. Just like the SPRITECOLLIDES command, it can have two

forms. It can be followed by an input statement, with two receiver variables for the x and y
coordinates of the sprite, or the receiver variables can be included inside the quotation marks of
the SPRITEXY? command:

 print #w.g, "spritexy? smiley"
 input #w.g, x, y

167

OR

 print #w.g, "spritexy? smiley x y"

IMPORTANT REMINDER!
To avoid flickering, sprite animation is done invisibly, in memory. A frame of animation is built
entirely off-screen. A frame of animation is displayed on the screen only when the command
DRAW SPRITES is called. For each frame of animation, perform all functions to set the

background image, and to set or change a sprite's properties, then call the DRAW SPRITES
command.

Sprite graphics are temporary. To learn about making sprite graphics remain in a graphicbox or
graphics window, even if the window is covered or minized, read Flushing Sprite Graphics.

168

 Flushing Sprite Graphics

FLUSHING GRAPHICS

In Liberty BASIC graphicboxes and graphics windows, the drawings are lost if the window is
covered by another window, or if the window is minimized. To make drawings "stick", use the
FLUSH command. The FLUSH command is used in conjunction with DELSEGMENT, DISCARD,
REDRAW , and CLS.

In the following example, the graphicbox is filled with yellow. The second line commands Liberty
BASIC to remember this drawing operation, and to repaint the graphicbox when needed, so that it

is always filled with yellow. W ithout the FLUSH command, the graphicbox reverts to its default
color in any areas that were covered by another window, and the entire graphicbox reverts to its
default color when the window was minimized. The FLUSH command insures that it will always
be yellow.

print #w.g, "down; fill yellow";
print #w.g, "flush";

FLUSHING SPRITE GRAPHICS
A simple FLUSH command will not work to flush graphics drawn with sprite commands. It is
possible to flush a sprite-filled graphicsbox or graphic window. It first requires a command to:

GETBMP BMPNAME X Y WIDTH HEIGHT

The GETBMP comand must be followed by a DRAW BMP command that draws the named

bitmap on the window or graphicbox in the same location. It can then be FLUSHed. It looks like
this in a program:

print #w.g, "getbmp KeepIt 0 0 300 200";
print #w.g, "drawbmp KeepIt 0 0; flush";

DON'T FLUSH EVERY FRAME OF A SPRITE ANIMATION! The "flush" command consumes
memory.

The graphicbox can be updated easily when needed with the DRAW SPRITES command. If the
sprites are part of an animated display, each frame of animation can be flushed, but it is

important to remove old segments from memory. It is rarely necessary to flush animated
graphics, because the display can be refreshed easily, and the operations to flush and delete

segments will slow down the animation.

169

 Pauses and Tim ing

CONTROLLING THE ANIMATION

If the frames of animation are drawn with no pause, the action may be too fast to see or control
on faster computers. A program can control the speed by drawing frames of animation at a set

time interval with the TIMER, or with a simple PAUSE SUBROUTINE.

A REAL TIMER!
The new Liberty BASIC TIMER is perfect for use with animation. It will cause the branch label
specified to be executed at the time interval specified in milliseconds. There are 1,000
milliseconds in one second. A half second interval would require the milliseconds parameter to
be 500. A one-quarter second interval would require a milliseconds parameter of 250 and a

one-tenth of a second interval would use a milliseconds parameter of 100. The following example
causes a frame to be drawn every one-tenth of a second:

TIMER 100, [DrawFrame]

To turn off the TIMER, use this:

TIMER 0

The TIMER can be activated or reactivated in the code as desired by repeating the TIMER
command. The time interval can be changed, as can the branch label to execute when the timer

fires. Here is an example that could occur in the same program as the TIMER example above:

TIMER 250, [DrawExplosion]

AN IMPORTANT NOTE ABOUT THE TIMER!
The cpu clock "ticks" 18 times per second. This means that it "ticks" roughly every 56
milliseconds. If the time interval is set to 56 milliseconds or less, the resulting animation will run
at a top speed of 18 frames per second. If a program stops for any reason, the timer ticks
accumulate and the accumulated ticks fire off rapidly when the program action resumes. This

might happen when the program gives the user a notice message, for instance. If action is to
stop for any reason, it is necessary to issue a TIMER 0 command to stop the timer. W hen the
action is to resume, then the timer is restarted with a TIMER ms, [BranchLabel] command.

A SIMPLE PAUSE SUBROUTINE

On a fast computer, the frames of animation may run too quickly to be useful. It is easy to code
a simple pause between frames of animation. The following little subroutine called "Pause"

requires a parameter for the number of milliseconds to pause between frames. There are 1,000
milliseconds in one second. A half second pause requires the mil parameter to be 500. A
one-quarter second pause requires a mil parameter of 250 and a one-tenth of a second pause

uses a mil parameter of 100.

sub Pause mil
 t=time$("milliseconds")
 while time$("milliseconds")<t+mil
 wend
 end sub

This code will activate a one-tenth of a second pause between frames, when used after each
DRAW SPRITES command:

170

 call Pause 100

A processing loop for a sprite animation with pauses between frames might look like this:

[loop]
 scan
 call Pause 100
 print #w.g, "setfocus; when characterInput [quit]"
 print #w.g, "when leftButtonDown [left]"
 print #w.g, "when rightButtonDown [right]"

 gosub [drawFrame]
 goto [loop]

TIMER VS PAUSE
The TIMER causes a branch label to be executed at a set interval, which is measured in
milliseconds. Setting this interval to 250 (for example) will cause the branch label to be executed

each one-quarter second. A PAUSE is just that. It causes the action to pause for the set
interval. Pausing for one-quarter second BETW EEN frames of animation will not be the same as
drawing a frame of animation every one-quarter second, because in addition to the one-quarter

second pause, time is taken while the code at the branch label is executed. Using the TIMER
results in much smoother and more accurate timing for animation.

See how to Add a Mask to sprites.

171

 Add a Mask

The code provided below opens a sprite image and automatically adds a proper mask. If the

resulting image is correct, it can be saved to disk.

A sprite starts with a drawn image that has a black background, like this:

This image can be opened in the mask maker and a proper mask is added. It will look like this
while processing:

If the mask/sprite image above is saved, it will look like this:

Here is the code. Copy and paste into the Liberty BASIC Editor to run the "Add Masks to
Sprites" program. See a Step by Step sprite coding explanation.

'small utility to add masks to the
'top of sprite images for use in LB3

if val(Version$)<3 then
 notice "This program is for LB3 only!"
 end
end if

nomainwin
bmpheight=0 'bitmap height
bmpwidth=0 'bitmap width
bitmap$="" 'bitmap file name

172

savefile$="" 'save file name
hBitmap=0 'handle for loaded bitmap
hWindow=0 'window handle

menu #1, "&File", "&Open Sprite",[openSprite],_
 "&Save As...",[saveAs],|,"E&xit",[quit]

open "Add Masks to Sprites" for graphics_fs_nsb as #1
 print #1, "trapclose [quit]"
 print #1, "down;place 20 40"
 print #1, "|Open the desired sprite image."
 print #1, "|A mask will be added to the sprite "
 print #1, "|as you watch."
 print #1, "|This might take time for large images."
 print #1, "|Images larger than the window "
 print #1, "|will be cut off."
 print #1, "|If it is satisfactory, choose "
 print #1, "|'Save As...' from the File menu."
 hWindow=hwnd(#1)

[loop]
 input aVar$

[quit]
 close #1:end

[openSprite]
 if hBitmap<>0 then
 unloadbmp ("bm")
 print #1, "cls"
 end if

 filedialog "Open Sprite","*.bmp",bitmap$
 if bitmap$="" then
 notice "No bitmap chosen!"
 goto [loop]
 end if

 print #1, "cls"
 loadbmp "bm" , bitmap$
 hBitmap=hbmp("bm")

 print #1, "down;drawbmp bm 0 0"

 bmpheight=HeightBitmap(bitmap$)
 bmpwidth=WidthBitmap(bitmap$)

 print #1, "drawbmp bm 0 ";bmpheight

 call MakeMask bmpwidth, bmpheight, hWindow
 goto [loop]

173

[saveAs]
 print #1, "getbmp SpriteMask 0 0 ";bmpwidth;" ";2*bmpheight

 filedialog "Save As... ","*.bmp",savefile$
 if savefile$="" then
 notice "No filename specified!"
 goto [loop]
 end if

 bmpsave "SpriteMask",savefile$
 notice "Sprite and mask saved as ";savefile$
 goto [loop]

'************FUNCTIONS******************
function WidthBitmap(name$)
 open name$ for input as #pic
 pic$=input$(#pic,29)
 close #pic
 WidthBitmap = asc(mid$(pic$,19,1)) + _
 (asc(mid$(pic$,20,1)) * 256)
 end function

function HeightBitmap(name$)

 open name$ for input as #pic
 pic$=input$(#pic,29)
 close #pic
 HeightBitmap = asc(mid$(pic$,23,1)) + _
 (asc(mid$(pic$,24,1)) * 256)
 end function

sub MakeMask wide, high, hWnd

 cursor hourglass
 white=(255*256*256)+(255*256)+255
 black=0

 open "user32" for dll as #user
 Open "gdi32"for DLL as #gdi

 CallDll #user, "GetDC",_
 hWnd as long,_
 hDC as long

 for i = 0 to wide-1
 for j = 0 to high-1

 CallDll #gdi, "GetPixel",_
 hDC as long,_
 i as long,_
 j as long,_
 pColor as long

174

 if pColor=black then
 newColor=white
 else
 newColor=black
 end if

 CallDll #gdi, "SetPixel",_
 hDC as long,_
 i as long, _
 j as long, _
 newColor as long, _
 r as long
 next j
 next i

 CallDll #user, "ReleaseDC",_
 hWnd as long,_
 hDC as long,_
 r as long

 close #user
 close #gdi
 cursor normal
 end sub

175

 Step by Step

Here is a step by step review of sprite animation. See a Simple Demo Program.

1. Open a window containing a graphicbox, or open a graphics window.

2. Load bitmaps for all sprites with the LOADBMP command. (Sprite bitmaps can also be
created at runtime. For an example, see the Simple Demo Program.)

3. Optional - Load bitmap for background(s) with the LOADBMP command.

 OR

4. Optional - Load bitmap for background(s) by drawing desired background onscreen and saving
it to memory with the GETBMP command.

5. Set the background for animation with the BACKGROUND command.

6. Add all sprites with an ADDSPRITE command for each.

7. For all sprites that are to cycle through frames of animation, issue a CYCLESPRITE
command.

8. For all sprites that are to have a size different from the actual bitmap image size, issue a
SPRITESCALE command.

9. For all sprites that are to appear in a different orientation, issue SPRITEORIENT commands.

10. For all sprites that are to move automatically with each frame of animation, issue a
SPRITEMOVEXY command.

DURING ANIMATION:

11. Scroll background, if desired, with the BACKGROUNDXY command.

12. Move sprites individually, if desired with the SPRITEXY command.

13. Change scale, cycling, orientation and visibilty of sprites as required by the specifics of the

program with SPRITESCALE, SPRITEORIENT SPRITEVISIBLE, SPRITECYCLE.

14. Obtain current location of desired sprites with the SPRITEXY? command.

15. Retrieve lists of sprites that have collided with designated sprites with the SPRITECOLLIDES

command.

16. Place frames of animation on the screen with the DRAW SPRITES command.

176

 Simple Dem o Program

This simple demo draws a background and sprites on the screen, using GETBMP to set up the

bitmaps for sprite animation. The program scrolls the background, moves the sprites
automatically, checks for collisions and acts when the sprites collide.

nomainwin
WindowWidth=410
WindowHeight=450
UpperLeftX=50
UpperLeftY=5

graphicbox #w.g, 0,0,400,300
graphicbox #w.s, 0,301,100,100
open "Animation" for window_nf as #w

print #w, "trapclose [quit]"

'draw background:
print #w.g, "down;fill blue"
print #w.g, "color red;backcolor red"
print #w.g, "boxfilled 200 150"
print #w.g, "getbmp landscape 0 0 399 299";

'set background:
print #w.g, "background landscape";

'draw sprite and mask:
print #w.s, "down; fill white;backcolor black"
print #w.s, "color black;place 0 40"
print #w.s, "boxfilled 80 80"

'masks:
print #w.s, "place 20 20;circlefilled 18"
print #w.s, "place 60 20;circlefilled 18"

'sprite 1:
print #w.s, "color yellow;backcolor yellow"
print #w.s, "place 20 60;circlefilled 18"
print #w.s, "color black;backcolor black;size 4"
print #w.s, "set 12 55;set 28 55;size 1"
print #w.s, "place 20 67"
print #w.s, "ellipsefilled 20 5"
print #w.s, "Getbmp ball1 0 0 40 80"

'add sprite, set auto-move
print #w.g, "addsprite guy ball1"
print #w.g, "spritemovexy guy 3 2"

'sprite 2:
print #w.s, "color pink;backcolor pink"
print #w.s, "place 60 60;circlefilled 18"
print #w.s, "color blue;size 4"

177

print #w.s, "set 54 55;set 66 55"
print #w.s, "color darkpink;backcolor darkpink;size 1"
print #w.s, "place 60 67"
print #w.s, "ellipsefilled 20 7"
print #w.s, "Getbmp ball2 40 0 40 80"

'add sprite2, set auto-move
print #w.g, "addsprite girl ball2"
print #w.g, "spritexy girl 380 280"
print #w.g, "spritemovexy girl -2 -2"

'move sprites, scroll background,
'check for collisions:

ms = timerScroll(100)

wait

[scroll]
 if ms = 0 then wait 'this causes any extra ticks to be ignored
 x=x-5:y=y+5
 print #w.g, "backgroundxy ";x;" ";y
 print #w.g, "drawsprites"
 print #w.g, "spritecollides guy list$"

 if list$="girl" then
 print #w.g, "color black;font arial 14"
 print #w.g, "place 140 280;|Boy meets girl!"
 ms = timerScroll(0)
 end if
 wait

function timerScroll(ms)
 timer ms, [scroll]
 timerScroll = ms
end function

[quit]
 close #w:end

178

 Lander.bas

Here is a more advanced game that uses sprite graphics. It is a clone of the arcade game Lunar

Lander.

 'Lander.bas
 'written by Carl Gundel
 'carlg@world.std.com
 'Needs at least Liberty BASIC v2.0
 'This file is contributed to the public domain
 'At this stage it is merely a prototype.
 'Use the keys 0 through 9 to control thrust
 'Use the [and] keys to rotate the ship!

 'You must make a VERY gentle and level landing
 'on one of the flat areas!

 'open game window

 nomainwin
 UpperLeftX = 50
 UpperLeftY = 50
 WindowWidth = 500
 WindowHeight = 340
 dim terrain(500)
 open "Lunar Lander" for graphics_nsb as #lander
 print #lander, "when characterInput [userInput]"
 print #lander, "trapclose [quit]"

 WindowWidth = 640
 call makeSprites
 call setBackground

179

 print #lander, "spritexy lem 50 50"
 'print #lander, "spritescale lem 200"

[startGame] 'initialize
 print #lander, "setfocus"
 fuel = 10000
 altitude = 0
 attitude = 0
 longitude = 10
 thrust = 0
 call setHorizSpeed 8
 call setVertSpeed 0
 call gravityAccelerate
 timer 100, [timerTicked]
 startTime = time$("milliseconds")
 wait

[timerTicked] 'This is the main simulation routine!
 frames = frames + 1
 if altitude <= terrain(longitude+15) - 24 then
 call setAttitude attitude
 call applyThrust thrust, attitude
 call gravityAccelerate
 altitude = altitude + getVertSpeed()
 longitude = max(0, min(485, longitude + getHorizSpeed()))
 print #lander, "spritexy lem "; longitude; " "; altitude
 print #lander, "drawsprites"
 else
 timer 0
 if landerCrashed(longitude, attitude) then
 notice "You crashed!"
 else
 notice "Successful landing!"
 end if
 confirm "Try again?"; answer
 if answer then [startGame] else [quit]
 end if

 wait

[quit]
 close #lander

 end

[userInput]

 char$ = Inkey$
 if char$ = "[" then
 attitude = attitude - 22.5
 if attitude < -0.01 then attitude = 337.5
 wait
 end if

180

 if char$ = "]" then
 attitude = attitude + 22.5
 if attitude > 337.51 then attitude = 0
 wait
 end if
 thrustInput = instr("0123456789", char$)
 if thrustInput then thrust = (thrustInput - 1) / 8 * 0.55 + 0.333
 wait

function landerCrashed(xPosition, attitude)

 landerCrashed = int(attitude+0.1) <> 90
 landerCrashed = landerCrashed or getVertSpeed() > 2
 landerCrashed = landerCrashed or getHorizSpeed() > 2
 landerCrashed = landerCrashed or terrain(xPosition) <>
terrain(xPosition+30)
 landerCrashed = landerCrashed or terrain(xPosition) <>
terrain(xPosition+15)

end function

sub makeSprites

 open "lem" for graphics as #makeSprites
 print #makeSprites, "down"
 print #makeSprites, "place 0 31 ; backColor black ; boxfilled 640
73"
 for x = 0 to 15
 y = 1
 call drawLEM x, y, 270 + x * 22.5, 2, "black"
 y = 2
 call drawLEM x, y, 270 + x * 22.5, 2, "darkgray"
 call drawLEM x, y, 270 + x * 22.5, 1, "lightgray"
 call getSprite x
 next x
 close #makeSprites
 print #lander, "addsprite lem lem0 lem1 lem2 lem3 lem4 lem5 lem6
lem7 lem8 lem9 lem10 lem11 lem12 lem13 lem14 lem15"

end sub

sub drawLEM xPosition, yPosition, uncorrectedAngle, penSize, color$
 angle = uncorrectedAngle
 print #makeSprites, "north ; color "; color$; " ; up ; turn ";
angle
 print #makeSprites, "place "; (xPosition)*30+15; " ";
(yPosition-1)*30+15
 print #makeSprites, "size "; penSize
 print #makeSprites, "up ; go 4 ; down ; circle 8"
 print #makeSprites, "turn 75 ; go 4 ; turn 180 ; go 4"
 print #makeSprites, "turn 30 ; go 4 ; turn 180 ; go 4 ; turn 255"
 print #makeSprites, "up ; turn 160 ; go 8"
 print #makeSprites, "down ; go 4 ; turn 110"
 print #makeSprites, "go 8 ; turn 110 ; go 4"

181

 print #makeSprites, "place "; (xPosition)*30+15; " ";
(yPosition-1)*30+15
 print #makeSprites, "north ; up ; turn "; angle
 print #makeSprites, "go 4 ; turn 125 ; go 8 ; down ; turn 45 ; go
8"
 print #makeSprites, "place "; (xPosition)*30+15; " ";
(yPosition-1)*30+15
 print #makeSprites, "north ; up ; turn "; angle
 print #makeSprites, "go 4 ; turn 235 ; go 8 ; down ; turn -45 ; go
8"

end sub

sub setBackground
 'loadbmp "stars", "bmp\stars.bmp"
 print #lander, "fill black"
 call drawTerrain
 print #lander, "getbmp stars 0 0 488 310"
 print #lander, "background stars"
end sub

sub getSprite spritNum
 spriteX = spritNum * 30
 print #makeSprites, "getbmp lem"; spritNum; " "; spriteX; " 1 30
60"
end sub

sub setHorizSpeed xSpeed
 vars(0) = xSpeed
end sub

sub setVertSpeed ySpeed
 vars(1) = ySpeed
end sub

function getHorizSpeed()
 getHorizSpeed = vars(0)
end function

function getVertSpeed()
 getVertSpeed = vars(1)
end function

sub setAttitude degrees
 print #lander, "spriteimage lem lem"; int(degrees / 22.5)
end sub

sub gravityAccelerate
 call setVertSpeed getVertSpeed() + 0.6'(6/18)
end sub

sub applyThrust qtyFuel, angle
 angleXform = angle / 180 * 3.141592
 call setHorizSpeed getHorizSpeed() - qtyFuel * cos(angleXform)

182

 call setVertSpeed getVertSpeed() - qtyFuel * sin(angleXform)
end sub

sub drawTerrain

 rate1 = rnd(1) / (rnd(1) * 17 + 10)
 rate2 = rnd(1) / (rnd(1) * 10 + 10)
 print #lander, "down ; size 1 ; color white"

 for x = 0 to 499 step 1
 if rnd(1) < 0.015 then gosub [makeLandingZone]
 holder1 = holder1+rate1
 holder2 = holder2+rate2
 holder3 = holder3+sin(holder2)/20
 y =
200+int(sin(holder1)*50)+int(cos(holder2)*50)+int(cos(holder3)*15)
 terrain(x) = y
 print #lander, "goto "; x; " "; y
 next x
 goto [endSub]

[makeLandingZone]

 width = int((rnd(1)*4+2)/3)
 for lz = x to min(499, x + 34 * width)
 terrain(lz) = y
 print #lander, "goto "; lz; " "; y
 next lz
 x = lz
 return

[endSub]

end sub

183

 Calling APIs and DLLs
Liberty BASIC can make 32-bit W indows API calls and also bind to third party
Dynamic-Link-Libraries. Liberty BASIC programmers now have access to hundreds of functions

provided in W indows and from third-party sources that can greatly increase productivity.

The following topics address many of the methods needed to make API calls.

Informational resources about APIs/DLLs
W hat are APIs/DLLs?
How to make API/DLL calls
Example Programs
Using hexadecimal values

Using Types with STRUCT and CALLDLL
Passing Strings into API Calls
Caveats

184

 Informational resources about APIs/DLLs

This help fileisa basic introduction forusing W indows APIs and DLLs in Liberty Basic. For a

detailed understanding of reasons and procedures for using APIs and DLLs, it is necessary to
study a separate volume that explains W indows programming in detail.

Microsoft includes detailed references with its C compilers, but it is usually good to supplement

these with other books. Here are some suggestions:

For a general understanding of W indows 95+ (32 bit W indows) programming:

 Programming W indows, The Definitive Guide to the W in32 API
 by Charles Petzold
 Microsoft Press

 ISBN 157231995X

For a catalog of W indows API calls and their function:

 W indows 2000 API SuperBible

 by Richard J. Simon
 Sams

 ISBN 0672319330

Microsoft Developer's Network Library:

http://msdn.microsoft.com/library/

185

 W hat are APIs/DLLs?

API stands for Application Programming Interface. W indows APIs are the function calls that are

the fundamental building blocks of W indows programming. Although the term "API" actually
refers to the complete set of function calls, it is also often applied to just a single defined

function call of the entire API. So it is often said, "I made an API call," or, "I want my program
to call an API that does such and such..."

Each and every time W indows is loaded, or whenever W indows programs are run, many API
calls are made. There are API calls that manage memory, create and destroy windows, read
keyboard and mouse actions, draw graphics, and much more. Liberty BASIC makes many of
these API calls behind the scenes in programs.

However, in the context of the BASIC language, it would be a tall order (and largely

unnecessary) to create BASIC-like statements and functions to implement every W indows API
call. So for those who already have a working knowledge and for those willing to study and learn
about such things, Liberty BASIC has implemented a way to call most W indows APIs.

A complete reference of the W indows API set is not included with this copy of Liberty BASIC.

To supply this documentation would require the inclusion of a very thick book. Some example
programs are included with the Liberty BASIC distribution.

W hat are DLLs?

DLL stands for Dynamic-Link-Library. A DLL is a file containing executable code, like an EXE or
COM file. Instead of containing a complete program, a DLL contains functions that can be used
by other programs. These functions might contain code to provide services not built into
W indows, for example the ability to perform some kind of data compression. A W indows

program uses these functions after it begins executing. It does this by opening the DLL file and
calling functions from it. The programmer must already know what these functions are when the
program's code is written.

Each DLL has its own Application Programming Interface (again API) that specifies how to make

calls to its functions, and in fact, W indows APIs are functions within DLLs that are supplied with
W indows. W hen calling an API from within Liberty BASIC it is necessary to open the
appropriate DLL before making the call.

See also: CALLDLL, STRUCT, Using Types with CALLDLL

186

 How to make API/DLL calls

Since making an API call is really the same as making a DLL call, the following applies to both.

In general, calling an API/DLL function works:

1) Open the desired DLL
2) Call the function or functions

3) Close the DLL

The desired DLL(s) can be opened when the program starts and closed when program execution
is completed, or the DLL(s) can be opened just before calling the functions and then closed
immediately afterward.

The following statements/functions are available for making API/DLL calls:

OPEN
OPEN "filename.dll" for dll as #handle

 - This form of OPEN opens a desired DLL so that a program can call functions in it.

Liberty BASIC 3 has Enhanced DLL handle resolution so that if a program hasn't opened certain
default W indows DLLs, a reference to a like-named handle will still resolve to the desired DLL.
This will save on code to open and close DLLs. The old way still works. If a program OPENs a

DLL, then it must be CLOSEd before the program ends. If the default handles below are used,
then a CLOSE command should not be issued.

Here are the default handles.

 #user32
 #kernel32

 #gdi32
 #winmm
 #shell32
 #comdlg32
 #comctl32

CALLDLL
CALLDLL #handle, "function", parm1 as type1[, parm2 as type2, ...],
result as returnType

 - This statement calls a named function in an OPENed DLL The list of parameters gives
information to the function that tells it how to perform its tasks.

See CallDLL.

HW ND
HW ND(#handle)

 - This function returns a window handle for the Liberty BASIC #handle

STRUCT
STRUCT name, field1 as type1 [, field2 as type2, ...]

187

The STRUCT statement builds a specified structure that is required when making some kinds of
API/DLL calls. There is an example below that shows how to build a rectangle structure often
used in making W indows API calls.

See also: Using types with STRUCT and CALLDLL

Constants

Liberty BASIC has a library of defined W indows constants (_SW _HIDE being one). This is
equivalent to the definitions made in the windows.h file that comes with most C compilers. The
way to inline a W indows constant is to take the name of the constant and place an underscore in
front of it. "_SW _HIDE" is the same as the W indows constant "SW _HIDE."

If Liberty BASIC does not know the value of a W indows Constant, it will generate an undefined

constant message when compiling program. Inthiscase, the numeric value ofthatconstant

must be determined from other sources.

SAMPLE PROGRAM
Here is a short code sample (but not a complete program) using all of the above
statements/functions:

NOMAINWIN

'create the structure winRect
 struct winRect, _
 orgX as long, _
 orgY as long, _
 cornerX as long, _
 cornerY as long

'define sizes
 openingWidth = 600
 expandedHeight = 400

 'open USER32.DLL
 open "user32.dll" for dll as #user

 button #main.showMore, "Hide Me", [hide], UL, 10, 10
 open "An Example" for window as #main
 #main "trapclose [quit]"

'get the window handle for #main (a standard Liberty BASIC window)
 hMain = hwnd(#main)

'call the GetWindowRect API to load the window position/size into
winRect
 calldll #user, "GetWindowRect", _
 hMain as long, _
 winRect as struct, _
 result as boolean

'extract the position information out of our struct

188

 xOrg = winRect.orgX.struct
 yOrg = winRect.orgY.struct

'call the MoveWindow API to resize the window to a predefined size
 calldll #user, "MoveWindow", _
 hMain as long, _
 xOrg as long, _
 yOrg as long, _
 openingWidth as long, _
 expandedHeight as long, _
 1 as boolean, _
 result as boolean

 WAIT

[hide]
'get the window handle to a button in our Liberty BASIC window
 hndl = hwnd(#main.showMore)

'call the ShowWindow API, passing _SW_HIDE to hide the button
 calldll #user, "ShowWindow", _
 hndl as long, _
 _SW_HIDE as long, _
 result as boolean
 WAIT

[quit]
 close #main
 'close USER.DLL
 close #user
 END

In the above example, the program calls three APIs from USER32.DLL, which is a standard
W indows dynamic link library.

Here's what the code does:

1) creates the structure winRect
2) opens USER32.DLL
3) gets the window handle for #main (a standard Liberty BASIC window)

4) calls the GetW indowRect API to load the window position/size into winRect
5) extracts the position information from the struct

6) calls the MoveW indow API to resize the window to a predefined size
7) gets the window handle to a button in the Liberty BASIC window
8) calls the ShowW indow API, passing _SW _HIDE to hide the button

9) closes USER32.DLL

See also: CALLDLL, STRUCT, Using Types with CALLDLL, W hat are APIs/DLLs?

189

 Example Program s

For some examples showing how to call APIs, examine the programs named CALL32?.BAS

that are included with Liberty BASIC.

 'CALL32-4.BAS - Make some API calls to play wave files and
 'dynamically resize a window

 open "kernel32" for dll as #kernel
 open "user32" for dll as #user
 open "winmm" for dll as #mm
 open "Me" for window as #aWindow

 print str$(playMode)

 wavefile$ = "chimes.wav"
 playMode = 4
 calldll #mm, "sndPlaySoundA", _
 wavefile$ as ptr,_
 playMode as long,_
 result as long

 hndl = hwnd(#aWindow)

 for x = 50 to 350 step 5

 calldll #user, "MoveWindow", _
 hndl as ulong, _
 50 as long, _
 50 as long, _
 x as long, _
 x as long, _
 1 as long, _
 result as boolean

 next x

 input r$

 progname$ = "notepad.exe"
 code = _SW_SHOWNA

 notice str$(code)

 calldll #kernel, "WinExec", _
 progname$ as struct, _
 code as ushort, _
 result as ushort

 print result
 close #kernel
 input r$

190

 'CALL32-5.BAS - make various API calls to play
 'wave files, track
 'the mouse position, and move a window around

 struct point, x as long, y as long

 open "kernel32" for dll as #kernel
 open "user32" for dll as #user
 open "Me" for window as #aWindow

 hndl = hwnd(#aWindow)

 for i = 1 to 500

 calldll #user, "GetCursorPos", _
 point as struct, _
 result as void

 x = point.x.struct
 y = point.y.struct

 calldll #user, "MoveWindow", _
 hndl as ulong, _
 x as long, _
 y as long, _
 100 as long, _
 100 as long, _
 1 as long, _
 result as boolean

 next x

 progname$ = "notepad.exe call32-5.bas"
 code = _SW_NORMAL

 notice str$(code)

 calldll #kernel, "WinExec", _
 progname$ as struct, _
 code as long, _
 result as long

 print result

 close #kernel

 input r$

191

192

 Using hexadecimal values

Liberty BASIC allows values to be expressed as hexadecimal numbers. This is especially

useful when calling API functions or using third party DLLs where the values specified in the
documentation are in hexadecimal (base 16). To convert a hexadecimal value, use the

HEXDEC() function. Here is an example:

 print hexdec("FF")

To convert a decimal value into a hexadecimal string, use the DECHEX$() function:

 print dechex$(255)

Back to Making API and DLL Calls

193

 Using types with STRUCT and CALLDLL

The STRUCT statement requires that each field be typed to specify what type of data it will

contain. The CALLDLL statement also requires that each parameter passed be typed. The
types are common to both STRUCT and CALLDLL. Simple data TYPES in W indows

programming are often renamed versions of the types below. A program should specify the
TYPE according to the chart below.

TYPES

 double (a double floating point)

 ulong (4 bytes, unsigned long integer)
 long (4 bytes, signed long integer)
 short (2 bytes, signed short integer)
 ushort, word (2 bytes, unsigned short integer)
 ptr (4 bytes, long pointer, for passing strings)

 struct (4 bytes, long pointer, for passing structs)
 void, none (a return type only, used when a function doesn't return a value)

 boolean (true/false expression)

See also: CALLDLL, STRUCT

194

 Passing strings into API/DLL calls

Liberty BASIC provides two ways to pass strings as parameters into API/DLL calls. By default

when passing a string as a parameter, Liberty BASIC copies the string and adds an ASCII
zero to the end of the copy. This ASCII zero is called a "null terminator." Most W indows API

calls expect this kind of zero-terminated string. This technique provides a copy of the original
string to be passed to the API function. If the function then modifies that string directly (as in
the kernel API function GetProfileString and a few others), then the Liberty BASIC application
calling the function cannot access the modified string because only the copy is modified.

The way to fix this is for the code to include the ASCII zero onto the end of the string that will
be used as a parameter in the API call. Liberty BASIC checks for the ASCII zero, and if it

finds it, passes the memory address of original string and does not make a copy. This is only
necessary if an application passes a string, expecting to get it back modified by the API or
DLL function called.

Here is a code segment to get printer info using the GetProfileString API call:

 'getpstr.bas - Get information using the GetProfileString API call

 open "kernel32.dll" for dll as #kernel

 'Notice that no ASCII zero characters are added to these strings
 'because the program will not need to read any results out of the call
 'to GetProfileString.
 appName$ = "windows"
 keyName$ = "device"
 default$ = ""

 'add an ASCII zero so Liberty BASIC will not pass a copy of result$
 'into the API call, but the actual contents of result$
 result$ = space$(49)+chr$(0)
 size = 50 '49 spaces plus 1 ASCII zero character

 calldll #kernel, "GetProfileStringA",_
 appName$ as ptr,_
 keyName$ as ptr,_
 default$ as ptr,_
 result$ as ptr,_
 size as long,_
 result as long

 close #kernel

 'display the retrieved information up to but not including the
 'terminating ASCII zero
 print left$(result$, instr(result$, chr$(0)) - 1)

 WAIT

195

 Caveats

There are certain things to be aware of when making API calls and when calling external

functions from a DLL including:

- Care must be taken when calling APIs and DLLs because it is possible to cause W indows or
Liberty BASIC to become unstable or crash if API and/or DLL functions are called incorrectly,

out of order, or with incorrect parameter information.

- Shoptalk Systems does not provide technical support for the W indows API or for third party
DLLs that that may be purchased or otherwise obtained. W e are happy to help you with any
questions about Liberty BASIC commands and features that are related to calling APIs and
DLLs, but we reserve the right to refuse to answer questions about other products (including
W indows).

196

 Graphical User Interface

The term "graphical user interface" is often expressed as the acronym GUI. It refers to a window

and all of its controls. These are the graphical elements that interact with the user. The user
may click a button, or type into a textbox, for instance. The possible TYPES of windows

available in Liberty BASIC programs are listed in W indow Types. The commands that can be
sent to windows are listed in W indow and Dialog Commands. See also, Size and Placement of
W indows and Trapping the Close Event. The controls available for placement on windows are
listed in Controls - Menus, Buttons, etc. Information about handling user-generated events is
given in Controls and Events. Coloring of windows and controls is discussed in Colors and the

Graphical User Interface. An explanation of the methods for sending commands is discussed in
Understanding Syntax, as well as in Sending Commands. Changing the handle of a window
dynamically at runtime can be accomplished with the MAPHANDLE command.

Here is an image of a window that contains many controls:

Liberty BASIC leverages the familiar statements OPEN, CLOSE, PRINT (and optionally INPUT)

for working with graphical user interface elements. For example:

 open "My Text Window" for text as #txtWin
 print #txtWin, "The fox jumped over the dog."
 print #txtWin, "!trapclose [quit]";
 wait

197

[quit]
 close #txtWin
 end

The OPEN statement is used to open a window. The window can receive commands via the
PRINT statement, and it is closed with the CLOSE statement. The second print statement
above starts with an exclamation point. This is required when printing commands to text

controls in order to tell Liberty BASIC to execute a command instead of printing the text to the
control.

New to Liberty BASIC 3: it is no longer necessary to use the PRINT statement when issuing
commands to a window or control. The word "print" is optional, as is the comma after the

window or control handle. The following version of the code above functions identically, and
requires less typing:

 open "My Text Window" for text as #txtWin
 #txtWin "The fox jumped over the dog."
 #txtWin "!trapclose [quit]";
 wait
[quit]
 close #txtWin
 end

Printing "!trapclose [quit]" to the window tells it to use the event handler code at [quit] to decide
what action to take when the user tries to close the window. This is important. Each window

OPENed should also have a handler set up for trapping the close event.

W indows can have other user interface elements. Here is an example:

 statictext #dialog.static, "What is your name?", 10, 10, 100, 20
 textbox #dialog.tbox, 10, 30, 100, 20
 button #dialog.accept, "Accept", [gotIt], UL, 10, 55
 open "Name getter" for dialog as #dialog
 print #dialog.tbox, "Type your names in here."
 print #dialog, "trapclose [quit]"
 wait

[gotIt]
 print #dialog.tbox, "!contents? name$"
 notice "Hi "; name$
 wait

[quit]
 close #dialog
 end

The "trapclose [quit]" printed to the window in this example does not need an exclamation point
in front of it. This is because the window is a dialog box, and isn't a text widget that displays

text PRINTed to it. For this reason it accepts PRINTed commands that do not start with the
exclamation point.

The controls added to the window include a statictext (a non-editable label), a textbox (an

198

editable field), and a pushbutton. They are listed before the OPEN statement, which opens a
dialog window. The button statement's declaration includes the branch label [gotIt]. The code at
[gotIt] is the button's event handler. W hen the button is clicked it generates an event, and [gotIt]

is invoked. The code t [gotIt] prints a command to the textbox asking for its contents to be
assigned to the string variable name$. The program then pops up a notice window displaying a
greeting to the user.

The window in the example above receives a "trapclose" command. This sets a handler for the

window's close event to be the branch label designated by "trapclose". There, the window can be
closed, if appropriate, perhaps after querying the user about what to do, for example:

[quit]
 confirm "Quit. Are you sure?"; yesOrNo$
 if yesOrNo$ = "yes" then [quitForSure]
 wait

[quitForSure]
 close #dialog
 end

Graphical elements which display text will accept and display text that is PRINTed directly into
them:

 texteditor #main.txtEdit, 3, 3, 250, 300
 open "Edit some text, man!" for window as #main
 print #main, "trapclose [quit]"
 print #main.txtEdit, "C'mon and edit me." ;
 print #main.txtEdit, " I dare you!"
 print #main.txtEdit, "Or just start typing to replace me."
 print #main.txtEdit, "!selectall";
 wait
[quit]
 close #main
 end

The text PRINTed to the texteditor control is displayed on the control. Because it accepts text

to display, it is necessary to prefix any commands with a ! when they are PRINTed to a text
control, as the "!selectall" command shows.

199

 Sending Com m ands
See also: Understanding Syntax - how to use literals and variables in commands.

New to Liberty BASIC 3: it is no longer necessary to use the PRINT statement when issuing
commands to a window or control. The word "print" is optional, as is the comma after the

window or control handle. If these are omitted, Liberty BASIC adds them in the compiling
process.

The PRINT statement m ay only be om itted when sending commands to windows and
controls. It cannot be om itted when PRINTing to files or other devices.

Here are some examples of sending commands to a window.

The old way:

 open "My Text Window" for text as #txtWin
 print #txtWin, "The fox jumped over the dog."
 print #txtWin, "!trapclose [quit]";
 wait
[quit]
 close #txtWin
 end

 The following version of the code above functions identically, and requires less typing:

 open "My Text Window" for text as #txtWin
 #txtWin "The fox jumped over the dog."
 #txtWin "!trapclose [quit]";
 wait
[quit]
 close #txtWin
 end

200

 A Simple Exam ple

In Liberty BASIC windows are treated like files, and anything in this class is refered to as a

BASIC 'Device'. The OPEN statement is used to OPEN a window and the CLOSE statement is
used to close it. The window is controled with PRINT statements, just as a file is controlled by

PRINT statements. (The Print statement may be omitted when sending commands. See
Sending Commands.) The commands are sent as strings to the device. The following simple
example, opens a graphics window, centers a pen (like a Logo turtle), and draws a simple spiral.
 W hen the user attempts to CLOSE the window, he is asked to confirm the exit, and if he
agrees, the window is closed.

 button #graph, "Exit", [exit], LR, 35, 20'window will have a button
 open "Example" for graphics as #graph 'open graphics window
 print #graph, "up" 'make sure pen is up
 print #graph, "home" 'center the pen
 print #graph, "down" 'make sure pen is down
 for index = 1 to 30 'draw 30 spiral segments
 print #graph, "go "; index 'go foreward 'index' places

 print #graph, "turn 118" 'turn 118 degrees
 next index 'loop back 30 times
 print #graph, "flush" 'make the image 'stick'

 [inputLoop]
 input b$: goto [inputLoop] 'wait for button press

 [exit]
 confirm "Close Window?"; answer$ 'dialog to confirm exit
 if answer$ = "no" then [inputLoop] 'if answer$ = "no" loop back

 close #graph

 end

201

 Handle Variables

In versions of Liberty BASIC prior to version 4, the manipulation of files and windows was done

using statically declared handles for each file, window or GUI control. Now you can create more
reusable code because handle variables allow you to pass a handle using a string form. A handle
variable looks like the regular handle but it adds a "$" on the end, like a string variable.

Regular handle: #myHandle

Handle variable: #myHandleVariable$

The handle variable maps to the string variable of the same name, which contains the actual
handle. Here is a simple example that fills the variable called "var$" with a control handle, then
uses the associated handle variable called "#var$" to send a command to the checkbox.

 'create a window with a checkbox and set it
 checkbox #win.red, "Red", [redSet], [redReset], 10, 10, 400, 24
 open "The new handle variable way" for window as #win

 'fill a var with the handle of the checkbox:
 var$ = "#win.red"

 'now use the associated handle variable to set the checkbox
 #var$ "set"

 wait

The handle variables are most useful when accessed in FOR/NEXT loops, thus eliminating many
lines of code. They are also essential when using subroutines as event handlers, as in the
TRAPCLOSE statement. See the examples that follow.

 The old way

Liberty BASIC 3 doesn't have handle variables. Here is an LB3 example where you have to define
identical code once for each item.

 'create a window with a bunch of checkboxes and set them all
 checkbox #win.red, "Red", [redSet], [redReset], 10, 10, 400, 24
 checkbox #win.blue, "Blue", [blueSet], [blueReset], 10, 35, 400,
24
 checkbox #win.green, "Green", [greenSet], [greenReset], 10, 60,
400, 24
 checkbox #win.yellow, "Yellow", [yellowSet], [yellowReset], 10,
85, 400, 24
 checkbox #win.cyan, "Cyan", [cyanSet], [cyanReset], 10, 110, 400,
24
 open "The old handle way" for window as #win

 'set each checkbox
 #win.red "set"
 #win.blue "set"
 #win.green "set"
 #win.yellow "set"
 #win.cyan "set"
 wait

202

 The new way
In the code below, it is no longer necessary to issue individual "set" commands for each
checkbox as it was in the "old way" example above. The checkbox handles can be expressed as
variables and accessed in a FOR/NEXT loop. The variable "var$" is reset each time though the

loop. The first time through the loop, it has a value of "#win.red", the second time through the
loop it has a value of "#win.blue" and so on. To use it in place of a literal handle for a control, it is
written with the "#" character in front, so "#var$" is the handle variable associated with the string

variable "var$"

 'create a window with a bunch of checkboxes and set them all
 checkbox #win.red, "Red", [redSet], [redReset], 10, 10, 400, 24
 checkbox #win.blue, "Blue", [blueSet], [blueReset], 10, 35, 400,
24
 checkbox #win.green, "Green", [greenSet], [greenReset], 10, 60,
400, 24
 checkbox #win.yellow, "Yellow", [yellowSet], [yellowReset], 10,
85, 400, 24
 checkbox #win.cyan, "Cyan", [cyanSet], [cyanReset], 10, 110, 400,
24
 open "The new handle variable way" for window as #win

 'set each checkbox
 for x = 1 to 5
 var$ = "#win."+word$("red blue green yellow cyan", x)
 #var$ "set"
 next x
 wait

203

 Understanding Syntax

The documentation for Liberty BASIC commands includes command definitions in example

form. These are not to be taken literally. The language used attempts to give intuitive labels to
the command parameters. For example, finding an "x" within a command definition doesn't

meant that an actual "x" should appear there, but rather that the value desired for the x
placement should appear there. Here are some examples to explain the way it works.

Graphics Commands
In the following graphics command definition, the "x" and "y" are NOT variables, but placeholders
for hard-coded values.

print #handle, "box x y"

In an actual program, the values required would appear within the quotation marks for the
command:

print #win, "box 30 221"

To use the "x" and "y" as variables, they MUST be placed outside the quotation marks, with
blank spaces preserved within quotation marks:

x = 30
y = 221
print #main, "box ";x;" ";y

See also: Graphics Commands

Text Commands

print #handle, "!select column row";

Text commands must be preceded by the ! character. If not, they will simply be displayed in the
textbox, texteditor or text window as text. In the example above, "column" and "row" are
standing in for hard coded values.

As it might appear in a program:

print #win, "!select 3 4";

OR

a = 3 : b = 4
print #win, "!select ";a;" ";b

See also: Text Commands

Control Commands

BUTTON #handle.ext, "label", [clickHandler], corner, x, y

204

In the above BUTTON command, "#handle" stands in for the window handle as it appears in your
program. The ".ext" stands in for the extension given to the control when it was created. "label"
stands in for the label desired on this button. "[clickHandler]" stands in for the desired branch

label for the event handler for this button. "corner" stands in for the desired anchor corner, and
"x, y" stand in for the actual locations. These can be hard coded, or they can be variables.
Here are some possible BUTTON commands as they appear in a program:

BUTTON #main.okay, "Okay", [doOkay], UL, 10, 20
BUTTON #win.1, "Cancel", [quitMe], UL, 43, 112

x = 112 : y = 34
BUTTON #1.2, "Print", [printClick], UL, x, y

Here is another example that shows the syntax for CHECKBOX:

CHECKBOX #handle.ext, "label", [set], [reset], x, y, wide, high

As it appears in a program:

CHECKBOX #win.check1, "Make Backup", [setBackup],_
 [resetBackup], 300, 22, 100, 24

See also: Controls

205

 Size and Placement of W indows

NOTE: Beginning with Liberty BASIC v2.0 the placement of windows and dialog boxes is more

or less the same. Previous versions had two different helpfile sections to describe how window

and dialog placement worked.

The size and placement of any window can be set before it is opened. If no size and placement

statements are specified before a statement to OPEN a window, Liberty BASIC will pick default
sizes.

There are four special variables that can be set to select the size and placement of windows:

 UpperLeftX
 UpperLeftY
 W indowW idth
 W indowHeight

The width and the height of the display screen can be retrieved with these variables:

 DisplayW idth
 DisplayHeight

The values set for UpperLeftX and UpperLeftY determine the number of pixels from the upper-left

corner of the screen to position the window. Often determining the distance from the upper-left
corner of the screen is not as important as determining the size of the window. If UpperLeftX
and UpperLeftY values are not set, the window will appear at a default location determined by

W indows.

W indowW idth and W indowHeight can be set to the number of pixels wide and high desired for
window. These must be set before the OPEN statement for the window. Once the size and
placement of a window are set, the window may be opened with an OPEN statement. Here is an
example:

 [openStatus]

 UpperLeftX = 32
 UpperLeftY = 52
 WindowWidth = 190
 WindowHeight = 160

 open "Status Window" for window as #stats
 print "Screen width is ";DisplayWidth
 print "Screen height is ";DisplayHeight

This will open a window 32 pixels from the left side of the screen and 52 pixels from the top of the
screen, and with a width of 190 pixels, and a height of 160 pixels.

The screen resolution is contained in the special variables DisplayW idth and DisplayHeight. A

screen resolution of 800x600 pixels returns values of 800 and 600 respectively for DisplayW idth
and DisplayHeight. The sample code below prints the current screen resolution:

 print "Screen width is ";DisplayWidth
 print "Screen height is ";DisplayHeight

206

DisplayW idth and DisplayHeight can be used to compute values for W indowW idth and
W indowHeight, as in these examples:

 WindowWidth = DisplayWidth
 WindowHeight = DisplayHeight - 100

207

 W indow Types

Liberty BASIC provides different kinds of window types. Controls can be added to these windows

as needed (see help section Controls - Menus, Buttons, Etc.). Here are the kinds of windows
and the commands associated with them:

The way to specify what kind of window to open is as follows:

 open "Window Title" for type as #handle

 where type would be one of the descriptors below.

Style suffixes for window types (not all suffixes are supported for each window type):

_fs window is sized to fill the screen
_nf window has no frame and cannot be resized by user

_nsb window doesn't contain scroll bars
_ins contains inset texteditor
_popup window contains no titlebar or sizing frame
_modal window must be closed before another window can gain focus

Liberty BASIC W indow Types
There are four types of windows available.These four types include style variations as specified

above. The styles of these windows can be changed if the STYLEBITS command is issued
before the command to open the window.

Here are the descriptions of the four window types.

W indow
W indows of type "window" are the most used and useful windows used by Liberty BASIC
programmers. They can contain any of the controls. They can have a sizing frame, or omit it.

They can have a titlebar, or they can appear with no titlebar. They can include a menu, but they
do not have to have a menu. It is also possible for the user to hit the TAB key to move focus

from one control to the next in a window of type "window."

Graphics

W indows of type "graphics" are especially suited to displaying graphics and graphical sprites.
They are not intended to contain controls, and some controls do not work properly when placed
in a graphics window. A sizing frame and scrollbars are optional in a graphics window.

Dialog

W indows of type "dialog" are similar to windows of type "window" in that they can contain all of
the other controls except menus. Menus cannot be placed on a dialog window. Dialog windows

allow the user to hit the TAB key to move focus from one control to the next. A dialog can have
a default button that is activated when the user hits the ENTER key. For this reason, texteditors
do not work well in dialog windows, because hitting ENTER is trapped by the window and the
user cannot add a carriage return to text in a texteditor. Dialog windows are best suited for
getting information from a user, although it is possible to have applications that are dialog-based.

 Dialog windows may display as "modal." This means that they receive the input focus for the
program until they are closed. Other program windows cannot be accessed by a user while a
modal dialog is displayed.

208

Text
W indows of type "text" are quite limited in their functionality. They are not meant to contain
other controls. They are useful for displaying text to a user, or for allowing a user to write and

edit text. Text windows always have a menubar that contains a ready-made File Menu and a
ready-made Edit Menu.

W indow types:

graphics open a graphics window

graphics_fs open a graphics window full screen (size of the screen)
graphics_nsb open a graphics window w/no scroll bars
graphics_fs_nsb open a graphics window full screen, w/no scroll bars

graphics_nf_nsb open a graphics window with no sizing frame or scroll bars

Graphics Commands

text open a text window

text_fs open a text window full screen
text_nsb open a text window w/no scroll bars
text_nsb_ins open a text window w/no scroll bars, with inset editor

Text Commands

window open a basic window type
window_nf open a basic window type without a sizing frame
window_popup open a window without a titlebar

W indow and Dialog Commands

dialog open a dialog box
dialog_modal open a modal dialog box

dialog_nf open a dialog box without a frame
dialog_nf_modal open a modal dialog box without a frame
dialog_fs open a dialog box the size of the screen

dialog_nf_fs open a dialog box without a frame the size of the screen
dialog_popup open a dialog box without a titlebar

W indow and Dialog Commands

209

 Controls - Menus, Buttons, Etc.

Here are the details for Liberty BASIC commands that add menus, buttons, listboxes, and more.

See also: Understanding Syntax and Controls and Events and STYLEBITS

 Bmpbutton

 Button
 Checkbox
 Combobox
 Graphicbox
 Groupbox

 Listbox
 Menu

 Popupmenu
 Radiobutton
 Statictext

 Textbox
 Texteditor

Control Descriptions

A BMPBUTTON is a clickable button that displays an image. Bmpbuttons allow users to give a
command to a program.

A BUTTON is a clickable button with a text label. Buttons allow users to give a command to a

program.

A CHECKBOX is a small box that can be checked or unchecked by the user, or by the
programmer. It displays a text label. A checkbox is used when giving a user options from which
to choose.

A COMBOBOX is a form of list. It displays on the window as a small textbox with an arrow at the

side. W hen the user clicks the arrow, the list drops down and the user can make a selection. A
combobox is appropriate when a program must give the user a list of choices, but there isn't
much room on the window to display a list.

210

A GRAPHICBOX is a box that displays graphics, such as bitmap images, or drawn objects like

circles and lines, or even text. A graphicbox is used to give the user a graphic display, such as
showing a bitmap image, drawing a graph or chart, or simply to add visual interest to a program.

A GROUPBOX consists of a label and a box. The box can contain other controls, so that they

may be grouped for easy identification. Radiobuttons within a groupbox function as a set. To
have multiple sets of radiobuttons in a window, each set must be placed in its own groupbox.

A LISTBOX is a form of list. It appears as a list of items in a box on the window. The user may
make a choice by clicking on an item in the list with the mouse. If there are more items in the

list than there is room in the listbox, the listbox will automatically add scrollbars. A listbox is a
good choice when it is necessary to give the user a list of choices.

A MENU is a dropdown list of user commands that appears on a bar below the titlebar of a
window. The user clicks on an item contained in the dropdown list to give the window a

command.

A POPUPMENU is a dropdown list of user commands that appears where the mouse is located
when the popupmenu command is issued. The user clicks on an item contained in the dropdown

211

list to give the window a command.

A RADIOBUTTON is a small round box that can be clicked by the user. It has a text label.

Radiobuttons function in groups. W hen the user clicks a radiobutton, that button's circle is filled
in and all other radiobuttons are cleared. The programmer may set or unset a radiobutton in code

also. A radiobutton is used when a user must choose only one possibility from a group of
possibilities.

A STATICTEXT is a simple text label used to give information to the user. The user cannot
interact with a statictext control.

A TEXTBOX is a small box that contains text. Text can be placed in the textbox by the

programmer, or the user can type into the textbox. A textbox is used to get a small amount of
text input from the user, or to display a small amount of text.

A TEXTEDITOR is a large box with both horizontal and vertical scrollbars. Text can be placed in
the texteditor by the programmer, or the user can type into the texteditor. A texteditor is used to

get a large amount of text input from the user, or to display a large amount of text.

212

 Controls and Events
The commands to create a controls must specify event handlers that are associated with user
actions made on those controls (clicking, double-clicking, selecting, etc.). There are two ways to

set up event handlers. A branch label may be specified as an event handler, or a subroutine may
be specified as an event handler. A program may use either subroutines or branchlabels or a
combination as event handers. Both ways are discussed below.

Branch Label Event Handlers

 button #main.accept, "Accept", [userAccepts], UL, 10, 10

This adds a button to the window (#main) labeled "Accept". W hen the program is run, and the
user clicks on this button, then execution branches to the event handler routine at the label
[userAccepts]. W hen the user clicks on the button, it generates an event. This is generally how
branch label arguments are used in Liberty BASIC windows and controls.

Liberty BASIC can only respond to events when execution is halted at in INPUT or W AIT
statement, or when a SCAN command is issued. Here is a short program:

 'This code demonstrates how to use checkboxes in
 'Liberty BASIC programs

 nomainwin
 button #1, " &Ok ", [quit], UL, 120, 90
 checkbox #1.cb, "I am a checkbox", [set], [reset], 10, 10, 130, 20
 button #1, " Set ", [setCheckBox], UL, 10, 50, 40, 25
 button #1, " Reset ", [resetCheckBox], UL, 60, 50, 50, 25
 textbox #1.text, 10, 90, 100, 24
 WindowWidth = 190
 WindowHeight = 160
 open "Checkbox test" for dialog as #1

 print #1, "trapclose [quit]"
 'wait here for user actions

 wait

[setCheckBox]
 print #1.cb, "set"
[set]
 print #1.cb, "value? t$"
 print #1.text, "I am "; t$
 wait

[resetCheckBox]
 print #1.cb, "reset"
[reset]
 print #1.cb, "value? t$"
 print #1.text, "Checkbox is "; t$
 wait

[quit]
 close #1

213

 end

In the above code, Liberty BASIC opens a small window with a checkbox, a textbox, and a few
buttons. After that, it stops at the W AIT statement just after the branch label [waitHere]. At this
time, if the user clicks one of the buttons or the checkbox, Liberty BASIC can handle the event
and go to the appropriate branch label. The code can be observed in action by stepping through it

with the debugger.

Subroutine Event Handlers

 button #main.accept, "Accept", userAcceptsSub, UL, 10, 10

This adds a button to the window (#main) labeled "Accept". W hen the program is run, and the
user clicks on this button, then execution calls the subroutine userAcceptsSub, passing the

handle of the button as an argument to the subroutine.

Liberty BASIC 3 only lets you handle events using branch labels. This works well for simple
programs, but it since code executed after a branch label does not know how it was called, each
control must have its own branch labels for each event it can trigger. Now with LB4 you can

specify a subroutine to handle events, and when an event gets triggered the subroutine is called
and information about the origins of that event, such as the handle of the control that triggered the

event, get passed into the subroutine.

 The old way
See in this example how each listbox needs its own handler for selection.

 gosub [loadData]
 listbox #win.pets, pet$(), [selectPet], 10, 10, 140, 150
 listbox #win.vehicles, vehicle$(), [selectVehicle], 150, 10, 150,
150
 statictext #win.label, "", 10, 170, 300, 25
 open "Branch label handler" for window as #win
 #win.pets "singleclickselect [selectPet]"
 #win.vehicles "singleclickselect [selectVehicle]"
 wait

[selectPet]
 #win.pets "selection? item$"
 print #win.label, "Pet -> "; item$
 wait

[selectVehicle]
 #win.vehicles "selection? item$"
 print #win.label, "Vehicle -> "; item$
 wait

[loadData]
 for x = 0 to 2
 read a$
 pet$(x) = a$
 next x
 for x = 0 to 2
 read a$

214

 vehicle$(x) = a$
 next x
 return

 data "dog", "cat", "bird"
 data "car", "bike", "boat"

 end

 The new way - subroutines for event handlers
In the example the code specifies the selectionMade subroutine to handle the user actions for the
two listboxes in the window. W hen the event handler is called, it passes the window handle into
the event handler.

 gosub [loadData]
 listbox #win.pets, pet$(), selectionMade, 10, 10, 140, 150
 listbox #win.vehicles, vehicle$(), selectionMade, 150, 10, 150,
150
 statictext #win.label, "", 10, 170, 300, 25
 open "Branch label handler" for window as #win
 #win.pets "singleclickselect selectionMade"
 #win.vehicles "singleclickselect selectionMade"
 wait

sub selectionMade handle$
 #handle$ "selection? item$"
 select case
 case handle$ = "#win.pets"
 print #win.label, "Pet -> "; item$
 case handle$ = "#win.vehicles"
 print #win.label, "Vehicle -> "; item$
 end select
end sub

[loadData]
 for x = 0 to 2
 read a$
 pet$(x) = a$
 next x
 for x = 0 to 2
 read a$
 vehicle$(x) = a$
 next x
 return

 data "dog", "cat", "bird"
 data "car", "bike", "boat"

 end

215

216

 W indow and Dialog Com m ands

Note that Liberty BASIC 3 allows tabbing through controls in windows of type "window" as well as

in windows of type "dialog." "Tabbing through the controls" means that controls will be
highlighted and receive the input focus, in turn each time the user hits the "TAB" key. W hen the

user presses the "TAB" key, the next control listed will receive the input focus.

Changing the handle of a window dynamically at runtime can be accomplished with the
MAPHANDLE command.

Dialog Default Button
In a dialog window, one button may be given the extension "default". If the user presses the
ENTER key while in the dialog window, it will be the same as if the button whose extension is
"default" is pressed and program execution will continue at the event handler [branchLabel] for

that button. In the example below, the program branches to the [okay] routine when the user
presses ENTER.

button #win.default, "Okay",[okay],UL,200,100
open "Test" for dialog as #win

The "default" extension only works this way for regular buttons, not for bmpbuttons.

Change in behavior for LB3: If any button has focus, it becomes the default button in a dialog

window. If any other kind of control has the focus, the button designated with the ".default"
extension is the default button.

CURSOR
The mouse pointer, also called the cursor may be changed with the CURSOR command.

GENERAL W INDOW AND CONTROL COMMANDS:

TRAPCLOSE - This command sets a close event handler for a window or dialog. W hen a user

decide to close a window, it branches to a routine specified by the "trapclose" command that
confirms or does some sort of cleanup, etc.

Branch Label for Close
 'trapclose example using a branch label event handler
 statictext #example.label, "Now close the window!!", 10, 10, 200, 25
 open "Demonstrate trapclose" for window as #example
 print #example, "trapclose [branch]"
 wait

[branch]
 confirm "Really close?"; answer$
 if answer$ = "no" then wait
 close #example
 end

Subroutine for Close
 'trapclose example using a subroutine event handler
 statictext #example.label, "Now close the window!!", 10, 10, 200, 25
 open "Demonstrate trapclose" for window as #example
 print #example, "trapclose Branch"

217

 wait

sub Branch handle$
 confirm "Really close?"; answer$
 if answer$ = "no" then wait
 close #handle$
 end
 end sub

 To send a trapclose command to text window, precede the command with the ! character.

 'trapclose example in text window
 open "Demonstrate trapclose" for text as #example
 print #example, "!trapclose [branch]"
 wait

See also: Trapping the close event

FONT - This command sets the font of all of the controls in a window.

 'set the font of all the controls in a
 'window to courier new 8pt italic
 print #handle, "font courier_new 8 italic"

W hen using a text window, precede the command with a ! character:

 open "Font Test" for text as #handle
 print #handle, "!font courier_new 8 italic"
 wait

For more on specifying fonts read How to Specify Fonts

To override this general font command, font commands may be sent to individual controls after
this command is issued. See the command listss for individual controls for control-specific

documentation. If a control can accept a new text string such as a caption, the font command
must be preceded by a ! character. Examples:

 'some controls require !font
 print #h.button, "!font courier_new 8 italic"
 print #h.textbox, "!font courier_new 8 italic"

 'some controls do not require a ! character:
 print #h.graphicbox, "font courier_new 8 italic"
 print #h.radiobutton, "font courier_new 8 italic"

RESIZEHANDLER - This command sets up an event handler that is activated when the user
resizes a window of type "window". This command is not useful for dialog windows or for windows
without a sizing frame. See also the REFRESH and LOCATE commands below.

 'set up a handler for when the user resizes a window
 print #handle, "resizehandler [branch]"

218

or...
 'clear the resizing handler
 print #handle, "resizehandler"

See the example program RESIZE.BAS.

LOCATE - This command is useful when the RESIZEHANDLER command is used (see above).
After a user resizes a window and the resizehandler is invoked, the controls in that window can
be resized and positioned using the locate command. It is necessary to precede the command
with a ! character for controls such as buttons and textboxes that can accept a new text string or
caption. See the command lists for individual controls for control-specific documentation. After

this, the REFRESH command is used to redraw the entire window.

 'move and size controls
 print #handle.ext, "locate x y w h"

 'move and size buttons, textboxes, etc.
 print #handle.ext, "!locate x y w h"

In the example above, "x y w h" are standing in for literal values. To use variables, place them
outside the quotation marks and be sure to preserve the blank spaces.

 'literals
 print #handle.ext, "locate 12 20 100 24"

 'variables
 x=12 : y=20 : w=100 : h=24
 print #handle.ext, "locate ";x;" ";y;" ";w;" ";h

See the example program RESIZE.BAS.

REFRESH - This command is useful when the RESIZEHANDLER command is used (see above).
After a user resizes a window and the resize handler is invoked, the controls in that window may
be resized and positioned using the locate command. After this, the REFRESH command is

used to redraw the entire window.

 'update the window
 print #handle, "refresh"

See the example program RESIZE.BAS.

SETFOCUS - Input focus can be set to a control, or to a window with this command. This means

that keyboard input will be directed to the specified control or window. Begin the command with
the ! character for all windows and controls that can accept new text strings, or the command will
simply be displayed on the control. See the topics for individual controls for control-specific

documentation.

 'texteditor
 print #handle.texteditor, "!setfocus"

 'graphics window

219

 print #graph, "setfocus"

 'button
 print #handle.button, "!setfocus"

 'graphicbox
 print #handle.graphicbox, "setfocus"

ENABLE, DISABLE
These two commands cause a control to be enabled and active, or disabled and inactive. W hen a
control is disabled it appears to be grayed-out. Begin the command with the ! character for all
windows and controls that can accept new text strings, or the command will simply be displayed

on the control. See the topics for individual controls for control-specific documentation.

 nomainwin

 button #win.bttn, "Hello",[hello],UL,10,70
 checkbox #win.cbox, "Goodbye",[quit],[quit],10,160,120,24
 menu #win, "&Main","&Enable",[doEnable],_
 "&Disable",[doDisable],"E&xit",[quit]
 open "Enable and Disable" for window as #win

 wait

 [quit] close #win:end

 [doEnable]
 #win.bttn "!Enable"
 #win.cbox "Enable"
 wait

 [doDisable]
 #win.bttn "!Disable"
 #win.cbox "Disable"
 wait

 [hello] wait

SHOW , HIDE

These two commands cause a control to be visible or hidden. Begin the command with the !
character for all windows and controls that can accept new text strings, or the command will

simply be displayed on the control. See the topics for individual controls for control-specific
documentation.

 nomainwin

 button #win.bttn, "Hello",[hello],UL,10,70
 checkbox #win.cbox, "Goodbye",[quit],[quit],10,160,120,24
 menu #win, "&Main","&Show",[doShow],_
 "&Hide",[doHide],"E&xit",[quit]
 open "Show and Hide" for window as #win

220

 wait

 [quit] close #win:end

 [doShow]
 #win.bttn "!Show"
 #win.cbox "Show"
 wait

 [doHide]
 #win.bttn "!Hide"
 #win.cbox "Hide"
 wait

 [hello] wait

221

 Trapping the Close Event

It is important for Liberty BASIC program windows to trap the close event. Then when a user

tries to close a window, program flow is directed to an event handler that the program specifies.
At that place the program can ask for verification that the window should be closed, and/or

perform some sort of cleanup (close files, write ini data, set a flag that the window is open or
closed, etc.). There may be a menu item or button that a user can click to close the window,
but the user might also click the X closing button or the system close button, and that is the
event trapped by the trapclose statement.

The trapclose command works with all window types.

Here is the format for trapclose:

 print #myWindow, "trapclose [branchLabel]"
 print #myWindow, "trapclose subLabel"
 #myWindow "trapclose [branchLabel"

This will tell Liberty BASIC to use the code at [branchLabel] as an event handler for the window
with the handle #myW indow, continuing execution of the program there if the user tries to close
the window (see buttons1.bas example below). If the subroutine, subLabel is designated as the

event handler, rather than a branch label, the named subroutine is executed when the close
event is triggered. The handle of the window is passed into the subroutine by Liberty BASIC.

Usage with branch label handler:
The trapclose code in buttons1.bas looks like this:

 open "This is a turtle graphics window!" for graphics_nsb as #1
 print #1, "trapclose [quit]"

 ' stop and wait for buttons to be pressed
 wait

And then the code that is executed when the window is closed looks like this:

[quit]
 confirm "Do you want to quit Buttons?"; quit$
 if quit$ = "no" then wait
 close #1
 end

Usage with subroutine handler:
The trapclose code in buttons1.bas would look like this if a subroutine was used as the handler:

 open "This is a turtle graphics window!" for graphics_nsb as #1
 print #1, "trapclose Quit"

 ' stop and wait for buttons to be pressed
 wait

And then the code that is executed when the window is closed looks like this:

222

sub Quit handle$
 confirm "Do you want to quit Buttons?"; quit$
 if quit$ = "no" then wait
 close #handle$
 end
 end sub

223

 Colors and the Graphical User Interface

By default, Liberty BASIC gives windows and controls standard colors from the user's W indows

Control Panel settings. Several special variables are provided to change the colors of certain
windows and controls. These variables are case sensitive, and must be typed in the proper

case. For example, "backgroundcolor$" is not the same as "BackgroundColor$". The following
code creates a window with a dark blue background and light gray text. It does this by setting
the BackgroundColor$ and ForegroundColor$ variables BEFORE OPENING THE W INDOW :

 'set the foreground and background colors
 BackgroundColor$ = "darkblue"
 ForegroundColor$ = "lightgray"
 statictext #dialog.static, "What is your name?", 10, 10, 100, 20
 textbox #dialog.tbox, 10, 30, 100, 20
 button #dialog.accept, "Accept", [gotIt], UL, 10, 55
 open "Name getter" for dialog as #dialog
 print #dialog.tbox, "Type your names in here."
 print #dialog, "trapclose [quit]"
 wait
[gotIt]
 print #dialog.tbox, "!contents? name$"
 notice "Hi "; name$
 wait
[quit]
 close #dialog
 end

Setting BackgroundColor$ sets the color of the background of the window, and of groupboxes,
checkboxes, radiobuttons and statictext controls. Setting the ForegroundColor$ sets the color of
text displayed in all controls. Only the last ForegroundColor$ and BackgroundColor$ values set

before a window is opened are valid for that window. Other special color variables exist for setting
the background color of several widgets:

 TextboxColor$
 ComboboxColor$

 ListboxColor$
 TexteditorColor$

The value of the TextboxColor$, TexteditorColor$, ListboxColor$ or ComboboxColor$ variable can
be changed in between each control statement. A control will be colored according to the last
color statement listed before the command to create the control. Below is a short example:

 WindowWidth = 550
 WindowHeight = 410

 TextboxColor$ = "red"
 textbox #main.textbox1, 26, 16, 100, 25
 TextboxColor$ = "blue"
 textbox #main.textbox2, 30, 61, 100, 25
 TextboxColor$ = "yellow"
 textbox #main.textbox3, 30, 121, 100, 25
 open "untitled" for dialog as #main

224

[main.inputLoop] 'wait here for input event
 wait

Here is a list of valid colors (in alphabetical order):

 black, blue, brown, buttonface, cyan, darkblue, darkcyan, darkgray, darkgreen, darkpink,
darkred, green, lightgray,
 palegray, pink, red, white, yellow

"Palegray" and "Lightgray" are different names for the same color. "Buttonface" is the default
background color currently set on a user's system, so it will vary according to the desktop color

scheme. The colornames are not case sensitive, so "W HITE" is the same as "white." Here is a
graphical representation of the available colors:

225

 How to Specify Fonts
"Font FaceName size attributes"

In Liberty BASIC there are many places to specify fonts. This is done using a font command
string containing:

 The font facename

 The size of the font
 Optional modifiers: italic, bold, strikeout, underscore

Here is an example:

 'Draw in a graphics window using the font Arial 14 point italic
 open "Font example" for graphics as #fontExample
 print #fontExample, "trapclose [quit]"
 print #fontExample, "down"
 print #fontExample, "font arial 14 italic"
 print #fontExample, "\\This is Arial 14 point italic"
 wait
[quit]
 close #fontExample
 end

In the above example, the line print #fontExample, "font arial 14 italic" contains a font
specification. Everything after the word font is the specifier: arial 14 italic.

Sending Font Commands to Text Controls
The "font" command is preceded by an exclamation point character (!) when sent to controls

that allow text to be printed to them, such as a textbox control or statictext control. The (!)
character signals Liberty BASIC to send a command to the control, rather than print a new
text string on it.

Font Specifications

FaceNam e
The facename is case insensitive, so "Arial" is the same as "ARIAL" and "arial." To specify a

font which has spaces in its name, use underscores like this:

 Courier New

becomes...

 Courier_New (or ignore the uppercase letters and type courier_new).

Size in Points

Specify a point size as above by using a single size parameter. A "point" is 1/72 of an inch,
so there are 72 points in an inch. A font that is 14 points high is not the same size as a font
that is 14 pixels high.

Size in Pixels

To specify font size by pixel rather than by point, include parameters for both width and height
in the font command. If the width parameter is set to 0, the default width for that font face and

height will be used.

226

Here are some examples that set font size by point and by pixel:

 'specify just a point size with a single size parameter
 print #fontExample, "font Arial 14"

 'specify a width and height in pixels
 ' with two size parameters
 print #fontExample, "font Arial 8 15"

 'specify a height, and let Windows pick the width
 '(for compatibility with earlier versions of Liberty BASIC)
 print #fontExample, "font Arial 0 15"

Attributes
Any or all of these attributes (modifiers) can be added - italic, bold, strikeout, and underscore:

 'go nuts and add ALL the modifiers
print #fontExample, "font arial 8 italic bold strikeout underscore"

227

 Built-in Dialogs
Liberty BASIC has several built-in dialogs that allow the program's user to make choices or to
enter a small amount of text. They are as follows:

COLORDIALOG

This dialog allows the user to select a color from the W indows Common Color Dialog.

CONFIRM
This dialog gives the user a short message and allows him to choose "yes" or "no" in response
by clicking the YES or NO button to dismiss the dialog. It is often used to ask a user if he would
like to save his work before exiting a program.

FILEDIALOG
This dialog activates the W indows Common File Dialog that allows a user to select a disk

filename to open or save.

FONTDIALOG

This dialog allows a user to select a font face, size and attributes.

NOTICE
This dialog gives the user a message and it includes an OK button. It stays onscreen until the

user clicks the OK button.

PRINTERDIALOG
This dialog allows the user to select a printer and the number of copies of a document to print.

PROMPT
This dialog has a brief text message and a textbox that allows a user to enter a small amount of
text. It also contains an OK button and a CANCEL button.

Please see the topics for the individual dialogs for pictures and details on their use.

228

 Sounds
There are several ways to play sounds using Liberty BASIC.

BEEP
The BEEP command plays the system default wav file. This is often a DING sound. See BEEP.

PLAYW AVE
The PLAYW AVE command plays a wav sound file on disk. See PLAYW AVE.

PLAYMIDI

The PLAYMIDI command plays a midi sound file on disk. See PLAYMIDI.

229

 Mouse, Keyboard and Joystick
Liberty BASIC can read mouse events and keyboard input when a graphics window or graphicbox
is used. See Reading Mouse Events and Keystrokes.

Liberty BASIC can read the x, y, and z coordinates of up to two joysticks, and it can read the
status of the joystick buttons. See READJOYSTICK.

230

 Com m and Reference A-C

Commands and Keywords

A-C D-F G-K L-M N-P R-S T-Z

ABS(n) absolute value of n
ACS(n) arc-cosine of n
"addsprite" sprite command to add a sprite

AND bitwise, boolean AND operator
APPEND purpose parameter infileopen statement

AS used in calldll and struct, as well as in OPEN statements
ASC(s$) ascii value of s$
ASN(n) arc-sine of n

ATN(n) arc-tangent of n
"!autoresize" texteditor command to relocate control automatically

"autoresize" graphics command to relocate control automatically

"backcolor" graphics command to set background color

"background" sprite command to set background image
"backgroundxy" sprite command to set background position
BackgroundColor$ sets or returns background color for window
BEEP play the default system wave file
BINARY purpose parameter infileopen statement

Bitwise Operations modify bitpatterns inan object

BMPBUTTON add a bitmap button to a window

BMPSAVE save a bitmap to a disk file
BOOLEAN evaluates to true or false
"box" graphics command to draw box
"boxfilled" graphics command to draw filled box
BUTTON add a button to a window

BYREF passes an argument to a subroutine or function by reference

CALL call a user defined subroutine
CALLBACK address of a callback function
CALLDLL call an API or DLL function

CASE specifies a value for select case statement
"centersprite" causes the x, y location of a sprite to be its center

CHECKBOX add a checkbox to a window
CHR$(n) return character of ascii value n
"circle" graphics command to draw circle

"circlefilled" graphics command to draw filled circle
CLOSE #h close a file or window with handle #h
CLS clear a program's mainwindow
"cls" graphics command to clear drawing area
"!cls" text command to clear texteditor

"color" graphics command to set pen color
COLORDIALOG activates the windows common color dialog

COMBOBOX add a combobox to a window
ComboboxColor$ sets or returns combobox color
CommandLine$ contains any command line switches used on startup
CONFIRM opens a confirm dialog box

231

"!contents" text command to replace contents of texteditor
"!contents?" text command returns contents of texteditor
"!copy" text command to copy text to clipboard

COS(n) cosine of n
CURSOR changes the mouse cursor
"!cut" text command to cut text and copy to clipboard

"cyclesprite" sprite command to cause animation to cycle

COMMAND REFERENCE:

A-C D-F G-K L-M N-P R-S T-Z

232

 Com m and Reference D-F

Commands and Keywords

 A-C D-F G-K L-M N-P R-S T-Z

DATA adds data to a program that can be read with the READ statement
DATE$() return string with today's date
DECHEX$() return a decimal number converted to a hexadecimal string

DefaultDir$ a variable containing the default directory
"delsegment" graphics command to delete drawing segment

Dialog window type
DIM array() set the maximum size of a data array
DISABLE make a control disabled and grayed-out

"discard" graphics command to discard unflushed drawing
DisplayW idth a variable containing the width of the display

DisplayHeight a variable containing the height of the display
DLL device open mode for calldll
"down" graphics command to lower pen
"drawbmp" graphics command to display a bitmap
"drawsprites" sprite command to update animation

Drives$ special variable, holds drive letters
DO LOOP performs a looping action until/while a condition is met
Double data type for CALLDLL

DUMP force the LPRINT buffer to print
DW ORD data type for calldll and structs

"ellipse" graphics command to draw an ellipse
"ellipsefilled" graphics command to draw a filled ellipse
ELSE used in block conditional statements with IF/THEN
ENABLE make a control active

END marks end of program execution
END FUNCTION signifies the end of a function
END IF used in block conditional statements with IF/THEN

END SELECT signals end of SELECT CASE construct
END SUB signifies the end of a subroutine

EOF(#h) returns the end-of-file status for #h
EVAL(code$) evaluate an expression to a numeric value
EVAL$(code$) evaluate an expression to a string

EXIT FOR terminate a for/next loop before itcompletes

EXIT W HILE terminate a while/wend loop before itcompletes

EXP(n) returns e^n

FIELD #h, list... sets random access fields for #h
FILEDIALOG opens a file selection dialog box
FILES returns file and subdirectory info

"fill" graphics command to fill with color
"font" set font as specified

FONTDIALOG opens a font selection dialog box
ForegroundColor$ sets or returns foreground color for window
FOR...NEXT performs looping action
FUNCTION define a user function

233

COMMAND REFERENCE:

 A-C D-F G-K L-M N-P R-S T-Z

234

 Com m and Reference G-K

Commands and Keywords

 A-C D-F G-K L-M N-P R-S T-Z

GET #h, n get random access record n for #h
"getbmp" graphics command to capture drawing area
GETTRIM #h, n get a random access record n for#h, with blanks trimmed

GLOBAL creates a global variable
"go" graphics command to move pen

GOSUB label call subroutine label
"goto" graphics command to move pen
GOTO label branch to label

GRAPHICBOX add a graphics region to a window
GROUPBOX add a groupbox to a window

Graphics window type
Graphics Commands a detailed summary of graphics commands in Liberty BASIC

HBMP("name") return the W indows handle for a bitmap
HEXDEC("value") convert a hexadecimal string to a decimal value
HIDE make a control invisible
HW ND(#handle) return the W indows handle for a window
"home" graphics command to center pen

IF THEN perform conditional action(s)

Inkey$ contains a character or keycode from a graphics window
INP(port) get a byte value from an I/O port

INPUT get data from keyboard, file or button
INPUT$(#h, n) get n chars from handle #h, or from the keyboard
INPUTTO#(#h,c$) reads from file up to char specified
INPUT purpose parameter infileopen statement

"!insert" text command to insert text at caret position

INSTR(a$,b$,n) search for b$ in a$, with optional start n
INT(n) integer portion of n

JOY- global variables containing joystick information read by readjoystick command
 Joy1x, Joy1y, Joy1z, Joy1button1, Joy1button2

 Joy2x, Joy2y, Joy2z, Joy2button1, Joy2button2

KILL s$ delete file named s$

 A-C D-F G-K L-M N-P R-S T-Z

235

 Com m and Reference L-M

Commands and Keywords

 A-C D-F G-K L-M N-P R-S T-Z

LEFT$(s$, n) first n characters of s$
LEN(s$) length of s$
LET var = expr assign value of expr to var
"line" graphics command to draw line

"!line" text command to return text from specified line in texteditor control
"!lines?" text command to return number of lines in texteditor control

LINE INPUT get next line of text from file
LISTBOX add a listbox to a window
ListboxColor$ sets or returns listbox color

LOADBMP load a bitmap into memory
LOC(#handle) return current binary file position

"locate" locate a control
LOF(#h) returns length of open file #h or bytes in serial buffer
LOG(n) returns the natural logarithm ofn

LONG data type for calldll and structs
LOW ER$(s$) s$ converted to all lowercase

LPRINT print to hard copy

MAINW IN set the width of the main window in columns and rows

MAPHANDLE change window handles dynamically
MAX() return the greater of two values
MENU adds a pull-down menu to a window
MID$() return a substring from a string
MIDIPOS() return position of play in a MIDI file

MIN() return the smaller of two values
MKDIR() make a new subdirectory

"!modified?" text command to return modified status

Command Reference:

 A-C D-F G-K L-M N-P R-S T-Z

236

 Com m and Reference N-P

Commands and Keywords

 A-C D-F G-K L-M N-P R-S T-Z

NAME a$ AS b$ rename file named a$ to b$
NEXT used with FOR
NOMAINW IN keep a program's main window from opening

"north" graphics command to set the current drawing direction
NOT logical and bitwise NOT operator

NOTICE open a notice dialog box

ONCOMERROR set an error handler for serial communications

ON ERROR set an error handler for general program errors
OPEN open a file or window

OPEN "COMn:..." open a communications port for reading/writing
OR logical and bitwise OR operator
"!origin" text command to set origin

"!origin?" text command to return origin
OUT port, byte send a byte to a port
OUTPUT purpose parameter infileopen statement

"!paste" text command to paste text from clipboard
"pie" graphics command to draw pie section
"piefilled" graphics command to draw filled pie section

"place" graphics command to locate pen
Platform$ special variable containing platform name

PLAYW AVE plays a *.wav sound file
PLAYMIDI plays a *.midi sound file
POPUPMENU pops up a menu
"posxy" graphics command to return pen position
"print" graphics command to print hard copy

PRINT print to a file or window
PrintCollate user choice in printerdialog
PrintCopies number of copies chosen in printerdialog

PRINTERDIALOG open a printer selection dialog box
PrinterFont$ returns or sets the font used with LPRINT

PrinterName$ name of printer
PROMPT open a prompter dialog box
PTR data type for calldll and structs

PUT #h, n puts a random access record n for #h

Command Reference:

 A-C D-F G-K L-M N-P R-S T-Z

237

 Com m and Reference R-S

Commands and Keywords

A-C D-F G-K L-M N-P R-S T-Z

RADIOBUTTON adds a radiobutton to a window
RANDOM purpose parameter infileopen statement

RANDOMIZE seed the random number generator
READ reads information from DATA statements

REDIM redimensions an array and resets its contents
"redraw" graphics command to redraw segment
"refresh" redraw a window

REM adds a remark to a program
"removesprite" remove a sprite

"resizehandler" set up a routine to handle window resize by user
RESTORE sets the position of the next DATA statement to read
RETURN return from a subroutine call
RIGHT$(s$, n) n rightmost characters of s$
RMDIR() remove a subdirectory

RND(n) returns a random number
"rule" graphics command to set drawing rule
RUN s$, mode run external program s$, with optional mode

SCAN checks for and dispatches user actions

SEEK #h, fpos set the position in a file opened for binary access
"segment" graphics command to return segment ID
SELECT CASE performs conditional actions
"!select" text command to place caret
"!selectall" text command to highlight all text

"!selection?" text command to return highlighted text
"set" graphics command to draw a point

"setfocus" set input focus to control or window
SHORT data type for calldll and structs
SHOW make a control visible

SIN(n) sine of n
"size" graphics command to set pen size

SORT sorts single and double dim'd arrays
SPACE$(n) returns a string of n spaces
Sprites all about using sprites in Liberty BASIC
"spritecollides" sprite command to discover collisions
"spriteimage" sprite command to set sprite image

"spritemovexy" sprite command to auto-move sprite
"spriteoffset" sprite command to offset x,y location of sprite
"spriteorient" sprite command to orient sprite

"spriteround" sprite command to change method of collision detection
"spritescale" sprite command to set sprite's scale
"spritetoback" sprite command to put sprite at bottom of z order
"spritetofront" sprite command to put sprite at top of z order
"spritetravelxy" sprite command to move sprite to desired position

"spritevisible" sprite command to set visibility of sprite
"spritexy" sprite command to set location of sprite

238

"spritexy?" sprite command to return location of sprite
SQR(n) details about getting the square root of a number
STATICTEXT add a statictext control to a window

STOP marks end of program execution
STOPMIDI stops a MIDI file from playing
STR$(n) returns string equivalent of n

"stringwidth?" graphics command to return width of text string
STRUCT builds a structure used in calling of APIs and DLL functions

STYLEBITS add or remove style bits from a control
SUB defines a subroutine

Command Reference:
A-C D-F G-K L-M N-P R-S T-Z

239

 Com m and Reference T-Z

Commands and Keywords

 A-C D-F G-K L-M N-P R-S T-Z

TAB(n) cause tabular printing in mainwin
TAN(n) tangent of n
Text window type

Text Commands a detailed summary of text window commands in Liberty BASIC
TEXTBOX add a textbox (entryfield) to a window

TextboxColor$ sets or returns textbox color
TEXTEDITOR add a texteditor widget to a window
TexteditorColor$ sets or returns texteditor color

TIME$() returns current time as string
TIMER manage a W indows timer

TITLEBAR sets the title bar of the main window
TRACE n sets debug trace level to n
"!trapclose" text command to trap closing of text window
"trapclose" trap closing of window
TRIM$(s$) returns s$ without leading/trailing spaces

"turn" graphics command to reset drawing direction
TXCOUNT(#handle) gets number of bytes in serial communications queue

ULONG data type for calldll and structs
UNLOADBMP unloads a bitmap from memory

"up" graphics command to lift pen
UPPER$(s$) s$ converted to all uppercase
USHORT data type for calldll and structs
USING() performs numeric formatting
UpperLeftX specifies the x part of the position where the next window will open

UpperLeftY specifies the y part of the position where the next window will open

VAL(s$) returns numeric equivalent of s$
Version$ special variable containing LB version info
Void data type for CALLDLL

W AIT stop and wait for user interaction

"when" graphics command to trap mouse and keyboard events
W HILE...W END performs looping action

W indow window type
W indowW idth specifies the width of the next window to open
W indowHeight specifies the height of the next window to open

W INSTRING(ptr) returns string from ptr
W ORD data type for calldll and structs
W ORD$(s$, n) returns nth word from s$

XOR logical and bitwise XOR operator

Command Reference:
 A-C D-F G-K L-M N-P R-S T-Z

240

 Additional Com m ands

Text Commands a detailed summary of text window commands in Liberty BASIC

Graphics Commands a detailed summary of graphics commands in Liberty BASIC

Sprite Commands a detailed summary of sprite commands in Liberty BASIC

241

 Reserved W ord List

The names of commands and functions are called reserved words. These include familiar

commands and functions like PRINT, INPUT, CHR$(and many others. Function names include
the opening parenthesis. You cannot use reserved words to name variables, subroutines or
functions. W hen you write software using Liberty BASIC, you are not required to capitalize
reserved words.

There are some built-in variables that are recognized by Liberty BASIC. These are listed at the
bottom of the page. Do not use these variable names for your own purposes. Reserve their use

as intended by Liberty BASIC.

The list of reserved words in Liberty BASIC:

COMMANDS:

AND, APPEND, AS, BEEP, BMPBUTTON, BMPSAVE, BOOLEAN, BUTTON, BYREF, CALL,

CALLBACK, CALLDLL, CALLFN, CASE, CHECKBOX, CLOSE, CLS, COLORDIALOG,
COMBOBOX, CONFIRM, CURSOR, DATA, DIALOG, DIM, DLL, DO, DOUBLE, DUMP,

DW ORD, ELSE, END, ERROR, EXIT, FIELD, FILEDIALOG, FILES, FONTDIALOG, FOR,
FUNCTION, GET, GETTRIM, GLOBAL, GOSUB, GOTO, GRAPHICBOX, GRAPHICS,
GROUPBOX, IF, INPUT, KILL, LET, LINE, LISTBOX, LOADBMP, LONG, LOOP, LPRINT,

MAINW IN, MAPHANDLE, MENU, NAME, NEXT, NOMAINW IN, NONE, NOTICE, ON,
ONCOMERROR, OR, OPEN, OUT, OUTPUT, PASSW ORD, PLAYMIDI, PLAYW AVE,
POPUPMENU, PRINT, PRINTERDIALOG, PROMPT, PTR, PUT, RADIOBUTTON, RANDOM,
RANDOMIZE, READ, READJOYSTICK, REDIM, REM, RESTORE, RESUME, RETURN, RUN,
SCAN, SELECT, SHORT, SORT, STATICTEXT, STOP, STOPMIDI, STRUCT, SUB, TEXT,

TEXTBOX, TEXTEDITOR, THEN, TIMER, TITLEBAR, TRACE, ULONG, UNLOADBMP, UNTIL,
USHORT, VOID, W AIT, W INDOW , W END, W HILE, W ORD, XOR

FUNCTIONS:
Note that the opening parenthisis is part of the function name:

ABS(, ACS(, ASC(, ASN(, ATN(, CHR$(, COS(, DATE$(, DECHEX$(, EOF(, EVAL(, EVAL$(,
EXP(, HBMP(, HEXDEC(, HW ND(, INP(, INPUT$(, INPUTTO$(, INSTR(, INT(, LEFT$(, LEN(,
LOF(, LOG(, LOW ER$(, MAX(, MIDIPOS(, MID$(, MIN(, MKDIR(, NOT(, RIGHT$(, RMDIR(,

RND(, SIN(, SPACE$(, SQR(, STR$(, TAB(, TAN(, TIME$(, TRIM$(, TXCOUNT(, UPPER$(,
USING(, VAL(, W INSTRING(, W ORD$(

VARIABLES:

BackgroundColor$, ComboboxColor$, CommandLine$, DefaultDir$, DisplayHeight, DisplayW idth,
Drives$, Err, Err$, ForegroundColor$, Joy1x, Joy1y, Joy1z, Joy1button1, Joy1button2, Joy2x,
Joy2y, Joy2z, Joy2button1, Joy2button2, ListboxColor$, Platform$, PrintCollate, PrintCopies,
PrinterFont$, PrinterName$, TextboxColor$, TexteditorColor$, Version$, W indowHeight,

W indowW idth, UpperLeftX, UpperLeftY

242

 ABS(n)

Description:

This function returns | n | (the absolute value of n). "n" can be a number or any numeric
expression.

Usage:

print abs(-5) produces: 5

print abs(6 - 13) produces: 7

print abs(2 + 4) produces: 6

print abs(3) produces: 3

print abs(3/2) produces: 1.5

print abs(5.75) produces: 5.75

243

 ACS(n)

Description:

This function returns the arc cosine of the number or numeric expression n. The return value is
expressed in radians.

Usage:

print "The arc cosine of 0.2 is "; acs(0.2)

Tip:

There are 2 * pi radians in a full circle of 360 degrees. A formula to convert degrees to radians is:
radians = degrees divided by 57.29577951

Note: See also COS()

244

 ASC(s$)

Description:

This function returns the ASCII value of the first character of string s$. s$ can be a string
variable, or text enclosed in quotes. Text and formatting characters have ASCII values from 0 to

255. See also CHR$(n)

Usage:

 print asc("A") produces: 65

 let name$ = "Tim"
 firstLetter = asc(name$)
 print firstLetter produces: 84

 print asc("") produces: 0

ASCII Chart of Printable (Text) Characters

Chr$(33) = !
Chr$(34) = "
Chr$(35) = #
Chr$(36) = $
Chr$(37) = %
Chr$(38) = &
Chr$(39) = '
Chr$(40) = (
Chr$(41) =)
Chr$(42) = *
Chr$(43) = +
Chr$(44) = ,
Chr$(45) = -
Chr$(46) = .
Chr$(47) = /
Chr$(48) = 0
Chr$(49) = 1
Chr$(50) = 2
Chr$(51) = 3
Chr$(52) = 4
Chr$(53) = 5
Chr$(54) = 6
Chr$(55) = 7
Chr$(56) = 8
Chr$(57) = 9
Chr$(58) = :
Chr$(59) = ;
Chr$(60) = <
Chr$(61) = =
Chr$(62) = >
Chr$(63) = ?
Chr$(64) = @
Chr$(65) = A

245

Chr$(66) = B
Chr$(67) = C
Chr$(68) = D
Chr$(69) = E
Chr$(70) = F
Chr$(71) = G
Chr$(72) = H
Chr$(73) = I
Chr$(74) = J
Chr$(75) = K
Chr$(76) = L
Chr$(77) = M
Chr$(78) = N
Chr$(79) = O
Chr$(80) = P
Chr$(81) = Q
Chr$(82) = R
Chr$(83) = S
Chr$(84) = T
Chr$(85) = U
Chr$(86) = V
Chr$(87) = W
Chr$(88) = X
Chr$(89) = Y
Chr$(90) = Z
Chr$(91) = [
Chr$(92) = \
Chr$(93) =]
Chr$(94) = ^
Chr$(96) = `
Chr$(97) = a
Chr$(98) = b
Chr$(99) = c
Chr$(100) = d
Chr$(101) = e
Chr$(102) = f
Chr$(103) = g
Chr$(104) = h
Chr$(105) = i
Chr$(106) = j
Chr$(107) = k
Chr$(108) = l
Chr$(109) = m
Chr$(110) = n
Chr$(111) = o
Chr$(112) = p
Chr$(113) = q
Chr$(114) = r
Chr$(115) = s
Chr$(116) = t
Chr$(117) = u
Chr$(118) = v
Chr$(119) = w
Chr$(120) = x

246

Chr$(121) = y
Chr$(122) = z
Chr$(123) = {
Chr$(124) = |
Chr$(125) = }
Chr$(126) = ~
Chr$(127) = •
Chr$(128) = €
Chr$(129) = •
Chr$(130) = ‚
Chr$(131) = ƒ
Chr$(132) = „
Chr$(133) = …
Chr$(134) = †
Chr$(135) = ‡
Chr$(136) = ˆ
Chr$(137) = ‰
Chr$(138) = Š
Chr$(139) = ‹
Chr$(140) = Œ
Chr$(142) = Ž
Chr$(145) = '
Chr$(146) = '
Chr$(147) = “
Chr$(148) = ”
Chr$(149) =
Chr$(150) = –
Chr$(151) = –
Chr$(152) = ˜
Chr$(153) = ™
Chr$(154) = š
Chr$(155) = ›
Chr$(156) = œ
Chr$(158) = ž
Chr$(159) = Ÿ
Chr$(161) = ¡
Chr$(162) = ¢
Chr$(163) = £
Chr$(164) = ¤
Chr$(165) = ¥
Chr$(166) = ¦
Chr$(167) = §
Chr$(168) = ¨
Chr$(169) = ©
Chr$(170) = ª
Chr$(171) = «
Chr$(172) = ¬
Chr$(173) = -
Chr$(174) = ®
Chr$(175) = ¯
Chr$(176) = °
Chr$(177) = ±
Chr$(178) = ²
Chr$(179) = ³

247

Chr$(180) = ´
Chr$(181) = µ
Chr$(182) = ¶
Chr$(183) = ·
Chr$(184) = ¸
Chr$(185) = ¹
Chr$(186) = º
Chr$(187) = »
Chr$(188) = ¼
Chr$(189) = ½
Chr$(190) = ¾
Chr$(191) = ¿
Chr$(192) = À
Chr$(193) = Á
Chr$(194) = Â
Chr$(195) = Ã
Chr$(196) = Ä
Chr$(197) = Å
Chr$(198) = Æ
Chr$(199) = Ç
Chr$(200) = È
Chr$(201) = É
Chr$(202) = Ê
Chr$(203) = Ë
Chr$(204) = Ì
Chr$(205) = Í
Chr$(206) = Î
Chr$(207) = Ï
Chr$(208) = Ð
Chr$(209) = Ñ
Chr$(210) = Ò
Chr$(211) = Ó
Chr$(212) = Ô
Chr$(213) = Õ
Chr$(214) = Ö
Chr$(215) = ×
Chr$(216) = Ø
Chr$(217) = Ù
Chr$(218) = Ú
Chr$(219) = Û
Chr$(220) = Ü
Chr$(221) = Ý
Chr$(222) = Þ
Chr$(223) = ß
Chr$(224) = à
Chr$(225) = á
Chr$(226) = â
Chr$(227) = ã
Chr$(228) = ä
Chr$(229) = å
Chr$(230) = æ
Chr$(231) = ç
Chr$(232) = è
Chr$(233) = é

248

Chr$(234) = ê
Chr$(235) = ë
Chr$(236) = ì
Chr$(237) = í
Chr$(238) = î
Chr$(239) = ï
Chr$(240) = ð
Chr$(241) = ñ
Chr$(242) = ò
Chr$(243) = ó
Chr$(244) = ô
Chr$(245) = õ
Chr$(246) = ö
Chr$(247) = ÷
Chr$(248) = ø
Chr$(249) = ù
Chr$(250) = ú
Chr$(251) = û
Chr$(252) = ü
Chr$(253) = ý
Chr$(254) = þ
Chr$(255) = ÿ

249

 ASN(n)

Description:

This function returns the arc sine of the number or numeric expression n. The return value is
expressed in radians.

Usage:

print "The arc sine of 0.2 is "; asn(0.2)

Tip:

There are 2 * pi radians in a full circle of 360 degrees. A formula to convert degrees to radians is:
radians = degrees divided by 57.29577951

Note: See also SIN()

250

 ATN(n)

Description:

This function returns the arc tangent of the number or numeric expression n. The return value is
expressed in radians.

Usage:

print "The arc tangent of 0.2 is "; atn(0.2)

Tip:

There are 2 * pi radians in a full circle of 360 degrees. A formula to convert degrees to radians is:
radians = degrees divided by 57.29577951

Note: See also TAN()

251

 BEEP

Description:

This command will play the default system wave file. The actual sound played depends upon the
default sound scheme on the user's computer. This sound is best described as a 'ding'. Program

execution will stop until the wave file is finished playing.

Usage:

 if warningVar = 1 then beep

Note: See also PLAYW AVE, PLAYMIDI

252

 BMPBUTTON

BMPBUTTON #handle.ext, filespec, returnVar, corner, posx, posy

Description:

This statement adds a button that displays an image to a window created with the OPEN
command.

Usage:
The BMPBUTTON statement must be listed before the statement to OPEN the window that will
contain it. Here is a brief description for each parameter as listed above:

#handle.ext

The #handle must be identical to the handle of the window which will contain the bmpbutton. The
bmpbutton may have an optional, unique extension which allows it to receive commands during

program execution. The extension begins with a dot and may include any alpha-numeric
characters. A bmpbutton contained on a window whose handle is #win will have #win as the
first part of its handle. Examples of bmpbutton handles are as follows:

#win (no extension)
#win.okay
#win.1
#win.cancel
#win.bmpbutton2

filespec

The filespec parameter contains the full or relative path and filename of the *.bmp file containing
the bitmap image that will appear on the button. There are no width or height parameters in the
bmpbutton statement, so the size of the button cannot be set by the program. It is determined

by the size of the bitmap image that will appear on it. See also Path and Filename.

returnVar
returnVar is expressed as one word and it is not enclosed in quotes. It cannot be expressed as a
string variable. It must begin with a letter, but it can contain numerals as well. If returnVar is set
to a valid branch label enclosed in square brackets, then a button click will cause program
execution to continue at the specified branch label. The code that follows the branch label will be

executed when the button is pressed. If returnVar is the name of a subroutine, then that
subroutine will be activated when the button is clicked, and the button handle will be passed into
the subroutine as an argument.

If returnVar is not a valid branch label or subroutine name, then the value of returnVar is available
to be read when the program is halted at an input var$ statement. The value will be placed into
the specified variable. An example appears below.

corner
This parameter must be one of the following: UL, UR, LL, or LR. It specifies which corner of the

window acts as an anchor for the button. For example, if LR is used, then the button will be
located relative to the lower right corner. If the window size is changed during execution of the
program, the button will always appear at the same position, relative to the corner specified as

253

the anchor.
UL = upper left
UR = upper right

LL = lower left
LR = lower right

posx, posy
These parameters set the location for the button relative to the anchor corner. posx and posy are

expressed in pixels. Anchor values of less than one may also be used for posx and posy. For
example, if the anchor corner is UL, posx is .9, and posy is .9, then the button will be positioned
9/10ths of the distance of the window in both x and y from the upper left corner. This method of

positioning buttons places them in positions that are relative to the size of the window, rather than
anchoring them to a specified corner.

Im ages for Bmpbuttons
A collection of button images has been included with Liberty BASIC in the folder named "bmp".
The collection includes blank buttons. A drawing program such as MS Paint can be used to edit

and create button images for Liberty BASIC.

Detecting Button Presses
Button presses are read and acted upon when a SCAN statement is issued. If SCAN is not used,

then program execution must be halted at an INPUT or W AIT statement in order for a button
press to be read and acted upon.

SAMPLE PROGRAMS

An exam ple that uses a branch label button handler:

bmpbutton #main.arrow, "bmp\arrwbttn.bmp", [arrowClicked], UL, 10, 10
open "Button Example" for window as #main

[loop]
 wait

[arrowClicked]
 notice "The arrow button was clicked. Goodbye."
 close #main
 end

An exam ple that uses a subroutine button handler:

bmpbutton #main.arrow, "bmp\arrwbttn.bmp", arrowClicked, UL, 10, 10
open "Button Example" for window as #main

[loop]

 wait

sub arrowClicked bttnHandle$
 notice bttnHandle$;" was clicked. Goodbye."
 close #main
 end
 end sub

254

An exam ple that retrieves a value with an input statement:

bmpbutton #main.arrow, "bmp\arrwbttn.bmp", yes, UL, 10, 10
bmpbutton #main.button2, "bmp\bluebttn.bmp", no, UL, 70, 10
open "Use Input Example" for window as #main
#main "trapclose [quit]"

[loop]
 input answer$
 if answer$ = "yes" then notice "You clicked Okay."

 if answer$ = "no" then notice "You clicked Cancel."
 goto [loop]

[quit]
 close #main
 end

BMPBUTTON COMMANDS

print #handle.ext, "bitm ap bitm apnam e"
This command sets the bitmap displayed on the button to be a that has been loaded previously
with the LOADBMP command. "bitm apnam e" is not the filename of the bitmap, but the name

given to it by the LOADBMP command. Here is a short program that demonstrates the bitm ap
bmpbutton command.

 'bitmap.bas
 'demonstrate the bitmap command for bmpbuttons
 'clicking the buttons causes the bitmap images
 'displayed on the buttons to change
 WindowWidth = 248
 WindowHeight = 175
 nomainwin
 loadbmp "arrow", "bmp\arrwbttn.bmp"
 loadbmp "blue", "bmp\bluebttn.bmp"
 bmpbutton #main.button1, "bmp\blank4.bmp", [button1Click], UL, 22,
11
 bmpbutton #main.button2, "bmp\blank4.bmp", [button2Click], UL, 22,
46
 open "BmpButton Image Changer" for window as #main
 print #main, "trapclose [quit]"

 'wait here for user events
 wait

[button1Click] 'Display arrow image on button 2
 print #main.button2, "setfocus"
 print #main.button2, "bitmap arrow"
 print #main.button1, "bitmap blue"
 wait

255

[button2Click] 'Display arrow image on button 1
 print #main.button1, "setfocus"
 print #main.button1, "bitmap arrow"
 print #main.button2, "bitmap blue"
 wait

[quit]
 close #main
 end

print #handle.ext, "locate x y width height"
This command repositions the control in its window. This is effective when the control is placed

inside a window of type window. The control will not update its size and location until a
REFRESH command is sent to the window. See RESIZER.BAS for an example program.

print #handle.ext, "setfocus"

This causes the control to receive the input focus. This means that any keypresses will be
directed to the control.

print #handle.ext, "enable"
This causes the control to be enabled.

print #handle.ext, "disable"

This causes the control to be inactive and grayed-out.

print #handle.ext, "show"
This causes the control to be visible.

print #handle.ext, "hide"
This causes the control to be hidden or invisible.

See also: BUTTON, MENU, Controls and Events

256

 BMPSAVE

bmpsave "bmpName", "filename.bmp"

Description:

This saves a named bitmap to the specified filename. The named bitmap can be obtained either
from the LOADBMP command or the GETBMP graphics command. The bitmap will be saved to

disk in the same resolution as the user's display resolution. If the user's display is setup for
32-bit color, then the bitmap will be in 32-bit format, for instance. If a full path isn't given for the
saved bitmap, it will be saved in the program's DefaultDir$.

Usage:

 'generate some graphics and save them to disk
 nomainwin
 open "Ellipses" for graphics as #1
 print #1, "trapclose [quit]"
 print #1, "down"
 print #1, "place 130 130"
 for x = 30 to 230 step 10
 print #1, "ellipse "; x ; " "; 260 - x
 next x
 print #1, "flush"
 print #1, "getbmp drawing 1 1 250 250"
 bmpsave "drawing", "ellipses.bmp"
 wait

 [quit]
 close #1
 end

257

 BUTTON

BUTTON #handle.ext, "label", returnVar, corner, x, y {, width, height}

Description:

This statement adds a button that has a text label to a window created with the OPEN command.
The width and height parameters are optional.

Usage:
The BUTTON statement must be listed before the statement to OPEN the window that will
contain it. Here is a brief description for each parameter as listed above:

#handle.ext
The #handle must be identical to the handle of the window which will contain the button. The
button may have an optional, unique extension which allows it to receive commands during

program execution. The extension begins with a dot and may include any alpha-numeric
characters. A button contained on a window whose handle is #win will have #win as the first
part of its handle. Examples of button handles are as follows:

#win (no extension)
#win.okay
#win.1
#win.cancel
#win.bmpbutton2

"label"

This parameter specifies the caption that will appear on the button. It may be expressed as a
literal text string, or as a string variable. See String Literals and Variables.

returnVar

returnVar is expressed as one word and it is not enclosed in quotes. It cannot be expressed as a
string variable. It must begin with a letter, but it can contain numerals as well. If returnVar is set
to a valid branch label enclosed in square brackets, then a button click will cause program

execution to continue at the specified branch label. The code that follows the branch label will be
executed when the button is pressed. If returnVar is the name of a subroutine, then that
subroutine will be activated when the button is clicked, and the button handle will be passed into
the subroutine as an argument. See also: Controls and Events

If returnVar is not a valid branch label or subroutine name, then the value of returnVar is available
to be read when the program is halted at an input var$ statement. The value will be placed into

the specified variable. An example appears below.

corner

This parameter must be one of the following: UL, UR, LL, or LR. It specifies which corner of the
window acts as an anchor for the button. For example, if LR is used, then the button will be
located relative to the lower right corner. If the window size is changed during execution of the
program, the button will always appear at the same position, relative to the corner specified as
the anchor.

UL = upper left
UR = upper right

258

LL = lower left
LR = lower right

posx, posy
These parameters set the location for the button relative to the anchor corner. posx and posy are

expressed in pixels. Anchor values of less than one may also be used for posx and posy. For
example, if the anchor corner is UL, posx is .9, and posy is .9, then the button will be positioned
9/10ths of the distance of the window in both x and y from the upper left corner. This method of

positioning buttons places them in positions that are relative to the size of the window, rather than
anchoring them to a specified corner.

width, height
These optional parameters specify how wide and high the button will be, measured in pixels. If
these parameters are not used in the BUTTON statement, then Liberty BASIC will set the size of

the button to be large enough to display the text label specified.

Detecting Button Presses
Button presses are read and acted upon when a SCAN statement is issued. If SCAN is not used,
then program execution must be halted at an INPUT or W AIT statement in order for a button
press to be read and acted upon.

This exam ple uses a branch label button handler:
button #main.exit, "Exit", [exitClicked], UL, 10, 10
open "Button Example" for window as #main

[loop]
 wait

[exitClicked]
 notice "The Exit button was clicked. Goodbye."
 close #main
 end

This exam ple uses a subroutine button handler:
button #main.exit, "Exit", exitClicked, UL, 10, 10
open "Button Example" for window as #main

[loop]
 wait

sub exitClicked buttonhandle$
 notice "The button handle is ";buttonhandle$;" Goodbye."
 close #main
 end
 end sub

This exam ple retrieves a value with an input statement:
button #main.ok, "Okay", yes, UL, 10, 10
button #main.cancel, "Cancel", no, UL, 70, 10
open "Use Input Example" for window as #main
 #main "trapclose [quit]"

259

[loop]
 input answer$
 if answer$ = "yes" then notice "You clicked Okay."
 if answer$ = "no" then notice "You clicked Cancel."
 goto [loop]

[quit]
 close #main
 end

Default Button
A window of type DIALOG can contain a button with the extension ".default". If the user presses
the ENTER key while the dialog window has focus, it is the same as if the button whose

extension is "default" is pressed and program execution will continue at the event handler
[branchLabel] for that button. In the example below, the program will branch to the [okay] routine
when the user presses ENTER.

button #win.default, "Okay",[okay],UL,200,100
open "Test" for dialog as #win

Change in behavior for LB3: If any button has focus, it acts as the default button in a DIALOG

window. If a control other than a button has the focus, the button whose extension is ".default" is
the default button, if such a button exists.

Button commands):

print #handle.ext, "string"

This command changes the text displayed on the caption of the button. "string" may be a literal
string of text enclosed in quotes, or a string variable.

print #handle.ext, "!setfocus"
This command causes the button to receive the input focus. This means that any keypresses

will be directed to the button.

print #handle.ext, "!locate x y width height"
This command repositions the button control in its window. This only works if the control is
placed inside window of type window or dialog. The control will not update its size and location

until a refresh command is sent to the window. See the RESIZE.BAS example program.

print #handle.ext, "!font facenam e pointSize"
This command sets the button's font to the specified face and point size. If an exact match for

the font face and size is not available on the user's system, then Liberty BASIC will try to find a
close match, with size taking precendence over face.

There is more information on specifying fonts here: How to Specify Fonts

Example:

print #handle.ext, "!font times_new_roman 10"

260

print #handle.ext, "!enable"
This causes the control to be enabled.

print #handle.ext, "!disable"
This causes the control to be inactive and grayed-out.

print #handle.ext, "!show"

This causes the control to be visible.

print #handle.ext, "!hide"

This causes the control to be hidden or invisible.

261

 BYREF
Function functionName(byref var1, byref var2$...)

Description:
Variables passed as arguments into functions and subs are passed "by value" by default, which
means that a copy of the variable is passed into the function or sub. The value of the variable is
not changed in the main program if it is changed in the function. A variable may instead by
passed "byref" which means that a reference to the actual variable is passed and a change in the

value of this variable in the function or sub changes the value of the variable in the main program.
See also: Function, Sub, Functions and Subroutines

Usage:
Each of the parameters in the function and sub in this example use the "byref" specifier. This
means that when the value of a and b are changed in the function that the variables used to make
the call (x and y) will also be changed to reflect a and b when the function returns. Try stepping

through this example in the debugger.

 'now you can pass by reference
 x = 5.3
 y = 7.2
 result$ = formatAndTruncateXandY$(x, y)
 print "x = "; x
 print "y = "; y
 print result$

 'and it works with subroutines too
 wizard$ = "gandalf"
 call capitalize wizard$
 print wizard$

 end

function formatAndTruncateXandY$(byref a, byref b)
 a = int(a)
 b = int(b)
 formatAndTruncateXandY$ = str$(a)+", "+str$(b)
end function

sub capitalize byref word$
 word$ = upper$(left$(word$, 1))+mid$(word$, 2)
end sub

More about pass by reference

Passing by reference is only supported using string and numeric variables as parameters. You
can pass a numeric or string literal, or a computed number or string, or even a value from an

array, but the values will not come back from the call in any of these cases. Step through the
example in the debugger to see how it works!

 'you can also call without variables, but the changes
 'don't come back
 result$ = formatAndTruncateXandY$(7.2, 5.3)
 print result$

262

 'and it works with subroutines too
 call capitalize "gandalf"

 a$(0) = "snoopy"
 call capitalize a$(0)

 end

function formatAndTruncateXandY$(byref a, byref b)
 a = int(a)
 b = int(b)
 formatAndTruncateXandY$ = str$(a)+", "+str$(b)
end function

sub capitalize byref word$
 word$ = upper$(left$(word$, 1))+mid$(word$, 2)
end sub

263

 CALL

call subroutineName {list of zero or more comma separated values}

Description:

This command invokes a user defined subroutine. Call is followed by the name of the subroutine
and by zero or more string and/or numeric expressions.

For more information see SUB

264

 CALLBACK

Description:

A Callback is the address of a program function that is used as a parameter in API call. The
syntax is:

callback addressPTR, functionName(type1, type2...), returnValue

(Note: Callbacks are an advanced programming technique. They should only be used by

programmers with a good, working knowledge of calling API functions with CALLDLL.)

A CALLBACK command sets up a memory address for the function specified in the command.

An API function can then use this address to call the specified function many times, hence the
term CALLBACK. Most API functions are called once, and return a single value. A CALLBACK
function interacts with the program many times. The parameters are explained in more detail
below.

Usage:

addressPTR
This parameter assigns a name to the memory address of the function. This name is used in the

API call that requires the memory address.

functionName
This parameter is the name of the function in the Liberty BASIC program that is called by the API
function.

(type1, type2...)

The CALLBACK statement requires a comma-separated list of parameters, is specific to the
function used. Most W indows API references contain documentation for the particular functions
available. The parameters must be valid data TYPES such as "ulong" and "long".

returnValue
The TYPE of the return value is listed after the closing parenthesis. The Liberty BASIC function
can return a value to the calling function.

In the following demo, the Liberty BASIC function keeps an internal count, and returns 1 if it is
continuing to process information and 0 when it returns control to the calling function. It prints the

names of the first 5 windows that are sent to it by the EnumW indows API, then returns control to
the calling function.

texteditor #win.te, 10, 10, 250, 250
open "Enum Windows Example" for window as #win
print #win, "trapclose [quit]"

'set the variable named address to be the memory address for
'enumWndProc() using TYPES handle and ulong, and set
'the return TYPE of enumWndProc() to be a boolean

callback address, enumWndProc(handle, ulong), boolean

'call EnumWindows, which in turn calls back into the

265

'BASIC function at address.

calldll #user32, "EnumWindows", _
 address as ulong, _
 0 as long, _
 result as boolean

wait

[quit]
close #win
end

function enumWndProc(hwnd, lparam)
 labelBuffer$ = space$(71)
 calldll #user32, "GetWindowTextA", _
 hwnd as ulong, _
 labelBuffer$ as ptr, _
 70 as long, _
 result as long

 if left$(labelBuffer$, 1) <> chr$(0) then
 print #win.te, labelBuffer$
 call setCount getCount()+1
 end if
 if getCount() = 5 then
 enumWndProc = 0 'returning 0 causes EnumWindows to return
 else
 enumWndProc = 1
 end if

end function

sub setCount value
 count(0) = value
end sub

function getCount()
 getCount = count(0)
end function

266

 CALLDLL

CALLDLL #handle, "function", param1 as type1 [, param2 as type2], return as returnType

Description:

CALLDLL is used to call functions from the W indows API or from a third party DLL. A DLL is a

Dynamic Link Library, which is a module containing functions that can be called by a program
while it is running. The functions are specific to the DLL. The documentation for the DLL will

contain the information needed to call its functions.

#handle

This parameter is the handle that was given to the DLL when it was opened with the OPEN
statement.

"function"
This parameter is the name of the function, enclosed in quotes. It is case-sensitive.

param 1 as type1 [, param 2 as type2]
This is a list of input parameters required by the function. The number and TYPE of input
parameters is dependent upon the function being called. These parameters send information to

the function so that it knows how to perform its task as needed by the program. These
parameters must be passed AS TYPE. See Using Types with STRUCTS and CALLDLL for

details. The parameters will include information such as window or control handles, text strings to
display, and so on.

return as returnType
This parameter contains the value returned by the function. It must also be of the correct TYPE
expected by the function. If a function does not return a value, this parameter is passed AS
VOID.

Usage:

This example calls the W INDOW S API to minimize a window and change its caption.

 open "An Example" for window as #main
 h = hwnd(#main)

 open "user32" for dll as #user

 calldll #user, "CloseWindow", _
 h as long, _
 result as boolean

 calldll #user, "SetWindowTextA", _
 h as long, _
 "I was minimized!" as ptr, _
 result as void

 close #user

Liberty BASIC 3 has Enhanced DLL handle resolution. If a program hasn't opened certain default
DLLs, a reference to a like-named handle will still resolve to the desired DLL. This saves on code

267

to open and close DLLs. DLLs can still be opened with the OPEN statement.

Here are the default handles.

 #user32
 #kernel32
 #gdi32
 #winmm

 #shell32
 #comdlg32

 #comctl32

Examples:

'OPEN the DLL and give it a handle
Open "user32" for DLL as #u

Calldll #u, "CloseWindow", h as long, result as boolean

'CLOSE the DLL
close #u

or

'call the dll by its default handle.
'no need to OPEN it or CLOSE it
Calldll #user32, "CloseWindow", h as long, result as boolean

See also: STRUCT, Using Types with CALLDLL, W hat are APIs/DLLs?, How to Make API Calls

268

 CHECKBOX

CHECKBOX #handle.ext, "label", setHandler, resetHandler, x, y, wide, high

Description:

This command adds a checkbox control to the window referenced by #handle.ext. Checkboxes
have two states, set and reset. They are useful for getting input of on/off type information.

Here is a description of the parameters of the CHECKBOX statement:

#handle.ext
This parameter specifies the handle for this control. The #handle part should be the same as the
handle of the window containing the checkbox, and the .ext part names the checkbox uniquely in
the window.

"label"

This parameter contains the visible text of the checkbox

setHandler
This is the branch label or subroutine to go to when the user sets the checkbox by clicking on it.
W hen the checkbox is "set" it displays a checkmark. See also: Controls and Events

resetHandler

This is the branch label or subroutine to goto when the user resets the checkbox by clicking on it.
W hen the checkbox is "reset", the checkmark is removed. See also: Controls and Events

x
This is the x position of the checkbox relative to the upper left corner of the window it belongs to.

y
This is the y position of the checkbox relative to the upper left corner of the window it belongs to.

wide
This is the width of the checkbox control.

high
This is the height of the checkbox control.

Checkbox Commands

Checkboxes understand these commands:

print #handle.ext, "set"
This sets the checkbox, causing a checkmark to appear within it.

print #handle.ext, "reset"
This resets the checkbox, clearing it.

print #handle.ext, "value? result$"

The result$ variable is set to the status of the checkbox (either "set" or "reset").

print #handle.ext, "setfocus"

269

This causes the checkbox to receive the input focus. This means that any keypresses are
directed to the checkbox.

print #handle,ext, "locate x y width height"
This repositions the checkbox in its window. This is effective when the checkbox is placed inside

window of type "window". The checkbox will not update its size and location until a REFRESH
command is sent to the window. See the RESIZE.BAS example program.

print #handle, "font facenam e pointSize"
This sets the font to the specified face and point size. If an exact match cannot be found, then

Liberty BASIC will try to find a close match, with size taking precedence over face. For more on
specifying fonts read How to Specify Fonts

Example:

print #handle.ext, "font times_new_roman 10"

print #handle.ext, "enable"

This causes the control to be enabled.

print #handle.ext, "disable"
This causes the control to be inactive and grayed-out.

print #handle.ext, "show"
This causes the control to be visible.

print #handle.ext, "hide"
This causes the control to be hidden or invisible.

For information on creating controls with different background colors, see Colors and the

Graphical User Interface.

Usage

Here are sample programs that use checkboxes.

 ' This code demonstrates how to use checkboxes in

 ' Liberty BASIC programs with branch label handlers

 nomainwin
 button #1, "&Ok", [quit], UL, 120, 90, 40, 25
 checkbox #1.cb, "I am a checkbox", [set], [reset], 10, 10, 130, 20
 button #1, "Set", [set], UL, 10, 50
 button #1, "Reset", [reset], UL, 50, 50
 textbox #1.text, 10, 90, 100, 24

 WindowWidth = 180
 WindowHeight = 160

270

 open "Checkbox test" for dialog as #1
 print #1, "trapclose [quit]"

[inputLoop]
 input r$

[set]
 print #1.cb, "set"
 goto [readCb]

[reset]
 print #1.cb, "reset"
 goto [readCb]
 end

[readCb]
 print #1.cb, "value?"
 input #1.cb, t$
 print #1.text, "I am "; t$
 goto [inputLoop]

[quit] close #1 : end

 ' This code demonstrates how to use checkboxes in

 ' Liberty BASIC programs with subroutine handlers

 nomainwin
 button #1, "&Ok", [quit], UL, 120, 90, 40, 25
 checkbox #1.cb, "I am a checkbox", checkSet, checkReSet, 10, 10,
130, 20
 textbox #1.text, 10, 90, 100, 24

 WindowWidth = 180
 WindowHeight = 160
 open "Checkbox test" for dialog as #1
 print #1, "trapclose [quit]"

[inputLoop]
 input r$

sub checkSet cbHandle$
 print #cbHandle$, "value? v$"
 print #1.text, "I am ";v$
 end Sub

sub checkReSet cbHandle$
 print #cbHandle$, "value? v$"

 print #1.text, "I am ";v$
 end Sub

[quit] close #1 : end

271

 CHR$(n)

Description:

This function returns a one-character-long string, consisting of the character represented on the
ASCII table by the value n (0 - 255).

Usage:

 print chr$(77)
 print chr$(34)
 print chr$(155)

Produces:

M
"

›

272

 CLOSE #h

Description:

This command is used to close files and devices. This is the last step of a file "read" and/or
"write" operation, and it is also used to close windows or DLLs that have been opened. W hen

execution of a program is complete, if there are any files or devices left open, Liberty BASIC
displays a dialog explaining that it was necessary to close the opened files or devices. This is
designed as an aid so that the programmer can correct the problem. If for some reason the
programmer chooses to terminate the program early (this is done by closing the program's main
window before the program finishes), then Liberty BASIC will close any open files or devices

without posting a notice to that effect.

Usage:

 open "Graphic" for graphics as #gWin ' open a graphics window
 print #gWin, "home" ' center the pen
 print #gWin, "down" ' put the pen down
 for index = 1 to 100 ' loop 100 times
 print #gWin, "go "; index ' move the pen foreward
 print #gWin, "turn 63" ' turn 63 degrees
 next index
 input "Press 'Return'."; r$ ' this appears in main window
 close #gWin ' close graphic window

273

 CLS

Description:

This command clears the mainwin of text and sets the cursor back at the upper left hand corner.
It is useful for providing a visual break to separate different functional sections of a program.

Additionally, since the main window doesn't actually discard past information on its own, the CLS
command can be used to reclaim memory from a program by forcing the main window to dump
old text.

Usage:

 print "The total is: "; grandTotal
 input "Press 'Return' to continue."; r$
 cls
 print "*** Enter Next Round of Figures ***"

274

 COLORDIALOG

COLORDIALOG color$, chosen$

Description:

This command displays the W indows Common Color Dialog to allow a user to select a color. It
returns the red, green, and blue components of the color chosen, plus the Liberty BASIC name, if
it happens to correlate to one of the 16 named LB colors.

Usage:

color$
This is a string containing the starting color for the dialog. It can be an empty string, but it must
be included. It may be in one of two forms. It can be a named Liberty BASIC color, or a string

containing the red, green, blue values of the desired color with which to seed the colordialog.

chosen$
W hen the dialog is closed, this variable contains the color chosen by the user.

Examples:

colordialog "red", chosen$
print "Color chosen is ";chosen$

or
colordialog "255 0 0", chosen$
print "Color chosen is ";chosen$

Red, green and blue values must each be in the range of 0 to 255. 0 is the absence of a color,

and 255 is total saturation.

After the dialog closes, the receiver variable contains the red, green, blue values for the color

275

chosen by the user. If these values correlate to a named Liberty BASIC color, that color name
will be appended to the returned string.

'Returned string: RGB and name for a named color
255 255 0 yellow

'Returned string: RGB only for a non-named color:
250 230 190

Full Opening of Dialog
The colordialog opens a small dialog with a grid of typical colors displayed. The user can choose

to click the "Define Custom Colors" button to open a full RGB color spectrum from which to
choose. The full dialog looks like this:

276

 Com bobox

COMBOBOX #handle.ext, array$(), eventHandler, xPos, yPos, wide, high

Description:

Comboboxes are a lot like listboxes, but they are designed to save space. Instead of showing an
entire list of items, they show only the selected one. W hen the user clicks on the checkbox

arrow button (to the right), a list appears (drops down). It is then possible to browse the possible
selections, and pick one if so desired. W hen the selection is made, the new selection is
highlighted. The user can type into the textbox part on top of the combobox, rather than

choosing an item from the dropdown list. The program can get the contents of this field. The
combobox is loaded with a collection of strings from a specified string array, and a reload

command updates the contents of the combobox from the array when the contents of array
change.

#handle.ext
The #handle part of this item needs to be the same as the handle of the window containing the
combobox. The .ext part needs to be unique so that the program can send commands to the
combobox and get information from it later.

array$()
This is the name of the array (must be a string array) that contains the contents of the combobox.

 Be sure to load the array with strings before opening the window. If some time later it becomes
necessary to change the contents of the combobox, simply change the contents of the array and

send a RELOAD command to the combobox. The index numbers of items in the array may not
match the index numbers of the same items in the control. The control is loaded from the array,
and the first index used in the control is "1". No empty strings are loaded into the control, so only
array items that contain text are loaded.

eventHandler
This is the branch label or subroutine where execution begins when the user selects an item from

277

the combobox by clicking it. See also: Controls and Events

xPos & yPos

These coordinates specify the the distance in x and y (in pixels) of the combobox from the
upper-left corner of the window.

wide & high
These parameters determine the width and height (in pixels) of the combobox. "Height" in this

case referstothe length ofthe selection listwhen the combobox's button is clicked, not to the
size of the initial selection window, which is dependant upon the size of the font.

Here are the commands for combobox:

print #handle.ext, "!contents"
This command sets the contents of the field part of the combobox to the string after the !.

print #handle.ext, "contents? text$"

This retrieves the contents of the text field of the combobox into the variable called text$.

print #handle.ext, "locate x y width height"
This respositions the combobox in its window. This is effective when the combobox is placed
inside window of type "window" or "dialog". The combobox will not update its size and location

until a REFRESH command is sent to the window. See the RESIZE.BAS example program.

print #handle.ext, "font facenam e pointSize"
This sets the control's font to the specified face and point size. If an exact match cannot be
found, then Liberty BASIC will try to find a close match, with size taking precedence over face.
For more on specifying fonts read How to Specify Fonts

Example:
print #handle.ext, "font times_new_roman 10"

print #handle.ext, "select string"
This selects the item the same as "string" and updates the display. Note that "string" must be a

valid item from the combobox array. If a variable is to be used in this command, it must be
located outside the quotation marks, with the blank space preserved:

print #handle.ext, "select "; string$

print #handle.ext, "selectindex i"
This selects the item at index position i and updates the display. Note that "i" must be a valid
index number for the combobox array. If a variable is to be used in this command, it must be

located outside the quotation marks, with the blank space preserved:

print #handle.ext, "selectindex "; i

print #handle.ext, "selection? selected$"

This places the selected string into the variable selected$. If there is no selected item, then
selected$ will be a string of zero length (a null string).

print #handle.ext, "selectionindex? index"

278

This places the index of the selected string into the variable called index. If there is no selected
item, then index will be set to 0.

print #handle.ext, "reload"
This reloads the combobox with the current contents of its array and updates the display.

print #handle.ext, "setfocus"
This causes the combobox to receive the input focus. This means that any keypresses are

directed to the combobox.

print #handle,ext, "locate x y width height"
This repositions the combobox control in its window. This only works if the control is placed

inside window of type "window". The control will not update its size and location until a
REFRESH command is sent to the window. See the RESIZER.BAS example program.

print #handle.ext, "font facenam e pointSize"
This sets the combox's font to the specified face and point size. If an exact match cannot be

found, then Liberty BASIC will try to find a close match, with size taking precedence over face.
For more on specifying fonts read How to Specify Fonts

Example:

print #handle.ext, "!font times_new_roman 10"

print #handle.ext, "enable"
This causes the control to be enabled.

print #handle.ext, "disable"
This causes the control to be inactive and grayed-out.

print #handle.ext, "show"

This causes the control to be visible.

print #handle.ext, "hide"

This causes the control to be hidden or invisible.

Usage:

'combobox demo with branch label event handler

nomainwin
a$(1) = "one"
a$(2) = "two"
a$(3) = "three"
a$(4) = "four"

combobox #win.combo, a$(),[doCombo],10,10,120,200
open "Combobox Demo" for window as #win
#win "trapclose [Quit]"

279

#win.combo "selectindex 1"

wait

[Quit] close #win:end

[doCombo]
#win.combo "selection? sel$"
notice "You chose ";sel$
wait

'combobox demo with subroutine event handler

nomainwin
a$(1) = "one"
a$(2) = "two"
a$(3) = "three"
a$(4) = "four"

combobox #win.combo, a$(),doCombo,10,10,120,200

open "Combobox Demo" for window as #win
#win "trapclose Quit"
#win.combo "selectindex 1"

wait

sub Quit handle$
 close #handle$
 end
 end sub

sub doCombo handle$
#handle$ "selection? sel$"
notice "You chose ";sel$
end sub

For information on creating controls with different background colors, see Colors and the
Graphical User Interface.

280

 Com m andLine$
CommandLine$

Description:
This special variable contains any switches that were added when Liberty BASIC was started.

This is especially useful in applications executing under the runtime engine. It allows a
tokenized program to receive information upon startup and act upon that information. The
CommandLine$ variable can be parsed in the same way as other strings to retrieve the
information. One way to extract information from the CommandLine$ is with INSTR(). The
W ORD$() and VAL() functions can also be used to evaluate the contents of CommandLine$.

See the examples and explanations below.

Usage:

In this example the program checks CommandLine$ for the existence of the word "red" and if it
is there, the program executes a color command:

'commandlinetest1.bas
'
'program to be tokenized
'to commandlinetest1.tkn
'and used with runtime engine
'commandlinetest1.exe

open "CommandLine$ Test" for graphics as #win
print #win, "trapclose [quit]"

'convert to lower case for evaluation:
CommandLine$ = lower$(CommandLine$)

if instr(CommandLine$, "red") > 0 then
 print #win, "fill red; flush"
end if

wait

[quit]
close #win : end

To call this program from another program as a TKN or EXE, or to run the EXE by using the RUN

button in W indows:

run "commandlinetest1.tkn red"
or
run "commandlinetest1.exe red"
'the CommandLine$ variable will contain "red"

Multiple param eters in Com m andLine$

The CommandLine$ may be parsed using the W ORD$() function as well. In the following
example, the program checks for three colors to use in a graphics window.

281

'commandlinetest2.bas
'
'program to be tokenized
'to commandlinetest2.tkn
'and used with runtime engine
'commandlinetest2.exe

open "CommandLine$ Test" for graphics as #win
print #win, "trapclose [quit]"
print #win, "down"

if word$(CommandLine$, 1) <> "" then
 fillColor$ = word$(CommandLine$,1)
 print #win, "fill ";fillColor$
end if

if word$(CommandLine$, 2) <> "" then
 backColor$ = word$(CommandLine$,2)
 print #win, "backcolor ";backColor$
end if

if word$(CommandLine$, 3) <> "" then
 Color$ = word$(CommandLine$,3)
 print #win, "color ";Color$
end if

print #win, "size 5"
print #win, "place 10 20"
print #win, "boxfilled 100 110"
print #win, "flush"
wait

[quit]
close #win : end

To call this program from another program as a TKN or EXE, or to run the EXE by using the RUN
button in W indows:

run "commandlinetest2.tkn red yellow blue"
or
run "commandlinetest1.exe red yellow blue"
'the CommandLine$ variable will contain "red yellow blue"

Numbers and Com m andLine$
The information contained and used in CommandLine$ can be anything that can be contained in
a string. If numbers are required, then use the VAL() function to extract them.

first$ = word$(CommandLine$,1)
firstval = val(first$)

Suggestions for using Com m andLine$
The CommandLine$ could contain a filename which the program would open and load into a
texteditor. The CommandLine$ could contain numbers to be used in calculations. As in the

282

examples above, it could contain colors that determine the look of a window.

283

 CONFIRM

CONFIRM string; responseVar

Description:

This statement opens a dialog box displaying the contents of string and presenting two
buttons marked 'Yes' and 'No'. W hen the selection is made, the string "yes" is returned if the

'Yes' button is pressed, and the string "no" is returned if the 'No' button is pressed by the user.
 The result is placed in responseVar.

Usage:

[quit]

 ' bring up a confirmation box to be sure that
 ' the user wants to quit
 confirm "Are you sure you want to QUIT?"; answer$
 if answer$ = "no" then [mainLoop]
 end

Multiline Message
If line breaks are inserted into the message, it appears as a multiline message. Line breaks

are represented by chr$(13). The CONFIRM dialog window is sized to accomodate the
message.

c$ = "This operation will reset defaults" + chr$(13)
c$ = c$ + "All changes will be lost." + chr$(13)
c$ = c$ + "This operation is not reversable." + chr$(13)
c$ = c$ + "Continue anyway?"
confirm c$; answer$

284

 COS(n)

COS(n)

Description:

This function returns the cosine of the angle n. The angle n should be expressed in radians.

Usage:

 for c = 1 to 45
 print "The cosine of "; c; " is "; cos(c)
 next c

Tip:

There are 2 * pi radians in a full circle of 360 degrees. A formula to convert degrees to radians is:
radians = degrees divided by 57.29577951

Note: See also SIN() and TAN()

285

 CURSOR

Description:

The CURSOR command makes it easy to change the mouse pointer to be one of 5 predefined

shapes.

 NORMAL = the default pointer
 ARROW = the standard W indows arrow

 CROSSHAIR = a + shaped pointer
 HOURGLASS = the W indows hourglass
 TEXT = the text insertion I-beam

Exam ple:

 cursor hourglass
 for i = 1 to n
 'perform some work
 next i
 cursor normal

The program's code is responsible for setting the cursor back to the default (normal) when
appropriate. If a runtime error halts a program, the cursor will automatically revert to normal.

286

 DATA

Description:

The DATA statement provides a convenient way to insert data into programs. The DATA can be
read once or many times using the READ statement. A DATA statement doesn't actually

perform an action when it is encountered in the program's code.

Example:

 'read the numbers and their descriptions
 while desc$ <> "end"
 read desc$, value
 print desc$; " is the name for "; value
 wend
 'here is our data
 data "one", 1, "two", 2, "three", 3, "end", 0
 end

One or more DATA statements form the whole set of data elements. For example, the data
represented in the example above can also be listed in more than one DATA statement:

 'here is our data in two lines instead of one
 data "one", 1, "two", 2
 data "three", 3, "end", 0

DATA is local to the subroutine or function it is defined in.

Error Handling
An attempt to read more DATA items than are contained in the DATA lists causes the program
to halt with an error. Notice that in the examples above, an "end" tag is placed in the DATA and
when it is reached, the program stops READing DATA. This is an excellent way to prevent
errors from occuring. If an end tag or flag of some sort is not used, be sure that other checks

are in place to prevent the READ statement from trying to access more DATA items than are
contained in the DATA statements.

See also: READ, RESTORE, READ and DATA

287

 DATE$()

Description:

Instead of adopting the date$ variable from QBasic, Liberty BASIC uses a function instead. This
approach gives some additional flexibility. Unless otherwise indicated, the function returns

today's date in the format specified. See also TIME$(), Date and Time Functions

Usage:

 'This form of date$() produces this format
 print date$() ' Nov 30, 1999
 print date$("mm/dd/yyyy") ' 11/30/1999
 print date$("mm/dd/yy") ' 11/30/99
 print date$("yyyy/mm/dd") ' 1999/11/30 for sorting
 print date$("days") ' 36127 days since Jan 1, 1901
 print date$("4/1/2002") ' 36980 days since Jan 1, 1901 for
given date
 print date$(36980) ' 04/01/2002 mm/dd/yyyy string returned
 ' when given days since Jan
1, 1901

You can assign a variable to the result:

 d$ = date$()

NOTE: All the above forms return a string except for date$("days"), and
date$("4/1/02")

Using the date$("4/1/02") function:
This function returns the number of days since Jan 1, 1901 for the given date. Any of the
following formats are acceptable. Please notice that if the first two digits of the year are omitted,

20xx is assumed.

 'some examples
 print date$("4/1/02") 'this assumes 4/1/2002
 print date$("1/1/1901")
 print date$("April 1, 2002")
 print date$("Apr 1, 2002")

Here is a small program that demonstrates the last two implementations of the date$ function. It

determines the number of shopping days until the holiday season:

 today = date$("days")
 target = date$("12/25/2003") 'subsititute current year and desired
holiday
 print "Shopping days left: ";
 print target - today

288

 Dechex$()

DECHEX$(number)

Description:

Returns a string representation of a decimal number converted to hexadecimal (base 16)

Usage:

 print dechex$(255)

prints...

 FF

See also: HEXDEC()

289

 DefaultDir$

Description:

A string variable that contains the default directory for the running Liberty BASIC program. The
format is "drive:\dir1", or "drive:\dir1\dir2" etc. There is no backslash appended to the DefaultDir$

variable.

Usage:

 print DefaultDir$

As used with a FILES statement:

 files DefaultDir$, "*.txt", info$(

As used to access a text file in the same directory as the program. Notice that the backslash

must be added to the beginning of the filename:

 open DefaultDir$ + "\readme.txt" for append as #f
 print #f, "Sample"
 close #f

290

 DIM array()

DIM array(size) -or- DIM array(size, size)

DIM array1(size1), array2(size2), array3(size3), etc.

Description:
DIM sets the maximum size of an array. Any array can be dimensioned to have as many

elements as memory allows. If an array is not DIMensioned explicitly, then the array will be
limited to 11 elements, 0 to 10. Non DIMensioned double subscript arrays will be limited to 100
elements 0 to 9 by 0 to 9. The DIM statement can be followed by a list of arrays to be
dimensioned, separated by commas.

Usage:

'Example 1
 print "Please enter 10 names."
 for index = 0 to 10
 input names$: name$(index) = name$
 next index

'Example 2
 'Dimension three arrays at once
 dim arrayOne(100), arrayTwo$(100, 5), arrayThree(100, 100)

The FOR . . . NEXT loop in the example above is limited to a maximum value of 10 because the
array names$() is not dimensioned, and therefore is limited to 11 elements, numbered 0 - 10. To
remedy this problem, add a DIM statement, as in the example below. Notice that it is not

necessary to use all available index numbers. In the example the array is filled beginning at
index 1, ignoring index 0.

 dim names$(20)
 print "Please enter 20 names."
 for index = 1 to 20
 input names$: names$(index) = name$
 next index

Double subscripted arrays can store information more flexibly:

 dim customerInfo$(10, 5)
 print "Please enter information for 10 customers."
 for index = 0 to 9
 input "Customer name >"; info$: customerInfo$(index, 0) = info$
 input "Address >"; info$: customerInfo$(index, 1) = info$
 input "City >"; info$: customerInfo$(index, 2) = info$
 input "State >"; info$: customerInfo$(index, 3) = info$
 input "Zip >"; info$: customerInfo$(index, 4) = info$
 next index

291

 DisplayW idth

Description:

The special variable DisplayW idth contains the width of the display screen in pixels.

292

 DisplayHeight

Description:

The special variable DisplayHeight contains the height of the display screen in pixels.

293

 DO LOOP
 do
 'code in here

 loop while booleanExpr

'execute the code inside this loop at least once
do
 'code in here
loop until booleanExpr

do while expr
 'some code

loop

do until expr

 'some code
loop

Description:
DO and LOOP cause code to be executed while a certain condition evaluates to true, or until a

certain condition evaluates to true. The "while" and "until" parts of this expression can be located
either in the "DO" statement or the "LOOP" statement. The following form is good for cases when

you want a loop that always executes once and then only loops back as long as a condition is
met. It will continue looping back and executing the code as long as the booleanExpr evaluates to
true.

 'execute the code inside this loop at least once

 do
 'code in here

 loop while booleanExpr

You can also use the UNTIL keyword to reverse the logic of the expression:

 'execute the code inside this loop at least once

 do
 'code in here
 loop until booleanExpr

Usage:
 'examples using "loop while" and "loop until"
 print "print a zero"
 do
 print a
 a = a + 1
 loop while a > 10
 print

 print "print 1 to 9"
 do
 print a
 a = a + 1
 loop while a < 10
 print

294

 'examples using loop until
 print "print a zero"
 do
 print b
 b = b + 1
 loop until b = 1
 print

 print "print 1 to 9"
 do
 print b
 b = b + 1
 loop until b = 10

 'examples using loop while
 print "print 1 to 3"
 a = 1
 do while a <= 3
 print a
 a = a + 1
 loop
 print

 print "print 9 to 7"
 b = 9
 do until b = 6
 print b
 b = b - 1
 loop
 print

 print "don't print anything"
 do while c = 10
 print c
 c = c + 1
 loop

 end

295

 Drives$

Description:

Drives$ is a system variable. It can be used like any other variable. Use it in expressions, print
it, perform functions on it, etc. It is special in that it contains the drive letters for all the drives

installed in the computer in use.

For example:

 print Drives$

 W ill in many cases produce:

 a: b: c:

It can be used to provide a way to select a drive like this:

 'a simple example illustrating the use of the Drives$ variable
 dim letters$(25)
 index = 0
 while word$(Drives$, index + 1) <> ""
 letters$(index) = word$(Drives$, index + 1)
 index = index + 1
 wend

 statictext #win, "Double-click to pick a drive:", 10, 10, 200, 20
 listbox #win.list, letters$(, [selectionMade], 10, 35, 100, 150
 open "Scan drive" for dialog as #win

 input r$

[selectionMade]

 close #win
 end

296

 DUMP

Description:

This statement forces anything that has been LPRINTed to be sent to the Print Manager to
commence printing immediately. If DUMP is not issued, the LPRINTed text will be printed, but it

might not be printed right away.

Usage:

 'sample program using LPRINT and DUMP
 open "c:\autoexec.bat" for input as #source
 while eof(#source) = 0
 line input #source, text$ 'print each line
 lprint text$
 wend
 close #source
 dump 'force the print job
 end

Note: see also LPRINT

297

 EOF(#h)

Description:

This function is used to determine when reading from a sequential file whether the end of the file
has been reached. If so, -1 is returned, otherwise 0 is returned.

Usage:

 open "testfile" for input as #1
 if eof(#1) < 0 then [skipIt]
[loop]
 input #1, text$
 print text$
 if eof(#1) = 0 then [loop]
[skipIt]
 close #1

298

 END

Description:

This statement is used to immediately terminate execution of a program. If any files or devices
are still open (see CLOSE) when execution is terminated, then Liberty BASIC will close them and

present a dialog expressing this fact. It is good programming practice to close files and devices
before terminating execution.

Note: The STOP statement is functionally identical to END and is interchangable. Also, make

sure that when a program is finished running that it terminates properly with an END statement.

Otherwise the program's windows may all be closed, giving the illusion that it has stopped

running, but it will still be resident in memory and may still consume processor resources.

Usage:

 print "Preliminary Tests Complete."
[askAgain]
 input "Would you like to continue (Y/N) ?"; yesOrNo$
 yesOrNo$ = left$(yesOrNo$, 1)
 if yesOrNo$ = "y" or yesOrNo$ = "Y" then [continueA]
 ifYesOrNo$ = 'n" or yesOrNo$ = "N" then end
 print "Please answer Y or N."
 goto [askAgain]
[continueA]

...some more code here...

end 'more than one end statement is allowed

299

 EXP(n)

Description:

This function returns e ^ n, with e being 2.7182818 . . .

Usage:

 print exp(5) produces: 148.41315

300

 EVAL(code$)

Description:

Liberty BASIC now has two functions for evaluating BASIC code inside a running program. The
eval() function evaluates the code and returns a numeric value, and the eval$() function works the
same way but returns a string value. Both will execute the very same code, but the string
function converts the result to a string if it isn't already one, and the numeric version of the
function converts it to numeric values.

Evaluating to a string

Here we show how to evaluate code to a string, and what happens if you try to evaluate it to be a
number.

 'Let's evaluate some code that produces a non-numeric result
 a$(0) = "zero"
 a$(1) = "one"
 a$(2) = "two"
 code$ = "a$(int("+str$(rnd(1))+"*3))"
 print "We will evaluate the code: "; code$
 result$ = eval$(code$)
 print result$

 'Now let's use the eval function, which effectively does a
 'val() to the result of the calculation. Converting a non
 'numeric string to a numeric value results in zero.
 result = eval(code$)
 print result

Evaluating to a num ber
Here's an example of the most common type of code evaluation users will want to do: Numeric
computation. Let's just make a short example that asks you to type an expression to evaluate.

 'ask for an expression
 input "Type a numeric expression>"; code$
 answer = eval(code$)
 print answer

301

 EVAL$(code$)

Description:

Liberty BASIC now has two functions for evaluating BASIC code inside a running program. The
eval() function evaluates the code and returns a numeric value, and the eval$() function works the
same way but returns a string value. Both will execute the very same code, but the string
function converts the result to a string if it isn't already one, and the numeric version of the
function converts it to numeric values.

Evaluating to a string

Here we show how to evaluate code to a string, and what happens if you try to evaluate it to be a
number.

 'Let's evaluate some code that produces a non-numeric result
 a$(0) = "zero"
 a$(1) = "one"
 a$(2) = "two"
 code$ = "a$(int("+str$(rnd(1))+"*3))"
 print "We will evaluate the code: "; code$
 result$ = eval$(code$)
 print result$

 'Now let's use the eval function, which effectively does a
 'val() to the result of the calculation. Converting a non
 'numeric string to a numeric value results in zero.
 result = eval(code$)
 print result

Evaluating to a num ber
Here's an example of the most common type of code evaluation users will want to do: Numeric
computation. Let's just make a short example that asks you to type an expression to evaluate.

 'ask for an expression
 input "Type a numeric expression>"; code$
 answer = eval(code$)
 print answer

302

 FIELD #h, list...

FIELD #handle, length1 as varName, lenght2 as varName, . . .

Description:
FIELD is used with an OPEN "filename.ext" for random as #handle statement to specify the fields
of data in each record of the opened file. For example in this program FIELD sets up 6 fields of
data, each with an appropriate length, and associates each with a string variable that holds the

data to be stored in that field:

 open "custdata.001" for random as #cust len = 70 ' open as random access
 field #cust, 20 as name$, 20 as street$, 15 as city$, 2 as state$, 10 as zip$, 3 as age

[inputLoop]

 input "Name >"; name$
 input "Street >"; street$

 input "City >"; city$
 input "State >"; state$

 input "Zip Code >"; zip$
 input "Age >"; age

 confirm "Is this entry correct?"; yesNo$ ' ask if the data is

 ' entered correctly
 if yesNo$ = "no" then [inputLoop]

 recNumber = recNumber + 1 ' add 1 to the record # and put the record

 put #cust, recNumber

 confirm "Enter more records?"; yesNo$ ' ask whether to enter more records
 if yesNo$ = "yes" then [inputLoop]

 close #cust ' end of program, close file

 end

Notice that Liberty BASIC permits the use of numeric variables in FIELD (eg. age), and it allows
you to PUT and GET with both string and numeric variables, automatically, without needing

LSET, RSET, MKI$, MKS$, MKD$, CVI, CVS, & CVD that are required with Microsoft BASICs.

Note: See also Random Files, PUT and GET

303

 FILEDIALOG

FILEDIALOG titleString, templateString, receiverVar$

Description:

This command opens a W indows Common Filedialog. Liberty BASIC 3+ uses long filenames
and an explorer-type filedialog. The dialog lets a user navigate around the directory structure,
looking at filenames that have a specific extension and selecting one.

titleString
This parameter is used to label the Filedialog window. It appears in the titlebar of the window. If
the window label specified has the word "save" in it, then the save style of the dialog will be used

instead of the open style. This means that the button to approve the file selection will say "save"
rather than "open".

'will have buttons that say OPEN and CANCEL:
filedialog "Open text file", "*.txt", fileName$
print "File chosen is ";fileName$

'will have buttons that say SAVE and CANCEL:
filedialog "Save As...", "*.txt", fileName$
print "File chosen is ";fileName$

tem plateString

This parameter is used as a filter so that only files matching a wildcard are listed. To view all file
types, the templateString is " *.* " To access multiple extensions in a filedialog, separate the
desired extensions with a semicolon character, like this example, which displays fileswith

304

extensions ofboth BAS and BAK files in the dialog.

filedialog "Open code file", "*.bas;*.bak", fileName$

receiverVar$
W hen the user selects a filename, the resulting full path specification will be placed into
receiverVar$. This parameter contains an empty string if the user canceled the Filedialog.

Usage
The following example produces a dialog box asking the user to select a text file to open:

 filedialog "Open text file", "*.txt", fileName$

If a file named "c:\liberty\summary.txt' was selected, and "Open" was clicked, then program
execution would resume after placing the string "c:\liberty\summary.txt" into fileName$. If on the

other hand "Cancel" was clicked, then an empty string would be placed into fileName$. Program
execution would then resume. Be sure to trap this possibility in your programs, or an error could

occur.

filedialog "Open text file", "*.txt", fileName$

if fileName$<>"" then
 open fileName$ for input as #f
 'do stuff
 close #f
else
 notice "No file chosen!"
end if

305

 FILES
Description:
The FILES statement collects file and directory information from any disk and or directory and fills

a double-dimensioned array with the information. It is also good for determining if a specific file
exists (see below).

Usage:

 dim arrayName$(10, 10)
 files pathSpec$, arrayName$(
or
 files pathSpec$, arrayName$()

 'you must predimension the array info$(),
 'even though FILES will
 'redimension it to fit the information it provides.
 dim info$(10, 10)
 files "c:\", info$()

The above FILES statement will fill info$() in this fashion:

 info$(0, 0) - a string specifying the qty of files found
 info$(0, 1) - a string specifying the qty of subdirectories found
 info$(0, 2) - the drive spec
 info$(0, 3) - the directory path

Starting at info$(1, x) you will have file information:

 info$(1, 0) - the file name

 info$(1, 1) - the file size
 info$(1, 2) - the file date/time stamp

Knowing from info$(0, 0) how many files we have (call it n), we know that our subdirectory
information starts at n + 1, so:

 info$(n + 1, 0) - the complete path of a directory entry (ie. \work\math)
 info$(n + 1, 1) - the name of the directory in specified (ie. math)

You can optionally specify a wildcard. This lets you get a list of all *.ini files, for example. This is

how you do it:

 files DefaultDir$, "*.ini", info$(

This also makes it practical to use to check for file existence. If you want to know if a file
c:\config.bak exists, you could try...

 files "c:\", "config.bak", info$(

 If val(info$(0, 0)) > 0, then the file exists.

306

 FONTDIALOG

FONTDIALOG fontSpec, fontSpecVar$

Description:

This command opens a W indows Common Fontdialog. It allows a user to select a font face,
size and attributes. After the user closes the dialog, the font chosen is contained in the receiver

variable fontSpecVar$.

fontSpec
This parameter describes a font by name, size and other attributes. The font dialog opens with
a best fit to this specification. The user can then accept or adjust the font selection.

fontSpecVar$
This variable holds a font specification chosen by the user after the Fontdialog is closed. If the
user clicked the "Cancel" button, this variable contains an empty string "". The string variable
contains this information: "facename size attributes"

"arial 14 italic"
"courier_new 12 bold"

FONT SPECIFICATIONS

FaceName

The facename is case insensitive, so "Arial" is the same as "ARIAL" and "arial." To specify a

font which has spaces in its name, use underscores in place of the spaces, like this:

 Courier New

becomes...

 Courier_New (or ignore the uppercase letters and type courier_new).

307

Size in Points

Specify a point size as above by using a single size parameter. A "point" is 1/72 of an inch,
so there are 72 points in an inch. A font that is 14 points high is not the same size as a font
that is 14 pixels high.

Size in Pixels

To specify font size by pixel rather than by point, include parameters for both width and height

in the font command. If the width parameter is set to 0, the default width for that font face and
height is used.

Here are some examples that set font size by point and by pixel:

 'specify just a point size with a single size parameter
 print #fontExample, "font Arial 14"

 'specify a width and height in pixels
 ' with two size parameters
 print #fontExample, "font Arial 8 15"

 'specify a height, and let Windows pick the width
 '(for compatibility with earlier versions of Liberty BASIC)
 print #fontExample, "font Arial 0 15"

Attributes

Any or all of these attributes (modifiers) can be added - italic, bold, strikeout, and underscore.

Usage:

 'open a font dialog
 fontdialog "arial 10 italic", chosenFont$
 if chosenFont$ <> "" then
 open "Font sample" for graphics as #font
 print #font, "down ; font "; chosenFont$
 print #font, "\\AaBbCcDdEeFfGgHhIiJj"
 print #font, "trapclose [closeFont]"
 wait
 end if
 end

[closeFont]
 close #font
 end

See also: How to Specify Fonts

308

 FOR...[EXIT FOR]...NEXT
Description:
The FOR . . . NEXT looping construct provides a way to execute code a specific amount of

times. See the section below on the proper way to exit a loop before the counter variable
reaches the limit. A starting and ending value are specified:

 for var = 1 to 10
 {BASIC code}
 next var

In this case, the {BASIC code} is executed 10 times, with var being 1 the first time, 2 the second,
and on through 10 the tenth time. Optionally (and usually) var is used in some calculation(s) in
the {BASIC code}. For example if the {BASIC code} is print var ̂ 2, then a list of squares for var
will be displayed upon execution.

The specified range could just as easily be 2 TO 20, instead of 1 TO 10, but since the loop
always counts +1 at a time, the first number must be less than the second. The way around this

limitation is to place STEP n at the end of for FOR statement:

 for index = 20 to 2 step -1
 {BASIC code}
 next index

This loops 19 times returning values for index that start with 20 and end with 2. STEP can be

used with both positive and and negative numbers and it is not limited to integer values. For
example:

 for x = 0 to 1 step .01
 print "The sine of "; x; " is "; sin(x)
 next x

Optional variable with "next"

Liberty BASIC 3 makes the use of a variable after "next" optional, but if one is designated, it
must match the variable use with "for". Example:
Correct:
 for x = 0 to 1 step .01
 print "The sine of "; x; " is "; sin(x)
 next

Incorrect:
 for x = 0 to 1 step .01
 print "The sine of "; x; " is "; sin(x)
 next y

Exiting a loop prem aturely
GOSUB, FUNCTION and SUB may be used within a FOR/NEXT loop because they only
temporarily redirect program flow or call on other parts of the program. Program execution
resumes within the FOR/NEXT loop in these instances. Program execution does not return to the

FOR/NEXT loop if GOTO is used within the loop. GOTO should not be used to exit a
FOR/NEXTloop. "EXIT FOR" will correctly exit the loop before it would have terminated normally.

 for index = 1 to 10
 print "Enter Customer # "; index

309

 input customer$
 if customer$ = "" then [quitEntry] 1
 'don't cut out of a for/next loop like this
 cust$(index) = customer$
 next index
 [quitEntry]

 . . . is not allowed! Rather use while ... wend:

 index = 1
 while customer$ <> "" and index <= 10
 print "Enter Customer # "; index
 input customer$
 cust$(index) = customer$•
 index = index + 1
 wend

EXIT FOR

If it is necessary to exit a loop before the counter variable has reached its final value, use the
EXIT FOR statement. This allows the program to exit the loop properly and to preserve the

current value of the counter variable. Use it like this:

for x = 1 to 20
 y=x*3
 if y>40 then EXIT FOR
next x

print "Final x value ";x
print "Final y value ";y

'Output
Final x value 14
Final y value 42

310

 FUNCTION
See also: Functions and Subroutines, BYREF

function functionName(zero or more parameter variable names)
 'code for the function goes in here

 functionName = returnValueExpression
end function

Description:
This statement defines a function. The function can return a string value, or a numeric value. A
function that returns a string value must have a name that ends with the "$" character. A function
that returns a numeric value must not include a "$" in its name. Zero or more parameters may be

passed into the function. A function cannot contain another function definition, nor a subroutine
definition. Note that the opening parenthesis is actually part of the function name. Do not include
a space between the name and the opening parenthesis, or the code generates an error.

Right:
function functionName(var1, var2)

W rong:
function functionName (var1, var2)

Returning a Value
To return a value from the function, assign the value to be returned to a variable of the same name
as the function. If no return value is specified, then numeric and string functions will return 0 and
empty string respectively.

 functionName = returnValueExpression

Local Variables
The variable names inside a function are scoped locally, meaning that the value of any variable

inside a function is different from the value of a variable of the same name outside the function.

Passing by Reference
Variables passed as arguments into functions are passed "by value" which means that a copy of
the variable is passed into the function. The value of the variable is not changed in the main

program if it is changed in the function. A variable may instead by passed "byref" which means
that a reference to the actual variable is passed and a change in the value of this variable in the

function changes the value of the variable in the main program.

Global Variables and Devices

Variables declared with the GLOBAL statement are available in the main program and in
subroutines and functions.

Arrays, structs and handles of files, DLLs and windows are global to a Liberty BASIC program,

and visible inside a function without needing to be passed in.

Special global status is given to certain default variables used for sizing, positioning, and coloring
windows and controls. These include variables W indowW idth, W indowHeight, UpperLeftX,
UpperLeftY, ForegroundColor$, BackgroundColor$, ListboxColor$, TextboxColor$,
ComboboxColor$, TexteditorColor$. The value of these variables, as well as DefaultDir$ and com
can be seen and modified in any subroutine/function.

311

Branch Labels
Branch labels are locally scoped. Code inside a function cannot see branch labels outside the
subroutine, and code outside a function cannot see branch labels inside any subroutine.

End Function

The function definition must end with the expression "end function."

Executing Functions

Be sure that a program doesn't accidentally flow into a function. A function should only execute
when it is called by command in the program.

wrong:
 for i = 1 to 10
 'do some stuff
 next i

 Function MyFunction(param1, param2)
 'do some stuff
 MyFunction=value
 End Function

correct:
 for i = 1 to 10
 'do some stuff
 next i

 WAIT

 Function MyFunction(param1, param2)
 'do some stuff
 MyFunction=value
 End Function

Exam ple Usage:

'count the words
input "Type a sentence>"; sentence$
print "There are "; wordCount(sentence$); " words in the sentence."
end

function wordCount(aString$)
 index = 1
 while word$(aString$, index) <> ""
 index = index + 1
 wend
 wordCount = index - 1
end function

See also: SUB , Recursion, Functions and subroutines

312

 GET #h, n

GET #handle, recordNumber

Description:
GET is used after a random access file is opened to get a record of information (see FIELD) from
a specified position.

Usage:

 open "custdata.001" for random as #cust len = 70 ' open random
access file
 field #cust, 20 as name$, 20 as street$, 15 as city$, 2 as state$,
10 as zip$, 3 as age

 ' get the data from record 1
 get #cust, 1

 print name$
 print street$
 print city$
 print state$
 print zip$
 print age

 close #cust
 end

Note: See also Random Files, PUT, FIELD

313

 GETTRIM #h, n

GETTRIM #handle, recordNumber

Description:
The GETTRIM command is exactly like the GET command, but when data is retrieved, all
leading and trailing blank space is removed from all data fields before being committed to
variables.

Note: see also GET

314

 GOSUB label

Description:

GOSUB causes execution to proceed to the program code following the label using the form
'GOSUB label'. The label can be either a traditional line number or a branch label name

enclosed in square brackets, like this: [branchLabel]. Spaces and numbers are not allowed
as part of branch label names..

Here are some valid branch labels: [mainMenu] [enterLimits] [repeatHere]
Here are some invalid branch labels: [enter limits] mainMenu [1moreTime]

After execution is transferred to the point of the branch label, then each statement will be
executed in normal fashion until a RETURN is encountered. W hen this happens, execution is
transferred back to the statement immediately after the GOSUB. The section of code between

a GOSUB and its RETURN is known as a 'subroutine.' One purpose of a subroutine is to save
memory by having only one copy of code that is used many times throughout a program.

Usage:

 print "Do you want to continue?"
 gosub [yesOrNo]
 if answer$ = "N" then [quit]
 print "Would you like to repeat the last sequence?"
 gosub [yesOrNo]
 if answer$ = "Y" then [repeat]
 goto [generateNew]

[yesOrNo]
 input answer$
 answer$ = left$(answer$, 1)
 if answer$ = "y" then answer$ = "Y"
 if answer$ = "n" then answer$ = "N"
 if answer$ = "Y" or answer$ = "N" then return
 print "Please answer Y or N."
 goto [yesOrNo]

Using GOSUB [yesOrNo] in this case saves many lines of code in this example. The
subroutine [yesOrNo] could easily be used many other times in such a hypothetical program,

saving memory and reducing typing time and effort. This reduces errors and increases
productivity.

Note: see also GOTO

315

 GLOBAL
GLOBAL var1, var2$...,varN

Description:
This statement specifies that the variables listed are global in scope. They are visible inside
functions and subroutines as well as in the main program code. Global variables can be modified
inside functions and subroutines as well, so care must be taken not to alter them accidentally,
because this can easily cause errors in the program that are difficult to isolate. Use global

variables for things like values for true and false, file paths, user preferences etc. See also:
Function, Sub

Usage:

 global true, false, font$
 true = 1
 false = 0
 font$ = "times_new_roman 10"

Special Globals

The special capitalized globals (like W indowW idth, DefaultDir$, the color setting variables, etc.)
that Liberty BASIC has supported since globals were first introduced in LB2, are now promoted to
true global variables. Until now, these could only be set in the main part of the program, not in

functions and subroutines. That limitation has now been lifted. See the code below for examples
of this.

Exam ple one:

 global true, false, font$
 true = 1
 false = 0
 font$ = "times_new_roman 10"

 call makeWindow
 print "WindowWidth was changed: "; WindowWidth
 wait

sub makeWindow
 if true <> false then
 notice "Hey, true isn't the same as false. Whatta ya know?"
 end if
 WindowWidth = 350
 texteditor #main.te1, 8, 8, 250, 152
 textbox #main.tb1, 16, 192, 112, 24
 statictext #main.Statictext4, "Font_Name w h", 8, 168, 100, 18
 button #main.apply1, "Apply", [applyFont1], UL, 136, 192, 67,
24
 radiobutton #main.rb1, "Radiobutton 1", [set], [clear], 16, 226,
190, 20
 checkbox #main.cb1, "Checkbox 1", [set], [clear], 16, 256, 190, 20
 open "Untitled" for window as #main
 #main "font "; font$
 #main.te1 "The font is: "; font$

316

end sub

Exam ple two:

'define a global string variable:
global title$
title$ = "Great Program!"

'Special system variables don't
'need to be declared as global,
'since they have that status automatically
BackgroundColor$ = "darkgray"
ForegroundColor$ = "darkblue"

'call my subroutine to open a window
 call openIt
 wait

sub openIt
 statictext #it.stext, "Look Mom!", 10, 10, 70, 24
 textbox #it.tbox, 90, 10, 200, 24
 open title$ for window as #it
 print #it.tbox, "No hands!"
end sub

317

 GOTO label

Description:

GOTO causes Liberty BASIC to proceed to the program code following the label, using the form
'GOTO label'. The label can be either a traditional line number or a branch label in the format
[branchLabel] where the branch label name can be any upper/lowercase letter combination.
Spaces and digits are not allowed.

Here are some valid branch labels: [mainMenu] [enterLimits] [repeatHere]
Here are some invalid branch labels: [enter limits] mainMenu [1moreTime]

Usage:

 .
 .
[repeat]
 .
 .
[askAgain]
 print "Make your selection (m, r, x)."
 input selection$
 if selection$ = "M" then goto [menu]
 if selection$ = "R" then goto [repeat]
 if selection$ = "X" then goto [exit]
 goto [askAgain]
 .
 .
[menu]
 print "Here is the main menu."
 .
 .
[exit]
 print "Okay, bye."
 end

Notes:

 In the lines containing IF . . . THEN GOTO, the GOTO is optional.

 The expression IF . . . THEN [menu] is just as valid as

 IF . . . THEN GOTO [menu]. But in the line GOTO [askAgain], the GOTO
 is required.

 See also GOSUB

318

 Graphicbox

graphicbox #handle.ext, xOrg, yOrg, width, height

Description:
The graphicbox is a control that can be added to any window type. It understands all of the

commands of that are used in a window of type "graphics."

#handle.ext
The #handle part must be the same as the window that will contain the graphicbox. The .ext part
must be unique for the graphicbox.

xOrg & yOrg

These specify the position of the graphicbox as measured in pixels in x and y from the upper-left
corner of the window.

width & height
These specify the width and height of the textbox in pixels.

It should be noted that graphics windows and graphicboxes are intended for drawing graphics. It
is not advisable to place controls within them, since some controls do not work properly when
placed in graphicboxes or graphics windows. If there is a need for text display within a

graphicbox or graphics window, use the graphics text capabilities rather than a statictext control.

Jump to commands for graphics commands

GRAPHICBOX COMMANDS
The following commands are sent to a graphicbox. W hen a graphicbox is disabled, it can no
longer capture keyboard and mouse events.

print #handle.ext, "setfocus"

This causes the control to receive the input focus. This means that any keypresses will be
directed to the control.

print #handle.ext, "enable"
This causes the control to be enabled.

print #handle.ext, "disable"
This causes the control to be inactive. It can no longer capture mouse and keyboard events.

print #handle.ext, "show"
This causes the control to be visible.

319

print #handle.ext, "hide"
This causes the control to be hidden or invisible.

320

 GROUPBOX

GROUPBOX #handle.ext, "label", x, y, wide, high

Description:

This command adds a groupbox to a window or dialog box. Other controls added to the owning
window which overlap the displayed area of the groupbox will be nested inside the groupbox. This

is particularly useful for radiobuttons. It is possible for only one radiobutton in a radio-set to be
"set" at one time. The groupbox allows the window to have multiple radio-sets of radiobuttons.
Only one of all radiobuttons in a groupbox will be allowed to be in a set state. Click on one to set

it, and all the others will be reset.

#handle.ext
This must be the same #handle as the window that contains the groupbox. ".ext" is an optional
unique extension unique to the groupbox.

"label"
This is the caption or text label that appears on the groupbox.

x, y
These parameters determine where to position the groupbox relative to the upper left corner of the

window workspace.

wide, high
These parameters specify how wide and high the groupbox will be in pixels.

For information on creating controls with different background colors, see Colors and the
Graphical User Interface.

print #handle.ext, "a string"
This changes the text displayed on the control. This command sets the contents (the visible

label) to be "a string". The handle must be of form #handle.ext that includes a unique extension
so that commands can be printed to the control.

print #handle.ext, "!locate x y width height"
This repositions the control in its window. This only works if the control is placed inside window
of type "window". The control will not update its size and location until a REFRESH command is
sent to the window. See the RESIZE.BAS example program.

print #handle.ext, "!font facenam e pointSize"
This sets the control's font to the specified face and point size. If an exact match cannot be

321

found, then Liberty BASIC will try to find a close match, with size taking precedence over face.
For more on specifying fonts read How to Specify Fonts

 Example:
 print #handle.ext, "!font times_new_roman 10"

print #handle.ext, "!enable"
This causes the control to be enabled.

print #handle.ext, "!disable"
This causes the control to be inactive and grayed-out.

print #handle.ext, "!show"
This causes the control to be visible.

print #handle.ext, "!hide"

This causes the control to be hidden or invisible.

322

 HBMP("nam e")
HBMP("string expression")

Description:
Returns the W indows handle (a numeric value) for the bitmap whose name is specified by "string
expression". This is often useful in different kinds of W indows API function calls and for use with
third party DLLs.

Usage:

 loadbmp "title", "bmp\titlettt.bmp"
 tttHandle = hbmp("title")
 print tttHandle

See also: LOADBMP, UNLOADBMP

323

 HEXDEC("value")

HEXDEC("value")

Description:

This function returns a numeric decimal from a hexadecimal number expressed in a string.
Hexadecimal values are represented by digits 0 - F. The hexadecimal number can be preceded

by the characters "&H". The hexadecimal string must be enclosed in quote marks.

Usage:

 print hexdec("FF")

or:

 print hexdec("&HFF")

See also: DECHEX$()

324

 HW ND(#handle)

Description:

This function returns the W indows handle (a numeric value) for the window referred to by the
Liberty BASIC #handle. This is very useful for making many different kinds of W indows API calls,
and many third-party DLLs will require that this value be provided for their own purposes.

Usage:

 open "Example" for window as #1
 h1 = hwnd(#1)

325

 IF...THEN...[ELSE]...[END IF]

IF test expression THEN expression(s)

IF test expression THEN expression(s)1 ELSE expression(s)2

IF test expression THEN
 expression(s)1
END IF

IF test expression THEN

 expression(s)1
ELSE

 expression(s)2
END IF

Description:
The IF...THEN statement provides a way to change program flow based on a test expression. For

example, the following line directs program execution to branch label [soundAlarm] if fuel runs
low.

if fuel < 5 then [soundAlarm]

Another way to control program flow is to use the IF...THEN...ELSE statement. This extended
form of IF...THEN adds expressiveness and simplifies coding of some logical decision-making

software. Here is an example of its usefulness.

Consider:

[retry]

 input "Please choose mode, (N)ovice or e(X)pert?"; mode$
 if len(mode$) = 0 then print "Invalid entry! Retry" : goto [retry]

 mode$ = left$(mode$, 1)
 if instr("NnXx", mode$) = 0 then print "Invalid entry! Retry" : goto [retry]

 if instr("Nn", mode$) > 0 then print "Novice mode" : goto [main]
 print "eXpert mode"

[main]
 print "Main Selection Menu"

The conditional lines can be shortened to one line as follows:

if instr("Nn",mode$)> 0 then print "Novice mode" else print "eXpert mode"

Some permitted forms are as follows:

 if a < b then statement else statement
 if a < b then [label] else statement
 if a < b then statement else [label]

 if a < b then statement : statement else statement
 if a < b then statement else statement : statement

 if a < b then statement : goto [label] else statement
 if a < b then gosub [label1] else gosub [label2]

326

Any number of variations on these formats are permissible. The (a < b) BOOLEAN expression is
of course only a simple example chosen for convenience. It must be replaced with the correct
expression to suit the problem.

IF...THEN...END IF is another form using what are called conditional blocks. This allows great

control over the flow of program decision making. Here is an example of code using blocks.

 if qtySubdirs = 0 then
 print "None."
 goto [noSubs]
 end if

A block is merely one or more lines of code that are executed as a result of a conditional test.

There is one block in the example above, and it is executed if qtySubdirs = 0.

It is also possible to use the ELSE keyword as well with blocks:

 if qtySubdirs = 0 then
 print "None."
 else
 print "Count of subdirectories: "; qtySubdirs
 end if

This type of coding is easy to read and understand. There are two blocks in this example. One
is executed if qtySubdirs = 0, and one is executed if qtySubdirs is not equal to 0. Only one of

the two blocks will be executed (never both as a result of the same test).

These conditional blocks can be nested inside each other:

 if verbose = 1 then
 if qtySubdirs = 0 then
 print "None."
 else
 print "Count of subdirectories: "; qtySubdirs
 end if
 end if

In the example above, if the verbose flag is set to 1 (true), then display something, or else skip

the display code entirely.

See also: Select Case, Conditional Statements, Boolean Evaluations

327

 Inkey$
Keyboard input can only be trapped in graphics windows or graphicboxes. W hen a key is
pressed, the information is stored in the variable Inkey$

Description:
This special variable holds either a single typed character or multiple characters including a
W indows virtual keycode. Notice that because Inkey$ is a variable, it is case sensitive.
Remember that at this time, only the graphics window and graphicbox controls can scan for

keyboard input. The virtual keycodes are standard W indows constants, and include arrow keys,
function keys, the ALT, SHIFT, and CTRL keys, etc.

If Inkey$ is a single character, that character will be the key pressed. See the section below for a
description of Inkey$ when len(Inkey$) is greater than 1.

 'INKEY.BAS - how to use the Inkey$ variable

 open "Inkey$ example" for graphics as #graph
 print #graph, "when characterInput [fetch]"

[mainLoop]
 print #graph, "setfocus"
 input r$

[fetch] 'a character was typed!

 key$ = Inkey$
 if len(key$) = 1 then
 notice key$+" was pressed!"
 else
 keyValue = asc(right$(key$, 1))
 if keyValue = _VK_SHIFT then
 notice "Shift was pressed"
 else
 if keyValue = _VK_CONTROL then
 notice "Ctrl was pressed"
 else
 notice "Unhandled key pressed"
 end if
 end if
 end if

 WAIT

Inkey$ holds m ultiple key information:

If Inkey$ holds more than one character, the first character will indicate whether the Shift, Ctrl, or
Alt keys was depressed when the key was pressed. These keys have the following ASCII values:

Shift = 4
Ctrl = 8

Alt = 16

They can be used in any combination. If Inkey$ contains more than one character, you can

328

check to see which (if any) of the three special keys was also pressed by using the bitwise AND
operator. If shift alone was pressed, then the ASCII value of the first character will be 4. If Shift
and Alt were both pressed, then the ASCII value of the first character will be 20, and so on.

Special keys trigger a new value for Inkey$ when they are pressed and again when they are
released. Here is an example that uses bitwise AND to determine which special keys were
pressed.

open "Inkey$ with Shift" for graphics_nf_nsb as #1
 #1 "setfocus; when characterInput [check]"
 #1 "down; place 10 30"
 #1 "\Make the mainwindow visible,"
 #1 "\then click this window and"
 #1 "\begin pressing key combinations."
 #1 "\Watch the printout in the mainwindow."
 #1 "flush"
 #1 "trapclose [quit]"

 wait

[check]
 shift=4
 ctrl=8
 alt=16

 a=asc(left$(Inkey$,1))

 if len(Inkey$)>1 then
 m$=""

 if a and shift then m$="shift "
 if a and ctrl then m$=m$+"ctrl "
 if a and alt then m$=m$+"alt "
 print "Special keys pressed: " + m$
 else
 print "Key pressed: " + Inkey$
 end if

 wait

[quit]
 close #1:end

See also, Using virtual key constants with Inkey$, Using Inkey$, Reading Mouse Events and
Keystrokes.

329

 INP()

returnedByte = INP(port)

Description:
This function polls the specified machine I/O port for its byte value.

If you will be distributing your application, and it uses INP() and/or OUT to control hardware ports,

you will need to distribute and install certain files on your user's system. For detailed information,
see Port I/O.

See also: OUT port,byte

330

 INPUT

INPUT #handle "string expression"; variableName

Description:

This command has several possible forms:

 input var

This form causes a program to stop and wait for user to enter data in the program's mainwin and
press the 'Return' key. It will then assign the data entered to var.

 input "enter data"; var
This form will display the string "enter data" and then stop and wait for user to enter data in the
program's mainwin and press 'Return'. It will then assign the data entered to var.

 input #name, var
This form will get the next data item from the open file or device using handle named #handle and

assign the data to var. If no device or file exists that uses the handle named #handle, then INPUT
returns an error.

 input #name, var1, var2
This form causes the next two data items to be fetched and assigned to var1 and var2.

 line input #name, var$
The LINE INPUT statement will read from the file, ignoring commas in the input stream and
completing the data item only at the next carriage return or at the end of file. This is useful for
reading text with embedded commas

Usage:

 'Display a text file
 filedialog "Open..." , "*.txt", filename$
 open filename$ for input as #text
[loop]
 if eof(#text) <> 0 then [quit]
 input #text, item$
 print item$
 goto [loop]
[quit]
 close #text
 print "Done."
 end

Arrays
In earlier versions of Liberty BASIC, INPUT could not be used to input data directly into arrays,

only into the simpler variables. For Liberty BASIC 3, that limitation no longer exists. It is now
possible to use Input and Line Input to fill arrays directly. To input directly to an array:

 input array$(x)

It is also possible to use this method:

 input array$(x), string$, stuff(i)

331

Question Mark
Most versions of Microsoft BASIC implement INPUT to automatically place a question mark on
the display in front of the cursor when the user is prompted for information:

 input "Please enter the upper limit"; limit

 produces:

 Please enter the upper limit ? |

Liberty BASIC makes the appearance of a question mark optional.

 input "Please enter the upper limit :"; limit

 produces:

 Please enter the upper limit: |

 and:

 input limit

 produces simply:

 ? |

In the simple form input limit, the question mark is inserted automatically, but if a prompt is
specified, as in the above example, only the contents of the prompt are displayed, and nothing
more. If it is necessary to obtain input without a prompt and without a question mark, then the

following will achieve the desired effect:

 input ""; limit

Additionally, in most Microsoft BASICs, if INPUT expects a numeric value and a non numeric or
string value is entered, the user will be faced with a comment something like 'Redo From Start',

and be expected to reenter. Liberty BASIC does not automatically do this, but converts the entry
to a zero value and sets the variable accordingly.

The prompt may be expressed as a string variable, as well as a literal string:

 prompt$ = "Please enter the upper limit:"
 input prompt$; limit

See also: INPUT$(#h, n), INPUTTO$(#h, c$), Line Input

332

 INPUT$(#h, n)

INPUT$(#handle, items)

Description:
This permits the retrieval of a specified number of items from an open file or device using
#handle. If #handle does not refer to an open file or device then an error will be reported. It
can also be used to read a character at a time from the mainwindow (see example below).

Usage:

 'read and display a file one character at a time
 open "c:\autoexec.bat" for input as #1
[loop]
 if eof(#1) <> 0 then [quit]
 print input$(#1, 1);
 goto [loop]
[quit]
 close #1
 end

For most devices (unlike disk files), one item does not refer a single character, but INPUT$()
may return items more than one character in length. In most cases, use of INPUT #handle,
varName works just as well or better for reading devices.

Here is another example which shows reading keypresses in the mainwindow.

'accept characters and display them until Enter is pressed
text$ = ""
while c$ <> chr$(13)
 c$ = input$(1)
 print c$;
 if c$ <> chr$(13) then text$ = text$ + c$
wend
print "You typed:"; text$
end

File input directly to an array.

Previous versions of Liberty BSIC required you to input to a variable, then filll an array with the
variable. Liberty BASIC 3 removes that limitation and allows you to input from a file directly

into an array. Example:

'input from a file, directly into an array
open "myfile.txt" for input as #handle

while EOF(#handle)=0
input #handle, array$(total)
total=total+1
wend

close #handle

for i = 0 to total

333

print array$(i)
next

See also INPUTTO$(#h, c$), Line Input, Input

334

 INPUTTO$(#h, c$)

INPUTTO$(#handle, delim$))

Description:
This function reads from the file #handle up to the character specified in delim$ or to the end of
the line, whichever comes first. This is handy for reading files which contain comma, tab, pipe, or
other delimited items.

'display each comma delimited item in a file on its own line
open "inputto test.txt" for input as #test
while eof(#test) = 0
 print inputto$(#test, ",")
wend
close #test

Inputto$ directly to an array

You can use inputto$() to fill an array directly:

dim array$(500)
filedialog "Open","*.txt",file$
open file$ for input as #test
 while eof(#test) = 0
 array$(total)=inputto$(#test,",")
 print array$(total)
 total=total+1
 if total>=500 then exit while
 wend
 close #test

for i = 0 to total
print array$(i)
next
end

 See also: INPUT, INPUT$(#h,n), Line Input

335

 INSTR(a$,b$,n)

INSTR(string1, string2, starting)

Description:

This function returns the position of string2 within string1. If string2 occurs more than once in
string1, then only the position of the leftmost occurance will be returned. If the starting

parameter is included, then the search for string2 will begin at the position specified by
starting.

Usage:

 print instr("hello there", "lo")
 produces: 4

 print instr("greetings and meetings", "eetin")
 produces: 3

 print instr("greetings and meetings", "eetin", 5)
 produces: 16

If string2 is not found in string1, or if string2 is not found after starting, then INSTR() will return
0.

 print instr("hello", "el", 3)
 produces: 0

and so does:

 print instr("hello", "bye")

336

 INT(n)

Description:

This function removes the fractional part of "n" (a number), leaving only the whole number part
behind. The fractional part is the part of the number after the decimal point.

Usage:

[retry]
 input "Enter an integer number>"; i
 if i<>int(i) then bell: print i; " isn't an integer! Re-enter.":
goto [retry]

337

 KILL s$

KILL "filename.ext"

Description:

This command deletes the file specified by filename.ext. The filename can include a complete
path specification.

338

 LEFT$(s$, n)

LEFT$(string, number)

Description:

This function returns from the string, string variable, or string expression string the specified
number of characters starting from the left. If string is "hello there", and number is 5, then

"hello" is the result.

Usage:

[retry]
 input "Please enter a sentence>"; sentence$
 if sentence$ = "" then [retry]
 for i = 1 to len(sentence$)
 print left$(sentence$, i)
 next i

Produces:

 Please enter a sentence>That's all folks!

 T
 Th
 Tha
 That
 That'

 That's
 That's_

 That's a
 That's al
 That's all
 That's all_
 That's all f

 That's all fo
 That's all fol
 That's all folk

 That's all folks
 That's all folks!

Note: If number is zero or less, then "" (an empty string) will be returned. If number is greater

than or equal to the number of characters in string, then string will be returned.

 See also MID$() and RIGHT$()

339

 LEN(s$)

LEN(string)

LEN(structName.struct)

Description:
This function returns the length in characters of string, which can be any valid string

expression. It also returns the size of a struct.

Usage:

 prompt "What is your name?"; yourName$
 print "Your name is "; len(yourName$); " letters long"

 struct person, name$ as ptr, age as long
 print len(person.struct)

340

 LET var = expression

Description:

LET is an optional prefix for any BASIC assignment expression. Most programmers leave the
word out of their programs, but some prefer to use it.

Usage:

 Either is acceptable:

 let name$ = "John"
or
 name$ = "John"

 Another example:

 let c = sqr(a^2 + b^2)
or
 c = sqr(a^2 + b^2)

341

 LINE INPUT

line input #handle, var$

Description:
This gets the next data line from the open file or device using handle #handle and assigns the

data to var$. If no device or file exists that uses the handle named #handle, then it returns an
error. The line input statement reads from the file, ignoring commas in the input stream and
completing the data item only at the next carriage return or at the end of file. This is useful for
reading text with embedded commas

Usage:

 'Display each line of a text file
 input "Please type a filename >"; filename$
 open filename$ for input as #text
[loop]
 if eof(#text) <> 0 then [quit]
 line input #text, item$
 print item$
 goto [loop]
[quit]
 close #text
 print "Done."

Arrays:
Line Input now allows input directly multiple variables and arrays.

filedialog "Open","*.txt",file$
if file$="" then end
dim a$(3000)

open file$ for input as #f

while not(eof(#f))
 line input #f, a$(i)
 i=i+1
wend

close #f

for j=0 to i
 print a$(j)
next

end

See also: INPUT, Input (#h, n), INPUTTO$(#h, c$)

342

 Listbox

LISTBOX #handle.ext, array$(), eventHandler, x, y, wide, high

Description:
Listboxes are added to windows to provide a list selection capability in programs. The listbox is
loaded with a collection of strings from a specified string array, and a RELOAD command
updates the contents of the listbox from the array when the contents of the array change.

#handle.ext
The #handle part of this statement must be the same as the #handle of the window that contains
the listbox. The ".ext" part must be unique so that the program can send commands to the

listbox and get information from it later.

array$()

This is the name of the array (must be a string array) that contains the contents of the listbox.
Be sure to load the array with strings before opening the window. If some time later it is

necessary to change the contents of the listbox, simply change the contents of the array and
send a RELOAD command. The index numbers of items in the array may not match the index
numbers of the same items in the control. The control is loaded from the array, and the first index
used in the control is "1". No empty strings are loaded into the control, so only array items that
contain text are loaded.

eventHandler

This is the branch label or subroutine where execution begins when the user selects an item from
the listbox by double-clicking. Selection by only single clicking does not cause branching to

occur unless a "singleclickselect" command is issued to the listbox. See also: Controls and
Events

x, y
This is the distance in x and y (in pixels) of the listbox from the upper-left corner of the window.

wide, high

This specifies the width and height (in pixels) of the listbox.

Here are the commands for listbox:

print #handle.ext, "select string"
This selects the item the same as "string" and updates the display. If a variable is to be used in
this command, it must be located outside the quotation marks, with the blank space preserved:

print #handle.ext, "select "; string$

343

print #handle.ext, "selectindex i"
This selects the item at index position i and updates the display. Note that "i" must be a valid
index number for the listbox array. If a variable is to be used in this command, it must be located
outside the quotation marks, with the blank space preserved:

print #handle.ext, "selectindex "; i

print #handle.ext, "selection? selected$"

This will place the string of the item currently selected into selected$. If there is no selected
item, then selected$ will be a string of zero length (a null string).

print #handle.ext, "selectionindex? index"

This will place the index of the currently selected string into index. If there is no selected item,
then index will be set to 0.

print #handle.ext, "reload"
This will reload the listbox with the current contents of its array and will update the display.

print #handle.ext, "locate x y width height"

This repositions the listbox control in its window. This only works if the control is placed inside
window of type "window". The control will not update its size and location until a REFRESH
command is sent to the window. See the RESIZE.BAS example program.

print #handle.ext, "font facenam e pointSize"

This sets the listbox's font to the specified face and point size. If an exact match cannot be
found, then Liberty BASIC will try to find a close match, with size taking precedence over face.
For more on specifying fonts read How to Specify Fonts

Example:
print #handle.ext, "font times_new_roman 10"

print #handle.ext, "singleclickselect"
This tells Liberty BASIC to jump to the control's branch label on a single click, instead of the

default double click.

print #handle.ext, "setfocus"
This causes the control to receive the input focus. This means that any keypresses will be

directed to the control.

print #handle.ext, "enable"
This causes the control to be enabled.

print #handle.ext, "disable"

This causes the control to be inactive and grayed-out.

print #handle.ext, "show"

This causes the control to be visible.

print #handle.ext, "hide"

This causes the control to be hidden or invisible.

344

Sam ple Program

'Branch Label Event Handler

' Sample program. Pick a contact status
options$(0) = "Cold Contact Phone Call"
options$(1) = "Send Literature"
options$(2) = "Follow Up Call"
options$(3) = "Send Promotional"
options$(4) = "Final Call"

listbox #status.list, options$(), [selectionMade], 5, 35, 250, 90
button #status, "Continue", [selectionMade], UL, 5, 5
button #status, "Cancel", [cancelStatusSelection], UR, 15, 5
WindowWidth = 270 : WindowHeight = 180
open "Select a contact status" for window as #status

wait

[selectionMade]
print #status.list, "selection? selection$"
notice selection$ + " was chosen"
close #status
end

[cancelStatusSelection]
notice "Status selection cancelled"
close #status
end

Control of the listbox in the sample program above is provided by printing commands to the
listbox, just as with general window types in Liberty BASIC. The listbox has the handle
#status.list, so to find out what was selected, use the statement print #status.list, "selection?
selection$". If the result is a string of length zero (a null string), this means that there is no item
selected.

Subroutine Event Handler:

' Sample program. Pick a contact status
options$(0) = "Cold Contact Phone Call"
options$(1) = "Send Literature"
options$(2) = "Follow Up Call"
options$(3) = "Send Promotional"
options$(4) = "Final Call"

listbox #status.list, options$(), selectionMade, 5, 35, 250, 90
button #status, "Cancel", [cancelStatusSelection], UR, 15, 5
WindowWidth = 270 : WindowHeight = 180
open "Select a contact status" for window as #status
#status.list "singleclickselect"

wait

sub selectionMade handle$

345

print #status.list, "selection? selection$"
notice selection$ + " was chosen with listbox ";handle$
end sub

[cancelStatusSelection]
notice "Status selection cancelled"
close #status
end

For information on creating controls with different background colors, see Colors and the
Graphical User Interface.

346

 LOADBMP

LOADBMP "name", "filename.bmp"

and
LOADBMP "name", hbmp

Description:
The first version of this command loads a standard W indows *.BMP bitmap file on disk into

Liberty BASIC. The "name" is a string chosen to describe the bitmap being loaded and the
"filename.bmp" is the actual name of the bitmap disk file. Once loaded, the bitmap can then be

displayed in a graphics window type using the DRAW BMP command (see Graphics W indow
Commands).

Usage:
 loadbmp "copyimage", "bmp\copy.bmp"
 open "Drawbmp Test" for graphics as #main
 print #main, "drawbmp copyimage 10 10"
 wait

 'when program exits:
 unloadbmp("copyimage")

The second version of the command loads the bitmap whose handle is referenced by "hbmp".

This handle can be obtained from an add-on DLL that loads images, such as the nviewlib.dll, or
by creating a bitmap using API calls, or by loading a bitmap with the API function LoadImageA.
Add-on DLLs allow you to access images in other formats, such as jpg or gif, and then load them

with the LOADBMP command so that they can be displayed with the DRAW BMP command.

Usage:

open "NViewLib.dll"for DLL as #nv

file$="test.jpg"

calldll #nv, "NViewLibLoad",_
file$ AS ptr,1 as short,_
hImage AS short 'handle of loaded image

close #nv

loadbmp "newimage", hImage
open "Drawbmp Test" for graphics as #main
print #main, "drawbmp newimage 10 10"
wait

'when program exits:
unloadbmp("newimage")

See also: BMPSAVE, UNLOADBMP

347

 LOCATE
LOCATE has two uses. The first usage listed here locates a control on its parent window. The
second usage is for the mainwin only.

LOCATE CONTROLS

 print #handle.ext, "locate x y width height"
or
 print #handle.ext, "!locate x y width height"

Description
This command for windows of type "window" causes a control to be moved and/or resized.
Always issue a REFRESH command after the LOCATE command to cause the window to be
repainted to reflect the control's new position and size. For a demonstration, see Resize.bas.

Usage:
 print #handle.ext, "locate 20 12 300 200"
or
 x = 20 : y = 12 : width = 300 : height = 200
 print #handle.ext, "locate ";x;" ";y;" ";width;" ";height"

See also: RESIZEHANDLER, REFRESH W indow and Dialog Commands

LOCATE IN MAINW INDOW

 locate x, y

Description:
Using LOCATE in the mainwin causes text to be printed at the x, y location specified. These
coordinates refer to the column and row of text, not to screen pixels. This command functions in

the same was as the Qbasic LOCATE command and is used to position text on the mainwin.
Here is a short demo:

 'plot a wave
 for x = 1 to 50
 i = i + 0.15
 locate x, 12 + int(cos(i)*10)
 print "*";
 next x

348

 LOF(#h)

LOF(#handle)

Description:
This function returns the number of bytes contained in the open file referenced by #handle.

Usage:

 open "\autoexec.bat" for input as #1
 qtyBytes = lof(#1)
 for x = 1 to qtyBytes
 print input$(#1, 1) ;
 next x
 close #1
 end

349

 LOC(#h)
LOC(#handle)

Description:
The LOC(#handle) function retrieves the current position of the file pointer when a file whose
handle is specified has been opened for BINARY access. The current position of the file
pointer is used when reading or writing data to a binary file. See also: SEEK

Usage:

open "myfile.ext" for binary as #handle

'get the current file position
fpos = loc(#handle)

350

 LOG(n)

Description:

This function returns the natural logarithm of n.

Usage:

 print log(7) produces: 1.9459101

351

 LOW ER$(s$)
LOW ER$(s$)

Description:
This function returns a copy of the contents of the string, string variable, or string expression s$,

but with all letters converted to lowercase.

Usage:

 print lower$("The Taj Mahal")

Produces:

 the taj mahal

352

 LPRINT

LPRINT expr

Description:
This statement is used to send data to the default printer (as determined by the W indows Print
Manager). A series of expressions can follow LPRINT (there does not need to be any expression
at all), each separated by a semicolon. Each expression is sent in sequence. Printing can be

formatted into columns with the TAB(n) function. W hen you are finished sending data to the
printer, you should commit the print job by using the DUMP statement. Liberty BASIC will

eventually send your print job, but DUMP forces the job to finish.

Usage:

 lprint "hello world" 'This prints hello world
 dump

 lprint "hello "; 'This also prints hello world
 lprint "world"
 dump

 age = 23
 lprint "Ed is "; age; " years old"
 'This prints Ed is 23 years old
 dump

Note: see also PRINT, DUMP, PRINTERDIALOG, TAB(n)

353

 MAINW IN

MAINW IN columns rows

Description:
This sets the width or width and height of a program's main window. This is specified in colums
and rows of text according the font of the mainwindow. This statement is usually placed at the
beginning of the program code.

Usage:

'set a width of 40 columns
mainwin 40

or...

'set the width to 40 columns and height to 12 lines
mainwin 40 12

See also: NOMAINW IN

354

 MAX()

MAX(expr1, expr2)

Description:
This function returns the greater of two numeric values.

Usage:

input "Enter a number?"; a
input "Enter another number?"; b
print "The greater value is "; max(a, b)

See also: MIN()

355

 MAPHANDLE
maphandle #oldHandle, #newHandle
maphandle #oldHandle, "#newHandle"

Description:
Maphandle assigns a new handle to a device after it is open. Now it is possible to reuse code
that is used to open windows, files, etc. For example a window can be opened as follows:

 open "Maphandle example" for window as #renameMe

Once this window is open, the code cannot execute this line again because the handle
#renameMe is in use by that window. Opening another one is not allowed because a given

handle can only be in use by one device at a time.

The maphandle command provides a way around this problem. You can change the handle of the
window after you open it.

Usage:

Maphandle Examples

maphandle #renameMe, #newHandle
maphandle #renameMe, "#newHandle"
a$ = "#new" + "Handle"
maphandle #renameMe, a$

W ith this example you see how to create handles dynamically on the fly if desired:

 winName$ = "first second third"
 for x = 1 to 3
 call createWindow word$(winName$, x)
 next x
 wait

sub createWindow title$
 texteditor #1.te, 10, 10, 200, 200
 open "text "+title$ for window as #1
 #1.te "this is the "+title$+" window"
 #1 "trapclose aboutToClose"
 handle$ = "#"+title$
 maphandle #1, handle$
end sub

sub aboutToClose handle$
 confirm "Close "+handle$+"?"; answer
 if answer = 1 then close #handle$
end sub

The old way
Here is the old way of opening three windows without using maphandle and variable handles. In

some ways this is easier to read, but it is a lot more code, and you can only open another
window by adding a lot more code.

356

 texteditor #1.te, 10, 10, 200, 200
 open "text first" for window as #1
 #1.te "this is the first window"
 #1 "trapclose [aboutToClose1]"

 texteditor #2.te, 10, 10, 200, 200
 open "text second" for window as #2
 #2.te "this is the second window"
 #2 "trapclose [aboutToClose2]"

 texteditor #3.te, 10, 10, 200, 200
 open "text third" for window as #3
 #3.te "this is the third window"
 #3 "trapclose [aboutToClose3]"

 wait

[aboutToClose1]
 confirm "Close first?"; answer
 if answer = 1 then close #1
 wait

[aboutToClose2]
 confirm "Close second?"; answer
 if answer = 1 then close #2
 wait

[aboutToClose3]
 confirm "Close third?"; answer
 if answer = 1 then close #3
 wait

357

 MENU

MENU #handle, "title", "text", [branchLabel], "text2", [branchLabel2], | , . . .

or
MENU #handle, "title", "text", subName1, "text2", subName2, |, ...

Description:
This command adds a pull down menu to the window at #handle. The item "title" specifies the
title of the menu, as seen on the menu bar of the window, and each "text", [branchLabel] pair
after the title adds a menu item to the menu, and tells Liberty BASIC where to branch to when the

menu item is chosen. A sub can be used as a menu event handler.

The " | " character can optionally be placed between menu items, to cause a separating line to be
added between the items when the menu is pulled down.

The " & " character placed in the title and text items for the menu specifies the accelerator
placement for each item. The letter directly following the " & " character will act as a hotkey for
that menu item, when it is pressed while the user presses and holds down the ALT key. The
hotkey appears underlined in the menu display.

The menu command must be contained on one line. To break the line for viewing in the Liberty
BASIC editor, use the line continuation character, " _ ".

Usage:

Here is an example that adds a menu to a graphics window:

 menu #geo, "&Colors", "&Red", [setRed], "&Green", [setGreen],_
 "&Blue", [setBlue]
 menu #geo, "&Shapes", "&Rectangle", [asRect], "&Circle",_
 [asCircle], "&Line", [asLine]
 open "Geometric White-board" for graphics_nsb as #geo
 wait ' stop and wait for a menu item to be chosen

Notice that the MENU commands must go before the OPEN statement, and must use the same

handle as the window (#geo in this case.

Here is an example that uses subs as event handlers:

 menu #main.testing, "Testing", "one", one, "two", two
 button #main.close, "Close", quit, UL, 10, 10
 open "example" for window as #main
 #main "trapclose quit"
 wait

sub one
 notice "One!"

358

end sub

sub two
 notice "Two!"
end sub

sub quit handle$
 if instr(handle$, ".") then
 handle$ = left$(handle$, instr(handle$, ".")-1)
 end if
 close #handle$
 end
end sub

Textboxes and texteditors cause an automatic EDIT menu to be added to the menu bar. To
locate this automatic menu, use the menu command with a menu name of "edit" and no items.

Do not include the " & " character in this dummy "edit" menu title. If the location for the
automatic "edit" menu is not specified, it will appear at the right end of the menu bar.

Example, locate the edit menu in the second position on the menu bar:

menu #1, "&File", "E&xit", [quit]
menu #1, "edit"
menu #1, "&Help", "&About", [about]

See also POPUPMENU

359

 MID$()

MID$(string, index, [number])

Description:

This function permits the extraction of a sequence of characters from the string, string variable, or
string expression string starting at index. [number] is optional. If number is not specified, then

all the characters from index to the end of the string are returned. If number is specified, then
only as many characters as number specifies will be returned, starting from index.

Usage:

 print mid$("greeting Earth creature", 10, 5)

Produces:

 Earth

And:

 string$ = "The quick brown fox jumped over the lazy dog"
 for i = 1 to len(string$) step 5
 print mid$(string$, i, 5)
 next i

Produces:

 The_q
 uick_
 brown

 fox
 jumpe_
 d_ove

 r_the
 _lazy
 _dog

Note:

 See also LEFT$() and RIGHT$()

360

 MIDIPOS()
var = MIDIPOS()

Description:
This function returns the current position of play in a file being played with PLAYMIDI.

See also: PLAYMIDI, STOPMIDI

361

 MIN()

MIN(expr1, expr2)

Description:
This function returns the smaller of two numeric values.

Usage:

input "Enter a number?"; a
input "Enter another number?"; b
print "The smaller value is "; min(a, b)

See also: MAX()

362

 MKDIR()

Description:

The MKDIR() function attempts to create the directory specified. If the directory creation is
successful the returned value is 0. If the directory creation was unsuccessful, a value indicating a
DOS error is returned.

Usage:

 'create a subdirectory named temp in the current directory
 result = mkdir("temp")
 if result <> 0 then notice "Temporary directory not created!"

Note: See also RMDIR()

363

 NAME a$ AS b$

NAME StringExpr1 AS StringExpr2

Description:
This command renames the file specified in the string expression StringExpr1 to StringExpr2.
StringExpr1 can represent any valid filename that is not a read-only file, and StringExpr2 can be
any valid filename as long as it doesn't specify a file that already exists.

Usage:

 'rename the old file as a backup
 name rootFileName$ + ".fre" as rootFileName$ + ".bak"
 'open a new file and write data
 open rootFileName$ + ".fre" for output as #disk

364

 NOMAINW IN

Description:

This command instructs Liberty BASIC not to open a main window (the mainwin) for the program
that includes this statement. Some simple programs which do not use separate windows for
graphics or text may use only the mainwin. Other programs may not need the mainwin to do
their thing. If the mainwin is not needed, including NOMAINW IN somewhere in the program
source code prevents the window from opening.

If NOMAINW IN is used, when all other windows owned by that program are closed, then the

program terminates execution automatically.

It is often better to place a NOMAINW IN statement in a program after it is completed and
debugged, so that you can easily terminate an errant program just by closing its mainwin.

Usage:

NOMAINWIN
Open "Test" for window as #win

wait

365

 NOTICE

NOTICE "string expression"

Description:

This command pops up a dialog box which displays "string expression" and includes an OK
button, which the user presses after the message is read. Pressing the ENTER key also closes

the notice dialog box.

"string expression"
Two forms are allowed. If "string expression" has no carriage return character (ASCII 13), then
the title of the dialog box is 'Notice' and "string expression" is the message displayed inside the

dialog box. If "string expression" does have a Chr$(13), then the part of "string expression" before
Chr$(13) is used as the title for the dialog box, and the part of "string expression" after Chr$(13) is
displayed as the message inside. Further Chr$(13) will force line breaks into the text contained
in the message.

Usage:

 notice "Super Stats is Copyright 2001, Mathware"

Or:

 notice "Fatal Error!" + chr$(13) + "The entry buffer is full!"

366

 ON ERROR
ON ERROR GOTO [branchLabel]

Description:
Liberty BASIC 4 adds support for ON ERROR GOTO. Several of the QBasic error codes are

supported, but some are not relevant, and there are some new ones. W hen an error occurs, the
special variables Err and Err$ hold numeric and string values describing what sort of error
happened. Some kinds of errors do not have a numeric value, in which case Err will be zero.

If an error occurs in a user function or subroutine, Liberty BASIC will exit the current function or

subroutine and continue to exit functions and subroutines until it finds ON ERROR handler.

If an error is encountered, a program can attempt to resume execution with the RESUME

statement.

Here is a short list of error codes:

 3 RETURN without GOSUB

 4 Read past end of data
 8 Branch label not found

 9 Subscript out of range
 11 Division by zero
 53 OS Error: The system cannot find the file specified.

 58 OS Error: Cannot create a file when that file already exists.
 55 Error opening file

 52 Bad file handle
 62 Input past end of file

Usage:

on error goto [errorHandler]

open "sillyfilename.txt" for input as #f
close #f

end

[errorHandler]
print "Error string is " + chr$(34) + Err$ + chr$(34)
print "Error number is ";Err
end

The program above will print the following in the mainwin:

Error string is "OS Error: The system cannot find the file specified."
Error number is 53

'demonstrate the use of RESUME
 on error goto [whoops]
 global divideBy
 call causeWhoops
 end

367

[whoops]
 print "whoops!"
 print "Error "; Err$; " "; " code "; Err
 divideBy = 2
 resume

sub causeWhoops
 print 10 / divideBy
end sub

368

 ONCOMERROR

ONCOMERROR [branchLabel]

Description:
This sets or clears a branch label for handling errors when doing serial communications.

 'to set a branch label for error handling
 oncomerror [myComErrorHandler]

 'to disable com error handling
 oncomerror

W hen an error does occur, three special variables will be set:

 ComError$ This holds a description of the error

 ComPortNumber This holds the port number of the error
 ComErrorNumber In the case of W in 95/98/ME this var is set to one of the W in16 com error
codes, and in the case of W in NT/2K/XP OS error codes.

Usage:

 'open com2
 open "COM2:9600,n,8,1" for random as #1

 'enable the com error handler
 oncomerror [handleIt]

 'try to open com2 again, triggering handler
 open "COM2:9600,n,8,1" for random as #2

 'we never get this far because of the error
 print "we never get this far because of the error"
 input r$

[handleIt]

 'disable the com error handler
 oncomerror

 'print out the error and port
 print "Error: "; ComError$
 print "Port number: "; ComPortNumber
 print "Error code: ";ComErrorNumber

 'close com2
 close #1

 end

See also: OPEN "COMn:..."

369

 OPEN

OPEN device FOR purpose AS #handle {LEN = n}

Description:

The OPEN command opens communication with a device, which can be a disk file, a window, a
dynamic link library or a serial communications port. The command must be told what to open,

for what purpose, and a descriptive, unique name or "handle" must be assigned to it so that other
functions can access the open device. Handles must always begin with "#" to identify them as
such and to distinguish them from other variables. The details for using the OPEN statement are
shown below. It will be necessary to refer to the individual topics for complete explanations for
using OPEN with the various devices.

Note: Any device that is opened during the normal operation of the program must be closed

before program execution is finished. See CLOSE Changing the handle of a device dynamically
at runtime can be accomplished with the MAPHANDLE command.

device

The device to be opened may be one of the following:

file
If the device to be opened is a file, the device parameter must be a valid disk filename. This
may be expressed as a string variable, or as a literal text expression enclosed in quotes. For
more on coding file specifications, see Path and Filename.

purpose
Files may be opened for the purpose of INPUT, OUTPUT, APPEND, RANDOM or BINARY
access. The final {LEN=n} parameter applies to files opened for RANDOM access. For more

on opening files, please see File Operations.

usage:
open "c:\readme.txt" for input as #f

window

If the device to be opened is a window, the device parameter will become the caption of the
window. The caption is the text contained on the titlebar of the window.

purpose
W hen the device is a window, the purpose parameter is the window type. There are many

possibilities for window types and these are explained in: W indow Types, W indow and Dialog
Commands, Graphical User Interface.

usage:
open "My Cool Program" for window_nf as #main

dynam ic link library
A DLL (dynamic link library) must be opened before any calls can be made to the functions. If
the device is a DLL the device parameter will be the disk filename of the DLL, enclosed in

370

quotes. See CALLDLL.

purpose

The purpose is always "for DLL" when using OPEN with a dynamic link library.

usage:
open "c:\myprog\sample.dll" for DLL as #sample

or for W indows API calls:
open "user32" for DLL as #user32

serial communications port
The OPEN statement opens a serial communications port for reading and writing. The device
parameter is the name of the port enclosed in quotes. The syntax looks like this:

OPEN "COMn:baud,parity,data stop{,options}" for random as #handle

purpose
The purpose is always "for random" when using OPEN to open a communications port. See "
Open "Comn..."

Usage:

To open com port 2 at 9600 baud, 8 data bits, 1 stop bit, and no parity, use this line of code:
open "com2:9600,n,8,1" for random as #commHandle

#handle

The #handle is a unique name given to the device so that it can be accessed by functions in the
program. Use a descriptive word for the handle. It must start with a # and may contain any
alpha-numeric characters, but no spaces. This special handle is used to identify the open device
in later program statements. Some possible handles are as follows:

#commHandle
#newfile
#main
#win
#gdi32
#2

Changing the handle of a device dynamically at runtime can be accomplished with the
MAPHANDLE command.

371

 OPEN "COMn:..."
OPEN "COMn:baud,parity,data stop{,options}" for random as #handle

Description:
The OPEN "COMn:" statement opens a serial communications port for reading and writing. This

feature uses Microsoft W indows' own built-in communications API, so if you have a multiport
communications card and a W Indows driver to support that card, you should be able to use any
port on the card.

The simplest form for this command is:

 OPEN "COMn:baud,parity,data,stop" for random as #handle

Allowable choices for baud are:

 75 110 150 300 600 1200 2400 1800 2400 4800 9600 19200 38400 57600 115200

Allowable choices are parity are:

 N No parity
 E Even parity
 O Odd parity
 S Space parity

 M Mark parity

Allowable choices for data are:

 5 bits long
 6 bits long
 7 bits long

 8 bits long

Allowable choices for stop are:

 1 stop bit
 2 stop bits

Additional optional parameters can be included after the baud, parity, data and stop information:

 CSn Set CTS timeout in milliseconds (default 1000 milliseconds)
 DSn Set DSR timeout in milliseconds (default 1000 milliseconds)
 PE Enable parity checking
 RS Disable detection of RTS (request to send)

Other defaults:

 DTR detection is disabled
 XON/XOFF is disabled

 binary mode is the default

To set the in and out communications buffers (each port has its own), set the variable Com
(notice the uppercase C) to the desired size before opening the port. Changing the variable after
opening a port does not affect the size of the buffers for that port while it is open.

372

 'set the size of the communications buffers
 '(in and out) to 16K each
 Com = 16384

Usage Notes:

To open com port 2 at 9600 baud, 8 data bits, 1 stop bit, and no parity, use this line of code:

 open "com2:9600,n,8,1" for random as #commHandle

It is recommended that you set the the timeout on the DSR line to 0 so that your program doesn't
just freeze when waiting for data to come in. To do this, we can add a ds0 (for DSR 0 timeout) as
below. Notice we use a different communications speed in this example.

 open "com2:19200,n,8,1,ds0" for random as #commHandle

Remember that when a modem dials and connects to another modem, it negotiates a
cpnnectopm speed. In the case of 14400 speed modems, you need to specify 19200 as the
connection speed and let the modems work it out between themselves during the connect. This

is because 14400 is not a baud rate supported by W indows (and you'll find that QBASIC doesn't
directly support 14400 baud either).

Once the port is open, sending data is accomplished by printing to the port (ATZ resets modems
that understand the Hayes command set):

 print #commHandle, "ATZ"

To read from the port you should first check to see if there is anything to read. This is

accomplished in this fashion:

 numBytes = lof(#commHandle)

Then read the data using the input$() function.

 dataRead$ = input$(#commHandle, numBytes)

Putting the lof() and input$() functions together on one line, it looks like this:

 dataRead$ = input$(#commHandle, lof(#commHandle))

W hen you're all done, close the port:

 close #commHandle

Liberty BASIC 3 has added the ability to disable DSR checking by specifying a zero or non value
using the DS switch:

 open "com1:9600,n,8,1,ds0" for random as #com

 or

373

 open "com1:9600,n,8,1,ds" for random as #com

Liberty BASIC 3.02 has also added the txcount(#handle) function to get a count of bytes in a
serial communications transmit queue.

 count = txcount(#com)

See also: ONCOMMERROR , TXCOUNT(#handle)

374

 OUT port, byte

OUT port, byte

Description:
This command sends a byte value to the specified machine I/O port. The use of this command
inside W indows is considered to be only for those in the know. W indows provides no method of
ensuring that more than one application will not access any I/O port at a time, so use this

command with care (you know who you are).

If you will be distributing your application, and it uses INP() and/or OUT to control hardware ports,
you will need to distribute and install certain files on your user's system. For detailed information,
see Port I/O.

See also: INP(port)

375

 Platform$

Description:

This variable holds the string "W indows". W hen programming with Liberty BASIC for OS/2, the
same variable holds "OS/2".

This is useful so that you can take advantage of whatever differences there are between the two
platforms and between the versions of Liberty BASIC.

Note: see also Version$

376

 PLAYMIDI
PLAYMIDI filename, length

Description:
This plays a *.MIDI sound from a file on disk as specified in filename. The length variable will hold
the length of the MIDI file (not in seconds). You can only play one file at a time. Periodically, you
will need to use the MIDIPOS() function to see if you've reached the end of the music:

Finally, use the STOPMIDI command to close the music file before you can play a different one.

Usage:

 'the playmidi command returns the length of the midi in
 ' the variable howLong
 playmidi "c:\somedir\mymusic.midi", howLong
 timer 1000, [checkPlay]
 wait

[checkPlay]
 if howLong = midipos() then [musicEnded]
 wait

[musicEnded]
 stopmidi
 timer 0
 wait

See also: STOPMIDI, MIDIPOS()

377

 PLAYW AVE

PLAYW AVE "filename" [, mode]

Description:
This plays a *.wav sound from a file on disk as specified in filename. If mode is specified, it must
be one of the modes described below:

sync (or synch) - wait for the wave file to finish playing (the default)
async (or asynch) - don't wait for the wave file to finish playing

loop - play the wave file over and over (cancel with: playwave "")

Usage

playwave "ding.wav", async
playwave "tada.wav"
playwave "hello.wav", loop
playwave "" 'to stop previous wav from playing

378

 POPUPMENU

POPUPMENU "text", [branchLabel], "text2", [branchLabel2], | , . . .

Description:

This command pops up a W indows menu. The upper left corner of the menu will be positioned
where the cursor is located when the command is issued. Each "text", [branchLabel] pair after

the title adds a menu item to the menu, and tells Liberty BASIC where to branch to when the
menu item is chosen. The " | " character can optionally be placed between menu items to cause
a separating line to be added between the items when the menu is popped up.

The " & " character placed in the text items for the menu specifies the accelerator placement for
each item. The letter directly following the " & " character will act as a hotkey for that menu item,
when it is pressed while the user presses and holds down the ALT key. The hotkey appears

underlined in the menu display.

The menu command is written on a single line. It may be displayed in multiple lines for viewing if

the continuation character (_) is used.

Here is an example of a graphics window with a popupmenu:

 nomainwin
 open "Geometric White-board" for graphics_nsb as #geo
 print #geo, "trapclose [quit]"
 print #geo, "when rightButtonUp [popupMenu]"
 wait ' stop and wait for a menu item to be chosen

[popupMenu]
 popupmenu "&Square Spiral", [asSquare], _
 "&Triangular Spiral", [asTriangle]
 wait

[asSquare]
 print #geo, "cls ; home ; down ; color red"
 for x = 1 to 120
 print #geo, "go "; x; " ; turn 87"
 next x
 wait

[asTriangle]
 print #geo, "cls ; home ; down ; color blue"
 for x = 1 to 120
 print #geo, "go "; x; " ; turn 117"
 next x
 wait

[quit]
 close #geo
 end

Notice that the & character placed in the title and text items for the menu determines the
accelerator placement for each menu item.

379

 See also MENU

380

 PRINT

PRINT #handle, expression ; expression(s) ;

Description:

This statement is used to send data to the mainwin, to a disk file, or to other windows. A series
of expressions can follow PRINT, each separated by a semicolon. Each expression is displayed

in sequence. If the data is being sent to a disk file, or to a window, then #handle must be
present.

PRINTing to the mainwin:

After the expressions are displayed, the cursor (that blinking vertical bar |) will move down to the
next line, and the next time information is sent to the window, it will be placed on the next line
down. To prevent the cursor from moving immediately to the next line, add an additional
semicolon to the end of the list of expressions. This prevents the cursor from being moved down
a line when the expressions are displayed. The next time data is displayed, it will be added onto

the end of the line of data displayed previously.

Usage: Produces:

 print "hello world" hello world

 print "hello "; hello world
 print "world"

 age = 23
 print "Ed is "; age; " years old" Ed is 23 years old

W hen sending data to a disk file and in regard to the use of the semicolon at the end of the
expression list, the rules are similar, although the result is not displayed on the screen. Use of a

semicolon at the end of a line suppresses the carriage return/line feed that causes text to be
printed on the next line. W hen printing to a window, the expressions sent are usually commands
to the window (or requests for information from the window). For more information, see GUI
Programming.

381

 PRINTERDIALOG

PRINTERDIALOG

Description

This command opens the standard W indows Common Printer Dialog. If the user chooses a
printer and accepts, the next print job will go to this printer. Accepting a printer also sets the

global variables PrinterName$, PrintCollate and PrintCopies to reflect what the user chose for
the Printer Name, Collate and Copies. If no printer is accepted, then PrinterName$ is set to an
empty string.

PrinterFont$

To set the font used when LPRINTing text use the PrinterFont$ variable. See also PrinterFont$

PrintCopies
If the printer driver can handle printing multiple copies, PrintCopies will be set to "1" and the
program only needs to lprint the text one time. If the printer driver cannot handle multiple copy

printing, then PrintCopies will contain the number of copies chosen by the user in the
printerdialog, and the program must print these copies in a loop. An example follows.

Usage:

 'choose a file to print
 filedialog "Print a BAS file", "*.bas", fileToPrint$
 if fileToPrint$ <> "" then
 printerdialog
 print "PrinterName$ is ";PrinterName$

382

 print "PrintCopies is ";PrintCopies
 print "PrintCollate is ";PrintCollate
 print "PrinterFont$ is ";PrinterFont$

 if PrinterName$ <> "" then
 open fileToPrint$ for input as #readMe
 while not(eof(#readMe))
 line input #readMe, line$
 lprint line$
 wend
 close #readMe
 dump
 end if
 end if
 end

Multiple Copies:

 txt$ = "Some text to print."
 printerdialog
 for i = 1 to PrintCopies
 lprint txt$
 dump
 next i

383

 PrinterFont$
PrinterFont$ = fontSpec

Description:
Liberty BASIC 4 now lets you set the font used for LPRINTing text to the printer. The format used

for specifying the font is the same as for specifying the font in a graphics window. See also How
to Specify Fonts, LPRINT.

 'set a courier 10 italic font
 PrinterFont$ = "courier_new 10 italic"

The last font set before a page is printed is used for all the text on that page.

Usage:

 'show the current printer font$
 print PrinterFont$
 lprint "This text will appear in "; PrinterFont$
 dump

 'set a courier 10 italic font
 PrinterFont$ = "courier_new 10 italic"
 lprint "This text will appear in "; PrinterFont$
 dump

384

 PROMPT

PROMPT "string expression"; responseVar$

Description:

The PROMPT statement opens a dialog box, displays the message contained in "string
expression", and waits for the user to type a response in the textbox and press the ENTER key,

or press the OK or Cancel button on the dialog. The entered information is placed in
responseVar$. If Cancel is pressed, then a string of zero length is returned. If responseVar$ is
set to some string value before PROMPT is executed, then that value will become the "default" or
suggested response that is displayed in the textbox contained in the PROMPT dialog. This
means that when the dialog is opened, the contents of responseVar$ will already be entered as a

response for the user, who then has the option to either type over that 'default' response, or to
press 'Return' and accept it.

Caption for the Prompt W indow
"string expression"

Two forms are allowed. If "string expression" has no carriage return character (ASCII 13), then
the caption or title on the dialog box is blank and "string expression" is the message displayed

inside the dialog box. If "string expression" does have a Chr$(13), then the part of "string
expression" before Chr$(13) is used as the title for the dialog box, and the part of "string
expression" after Chr$(13) is displayed as the message inside.

Usage:

 response$ = "C:"

 prompt "Search on which Drive? A:, B:, or C:"; response$
[testResponse]

 if response$ = "" then [cancelSearch]
 if len(response$) = 2 and instr("A:B:C:", response$) > 0 then [search]

 response$="C:"
 prompt "Unacceptable response. Please try again. A:, B:, or C:"; response$

 goto [testResponse]

[search]
 print "Starting search . . . "

Specify a Caption:

 response$ = "C:"

 prompt "Please Specify" + chr$(13) + "Search on which Drive? A:, B:, or C:";
response$

 .
 .

385

386

 PUT #h, n

PUT #handle, n

Description:
PUT is used after a random access file is opened to place a record of information (see FIELD)
into the file #handle at the record numbered n. For example:

' open a random access file
 open "custdata.001" for random as #cust len = 70

 field #cust, 20 as name$, 20 as street$, 15 as city$,_
 2 as state$, 10 as zip$, 3 as age

 ' enter data into customer variables
 input name$
 .
 .
 ' put the data into record 1
 put #cust, 1

 close #cust
 end

Note: See also GET, FIELD, Random Files

387

 RADIOBUTTON

RADIOBUTTON #handle.ext, "label", setHandler, resetHandler, x, y, wide, high

Description

This command adds a radiobutton control to the window referenced by #handle. Radiobuttons
have two states, set and reset. They are useful for getting input of on/off type information.

All radiobuttons on a given window are linked together, so that if one is set by clicking on it, all

the others will be reset (cleared). The exception to this rule occurs when radiobuttons are placed
within the confines of groupboxes. In this case, only radiobuttons contained within the same
groupbox act as a radio-set. Clicking (setting) a radiobutton within one groupbox has no effect on

radiobuttons that are placed within other groupboxes. See the demo below.

#handle.ext

This specifies handle for this control. The #handle part must be the same as the #handle of the
window that contains the radiobutton, and the ".ext" part names the radiobutton uniquely in the
window.

"label"

This specifies the visible text of the radiobutton

setHandler
This is the branch label or subroutine executed by the program when the user sets the
radiobutton by clicking on it. See also: Controls and Events

resetHandler
This is the branch label or subroutine executed when the user resets the radiobutton by clicking
on it. (this doesn't actually do anything because radiobuttons can't be reset by clicking on them).

xOrigin

This is the x position of the radiobutton relative to the upper left corner of the window it belongs to.

yOrigin

This is the y position of the radiobutton relative to the upper left corner of the window it belongs to.

width
This is the width of the radiobutton control

height

This is the height of the radiobutton control

Radiobuttons understand these commands:

print #handle.ext, "set"

This sets the radiobutton.

print #handle.ext, "reset"
This resets the radiobutton.

388

print #handle.ext, "value? result$"
The result$ variable will be set to the status of the radiobutton (either "set" or "reset").

print #handle.ext, "setfocus"
This causes the radiobutton to receive the input focus. This means that any keypresses will be

directed to the radiobutton.

print #handle,ext, "locate x y width height"

This repositions the radiobutton in its window. This is effective when the radiobutton is placed
inside window of type "window". The button will not update its size and location until a REFRESH

command is sent to the window. See the included RESIZE.BAS example program.

print #handle.ext, "font facenam e pointSize"
This sets the font to the specified face and point size. If an exact match cannot be found, then
Liberty BASIC will try to find a close match, with size taking precedence over face. For more on

specifying fonts read How to Specify Fonts

Example:
print #handle.ext, "font times_new_roman 10"

print #handle.ext, "enable"
This causes the control to be enabled.

print #handle.ext, "disable"

This causes the control to be inactive and grayed-out.

print #handle.ext, "show"
This causes the control to be visible.

print #handle.ext, "hide"
This causes the control to be hidden or invisible.

Usage:

There are two demo programs below.

'demonstrates radiobuttons with branch label event handlers

nomainwin

WindowWidth = 520
WindowHeight = 220

groupbox #cfg, "Confirm File Operations:", 240, 20, 200, 140
radiobutton #cfg.Aalways, "Always", [alwaysConfirm], [nil], _
 260, 45, 130, 20
radiobutton #cfg.AwhenReplacing, "When Replacing", _
 [whenReplacingConfirm], [nil], 260, 70, 130, 20
radiobutton #cfg.Anever, "Never", [neverConfirm], [nil],_
 260, 95, 130, 20

389

groupbox #cfg, "Confirm Close Operations:", 20, 20, 200, 140
radiobutton #cfg.always, "Always", [alwaysClose], [nil],_
 40, 45, 130, 20
radiobutton #cfg.whenReplacing, "When Replacing", _
 [whenReplacingClose], [nil], 40, 70, 130, 20
radiobutton #cfg.never, "Never", [neverClose], [nil], _
 40, 95, 130, 20
button #cfg, " &OK ", [cfgOk], UL, 450, 30

open "Action Confirmation - Setup" for dialog as #cfg
print #cfg, "trapclose [cfgOk]"
print #cfg.Anever, "set"

print #cfg.never, "set"

[inputLoop]
 wait

[alwaysConfirm]
 status$ = "Always Confirm"
 wait

[whenReplacingConfirm]
 status$ = "When Replacing Confirm"
 wait

[neverConfirm]
 status$ = "Never Confirm"
 wait

[alwaysClose]
 cstatus$ = "Always Close"
 wait

[whenReplacingClose]
 cstatus$ = "When Replacing Close"
 wait

[neverClose]
 cstatus$ = "Never Close"
 wait

[cfgOk]
 msg$ = status$ + chr$(13) + cstatus$ + chr$(13)

 msg$ = msg$ + "Save this configuration?"
 confirm msg$; answer$
 'perform some sort of save for config here
 close #cfg
 end

[nil]
 wait

390

'demonstrates radiobuttons with subroutine event handler

nomainwin
global status$

radiobutton #win.yes, "Yes", doRadio, dummy,10,45,130,20
radiobutton #win.no, "No", doRadio,dummy,10,70,130,20

open "Make a Choice" for window as #win
print #win, "trapclose Quit"
print #win.yes, "set"
 wait

sub doRadio handle$
 notice "You selected ";handle$
 if handle$ = "#win.yes" then status$="yes"
 if handle$ = "#win.no" then status$="no"
 end sub

sub Quit handle$
 close #handle$
 end
 end sub

Note: see also CHECKBOX

For information on creating controls with different background colors, see Colors and the

Graphical User Interface.

391

 RANDOMIZE
RANDOMIZE n

Description:
This function seeds the random number generator in a predictable way. The seed numbers must

be greater than 0 and less than 1. Numbers such as 0.01 and 0.95 are used with RANDOMIZE.

Usage:

 'this will always produce the same 10 numbers
 randomize 0.5
 for x = 1 to 10
 print int(rnd(1)*100)
 next x

392

 READ

Description:

This fetches the next strings and/or numeric values from DATA statements in a program. The
READ statement will fetch enough items to fill the variable names the programmer specifies.

The values fetched will be converted to fit the variables listed (string or numeric).

Example:

 'read the numbers and their descriptions
 while desc$ <> "end"
 read desc$, value
 print desc$; " is the name for "; value
 wend
 'here is our data
 data "one hundred", 100, "two", 2, "three", 3, "end", 0
 end

You can also read numeric items:

 'read the numbers and their descriptions

 while desc$ <> "end"
 read desc$, value$

 print desc$; " is the name for "; value$; ", length="; len(value$)
 wend

 'here is our data
 data "one hundred", 100, "two", 2, "three", 3, "end", 0

 end

Error Handling

If you try to read more DATA items than are contained in the DATA lists, the program will halt
with an error. Notice that in the examples above, an "end" tag is placed in the DATA and when

it is reached, the program stops READing DATA. This is an excellent way to prevent errors from
occurring. If an end tag or flag of some sort is not used, be sure that other checks are in place
to prevent the READ statement from trying to access more DATA items than are contained in

the DATA statements.

See also DATA, RESTORE, READ and DATA

393

 READJOYSTICK
READJOYSTICK 1
or

READJOYSTICK 2

Description:
You can read the position of up to two joysticks and their buttons. The readjoystick command
reads the x, y, and z of an installed joystick (proper drivers must also be installed) and also their

buttons. The variables are visible everywhere because they are global.

Usage:

 readjoystick 1

The command above reads the current status of joystick 1 and places the values into these global
variables:

 Joy1x, Joy1y, Joy1z, Joy1button1, Joy1button2

 readjoystick 2

The command above reads the current status of joystick 2 and places the values into these global
variables:

 Joy2x, Joy2y, Joy2z, Joy2button1, Joy2button2

394

 REDIM

Description:

This redimensions an already dimensioned array and clears all elements to zero (or to an empty
string in the case of string arrays). This can be very useful for writing applications that have data
sets of unknown size. If you dimension arrays that are extra large to make sure you can hold
data, but only have a small set of data, then all the space you reserved is wasted. This hurts
performance, because memory is set aside for the number of elements in the DIM statement.

Usage:

 dim cust$(10) 'dimension the array
 .
 .
 .
 'now we know there are 510 customers on file
 redim cust$(510)
 'now read in the customer records

395

 REM

REM comment

Description:
The REM statement is used to place comments inside code to clearly explain the purpose of
each section of code. This is useful to both the programmer who writes the code or to anyone
who might later need to modify the program. Use REM statements liberally. There is a

shorthand way of using REM, which is to use the ' (apostrophe) character in place of the word
REM. This is cleaner to look at, but you can use whichever you prefer. Unlike other BASIC

statements, with REM you cannot add another statement after it on the same line using a colon (
:) to separate the statements. The rest of the line becomes part of the REM statement.

Usage:

 rem let's pretend that this is a comment for the next line
 print "The mean average is "; meanAverage
Or:
 ' let's pretend that this is a comment for the next line
 print "The strength of the quake was "; magnitude

This doesn't work:

 rem thank the user : print "Thank you for using Super Stats!"

 (even the print statement becomes part of the REM statement)

Note:
W hen using ' instead of REM at the end of a line, the statement separator : (colon) is not required
to separate the statement on that line from its comment.

For example:

print "Total dollar value: "; dollarValue : rem print the dollar value

Can also be stated:

print "Total dollar value: "; dollarValue ' print the dollar value

Notice that the : (colon) is not required in the second form.

396

 REFRESH

 print #handle, "refresh"

Description:

This command is issued to a window of type "W INDOW " after the LOCATE command is used to
move or resize controls. It causes the window to be repainted. For a demonstration, see
Resize.bas.

See also: RESIZEHANDLER, LOCATE, W indow and Dialog Commands

397

 RESIZEHANDLER
RESIZEHANDLER [branch]
or

RESIZEHANDLER subName

Description:
This command sets up an event handler for the instance when the user resizes a window of type
"window". This command is not useful for dialog windows, graphics windows, text windows, or for

windows without a sizing frame. The resize event can be handled in a named branch, or in a
subroutine. If a sub is used as the event handler, the handle of the window being resized is

passed into the sub.

 'set up a handler for when the user resizes a window
 print #handle, "resizehandler [branch]"

or...

 'clear the resizing handler
 print #handle, "resizehandler"

The [branch] that is activated for the resize event should contain the code to LOCATE the desired
controls. After all controls have been given a LOCATE command, the window must be given a
REFRESH command to cause it to be repainted.

New dimensions:
After the resizehandler has been activated, the new dimensions of the window workspace are

contained in the variables W indowW idth and W indowHeight. Use these dimensions to
calculate the desired size and placement for the controls in the window. See also: LOCATE ,

REFRESH W indow and Dialog Commands

Usage:
See the example program RESIZE.BAS and the demo below:

'resizehandler using a sub
 button #main.close, "Close", quit, UL, 10, 10
 open "example" for window as #main
 #main "resizehandler resized"
 #main "trapclose quit"
 wait

sub resized handle$
 notice str$(WindowWidth)+","+str$(WindowHeight)
end sub

sub quit handle$
 if instr(handle$, ".") then
 handle$ = left$(handle$, instr(handle$, ".")-1)
 end if
 close #handle$
 end
end sub

398

399

 RESTORE

RESTORE

RESTORE [branchLabel]

Description:
RESTORE will reset the reading of DATA statements so that the next READ will get information

from the first DATA statement in the program (or the first DATA statement in a function or
subroutine, if this is where the RESTORE is executed).

Example:

 'show me my data in all uppercase
 while string$ <> "end"
 read string$
 print upper$(string$)
 wend
 string$ = "" 'clear this for next while/wend loop

 'now reset the data reading to the beginning
 restore

 'show me my data in all lowercase
 while string$ <> "end"
 read string$
 print lower$(string$)
 wend

 data "The", "Quick", "Brown", "Fox", "Jumped"
 data "Over", "The", "Lazy", "Dog", "end"

 end

Optionally, you can choose to include a branch label:

 'show me my data in all uppercase
 while string$ <> "end"
 read string$
 print upper$(string$)
 wend
 string$ = "" 'clear this for next while/wend loop

 'now reset the data reading to the second part
 restore [partTwo]

 'show me my data in all lowercase
 while string$ <> "end"
 read string$
 print lower$(string$)
 wend

 data "Sally", "Sells", "Sea", "Shells", "By", "The", "Sea", "Shore"
[partTwo]

400

 data "Let's", "Do", "Only", "This", "A", "Second", "Time", "end"

 end

See also DATA, READ, READ and DATA

401

 RESUME
RESUME

Description:
The RESUME command can be used to attempt a retry when an error is handled using the ON
ERROR GOTO statement. There is no way to specify an alternative

If the error is handled in a sub or function, RESUME must be attempted before the sub or function

ends or else you will get an error when attempting to RESUME.

Usage:

'demonstrate the use of RESUME
 on error goto [whoops]
 global divideBy
 call causeWhoops
 end

[whoops]
 print "whoops!"
 print "Error "; Err$; " "; " code "; Err
 divideBy = 2
 resume

sub causeWhoops
 print 10 / divideBy
end sub

402

 RETURN

RETURN

Description:
This statement causes program execution to continue at the next statement after a GOSUB
command was issued. RETURN is the last statement in a block of code that is called by the
GOSUB command.

 See GOSUB

403

 RIGHT$(s$, n)

RIGHT$(string, number)

Description:

This function returns a sequence of characters from the right hand side of the string, string
variable, or string expression string using number to determine how many characters to return. If

number is 0, then "" (an empty string) is returned. If number is greater than or equal to the
number of characters in string, then string will itself be returned.

Usage:

 print right$("I'm right handed", 12)

Produces:

 right handed

And:

 print right$("hello world", 50)

Produces:

 hello world

Note: See also LEFT$() and MID$()

404

 RMDIR()

Description:

The RMDIR() function attempts to remove the directory specified. If the directory removal is
successful the returned value will be 0. If the directory removal was unsuccessful, a value
indicating a DOS error will be returned.

Usage:

 'remove a subdirectory named "pigseye" in the current root
directory
 result = rmdir("\pigseye")
 if result <> 0 then notice "Temporary directory not removed!"

Note: See also MKDIR()

405

 RND(n)

Description:

This function returns a random number between 0 and 1. The number parameter is usually set to
1, but the value is unimportant because it is not actually used by the functoin. The function will

always return an arbitrary number between 0 and 1.

Usage:

 ' print ten numbers between one and ten
 for a = 1 to 10
 print int(rnd(1)*10) + 1
 next a

406

 RUN s$, m ode

RUN StringExpr1 [, mode]

Description:
This command runs external programs. StringExpr1 should represent the full path and filename
of a W indows or DOS executable program, a Liberty BASIC *.TKN file, or a *.BAT file. This is not
a SHELL command, so you must provide the name of a program or batch file, not a DOS

command (like DIR, for example). Execution of an external program does not cause the calling
Liberty BASIC program to cease executing.

Here are two examples:

 RUN "QBASIC.EXE"
' run Microsoft's QBASIC

 RUN "WINFILE.EXE", SHOWMAXIMIZED
' run the File Manager maximized

 RUN "WINHLP32 LIBERTY3.HLP"
'run winhlp32 with the Liberty BASIC helpfile loaded

 RUN "NOTEPAD NEWFOR302.TXT", MINIMIZE
'run notepad minimized with a textfile loaded

Notice in the second example you can include an additional parameter. This is because it runs a
W indows program. Here is a list of the valid parameters we can include when running W indows

programs:

 HIDE

 SHOW NORMAL (this is the default)
 SHOW MINIMIZED

 SHOW MAXIMIZED
 SHOW NOACTIVE
 SHOW

 MINIMIZE
 SHOW MINNOACTIVE
 SHOW NA
 RESTORE

407

 SCAN

Description:

The SCAN statement causes Liberty BASIC to stop what it is doing for a moment and process
W indows keyboard and mouse messages. This is useful for any kind of routine that needs to run
continuously but which still needs to process button clicks and other actions. In this way, SCAN
can be used as an INPUT statement that doesn't stop and wait.

Example:

 'scan example - digital clock

 nomainwin

 WindowWidth = 120
 WindowHeight = 95
 statictext #clock.time, "xx:xx:xx", 15, 10, 90, 20
 button #clock.12hour, "12 Hour", [twelveHour], UL,_
 15, 40, 40, 20
 button #clock.24hour, "24 Hour", [twentyfourHour], UL,_
 60, 40, 40, 20
 open "Clock" for window_nf as #clock
 print #clock, "trapclose [quit]"
 print #clock.time, "!font courier_new 8 15"
 print #clock.12hour, "!font ariel 5 11"
 print #clock.24hour, "!font ariel 5 11"

 goto [twelveHour]

[timeLoop]

 if time$ <> time$() then
 time$ = time$()
 gosub [formatTime]
 print #clock.time, formattedTime$
 end if

 scan 'check for user input

 goto [timeLoop]

[formatTime]

 hours = val(left$(time$, 2))

 if twelveHourFormat = 1 then
 if hours > 12 then
 hours = hours - 12
 suffix$ = " PM"
 else
 if hours = 0 then hours = 12
 suffix$ = " AM"
 end if

408

 else
 suffix$ = ""
 end if

 formattedTime$ = prefix$+right$("0"+str$(hours), 2)
 formattedTime$ = formattedTime$+mid$(time$, 3)+suffix$

 return

[twelveHour] 'set up twelve-hour mode

 twelveHourFormat = 1
 time$ = ""
 prefix$ = ""
 goto [timeLoop]

[twentyfourHour] 'set up twentyfour-hour mode

 twelveHourFormat = 0
 time$ = ""
 prefix$ = " "
 goto [timeLoop]

[quit] 'exit our clock

 close #clock
 end

409

 SEEK
SEEK #handle, position

Description:
This command seeks to the desired point in the file for reading or writing in a file opened for

BINARY access. SEEK sets the file pointer to the location specified. Data will be read from or
written to the file at the location of the file pointer. See also: LOC(#h)

#handle
This parameter is the handle of a file opened for binary access.

position
This is the new location for the file pointer.

Usage:

open "myfile.ext" for binary as #handle

'seek to file position
seek #handle, fpos

410

 SELECT CASE

Description:

SELECT CASE is a construction for evaluating and acting on sets of conditions. The syntax for
Select Case is:

SELECT CASE var

 CASE x
 'basic code
 'goes here
 CASE y
 'basic code

 'goes here
 CASE z
 'basic code

 'goes here
 CASE else
 'basic code
 'goes here
 END SELECT

Details:

SELECT CASE var - defines the beginning of the construct. It is followed by the name variable

that will be evaluated. The variable can be a numeric variable or a string variable, or an
expression such as "a+b".

CASE value - following the SELECT CASE statement, are individual CASE statements,
specifying the conditions to evaluate for the selected variable. Code after the "case" statement is

executed if that particular case evaluates to TRUE. There is no limit to the number of conditions
that can be used for evaluation.

CASE ELSE - defines a block of code to be executed if the selected value does not fulfil any other

CASE statements.

END SELECT - signals the end of the SELECT CASE construct.

Example usage:

num = 3

select case num
 case 1
 print "one"
 case 2
 print "two"
 case 3
 print "three"
 case else
 print "other number"
 end select

The example above results in output in the mainwin of:

411

three

Strings

SELECT CASE can also evaluate string expressions in a similar way to numeric expressions.

String example:

var$="blue"

select case var$
 case "red"
 print "red"
 case "green","yellow"
 print "green or yellow"
 case else
 print "color unknown"
end select

MULTIPLE CASES - may be evaluated when separated by a comma.
For example:

 select case a+b
 case 4,5
 do stuff
 case 6,7
 do other stuff
 end select

Once one of the CASEs has been met, no other case statements are evaluated. In the following
example, since the value meets the condition of the first CASE statement, the second CASE
statement isn't considered, even though the value meets that condition also.

num = 3

select case num
 case 3, 5, 10
 print "3, 5, 10"
 case 3, 12, 14, 18
 print "3, 12, 14, 18"
 case else
 print "Not evaluated."
end select

The example above results in output in the mainwin of:

3, 5, 10

Evaluating m ultiple conditions in the CASE statement
Omitting the expression (or variable) in the SELECT CASE statement causes the conditions in
the CASE statements to be evaluated in their entirety. To omit the expression, simply type

412

"select case" with no variable or expression after it. In the following example, since "value"
evaluates to the first CASE statement, the printout says "First case"

'correct:
value = 58

select case
 case (value < 10) or (value > 50 and value < 60)
 print "First case"

 case (value > 100) and (value < 200)
 print "Second case"

 case (value = 300) or (value = 400)
 print "Third case"

 case else
 print "Not evaluated"
end select

If the expression "value" is placed after "select case", then none of the CASE statements is met,
so CASE ELSE is triggered, which prints "Not evaluated".

'incorrect usage if multiple cases must be evaluated:
select case value

Nested statements
Nested select case statements may be used. Example:

 select case a+b
 case 4,5
 select case c*d
 case 100
 do stuff
 end select
 do stuff
 case 6,7
 do other stuff
 end select

See also: if...then

413

 SIN(n)

Description:

This function returns the sine of the angle n. The angle n should be expressed in radians.

Usage:

 for t = 1 to 45
 print "The sine of "; t; " is "; sin(t)
 next t

Tip:

There are 2 * pi radians in a full circle of 360 degrees. A formula to convert degrees to radians is:

radians = degrees divided by 57.29577951

Note: See also COS() and TAN()

414

 SORT

SORT arrayName(), start, end, [column]

Description:
This command sorts both double and single dimensioned arrays. The start parameter specifies
the element with which to begin the sort and the end parameter specifies the element where
sorting should stop. Arrays can be sorted in part or in whole, and with double dimensioned

arrays, the specific column to sort by can be declared. W hen this option is used, all the rows are
sorted against each other according to the items in the specified column.

Usage:

Here is the syntax for the sort command:

 sort arrayName$(), i, j, [,n]

This sorts the array named arrayName$(starting with element i, and ending with element j. If it is

a double dimensioned array then the column parameter tells which nth element to use as a sort
key. Each W HOLE row moves with its corresponding key as it moves during the sort. If you

have a double dimensioned array holding sales rep activity:

 repActivity$(x, y)

It can be holding data, one record per x position, and the record keys are in y. So for example:

 repActivity$(1,1) = "Tom Maloney" : repActivity(1,2) = "01-09-93"
 repActivity$(2,1) = "Mary Burns" : repActivity(2,2) = "01-10-93"
 .
 .
 .
 repActivity$(100,1) = "Ed Dole" : repActivity(100,2) = "01-08-93"

To sort the whole 100 items by the date field this is how the command would look:

 sort repActivity$(), 1, 100, 2

To sort by name instead, then change the 2 to a 1, like this:

 sort repActivity$(), 1, 100, 1

Sort Reversed
Reverse the order of the sort by reversing the order of the range of rows to sort.

 'sort from row 1 to 50
 sort array$(), 1, 50

 'sort reversed from row 1 to 50
 sort array$(), 50, 1

415

 SPACE$(n)

Description:

This function will a return a string of n space characters " ", or (ASCII 32). It is useful when
producing formatted output to a file or printer.

Usage:

 for x = 1 to 10
 print space$(x); "*"
 next x

416

 SQR(n)
SQR(n)

Description:

This function returns the square root of the number or numeric expressioin n.

Usage:

 print "The square root of 2 is: ";
 print SQR(2)

417

 Statictext

The syntax of this command is:

 STATICTEXT #handle, "string", xpos, ypos, wide, high

 or
 STATICTEXT #handle.ext, "string", xpos, ypos, wide, high

Description

Statictext lets you place instructions or labels into your windows. This is most often used with a
textbox to describe what to type into it. The text contained in a statictext control is alligned to
the left. If the text is too long to fit the width of the control, it will automatically wrap lines to fit.

#handle
This must be the same as the #handle of the window that contains the statictext control. If
#handle.ext is used, the program can PRINT commands to the statictext control. If the control
has no extension, then it cannot receive commands to change the text label, font or location.

"string"

This is the text displayed on the statictext.

xpos & ypos
This is the distance of the statictext in x and y (in pixels) from the upper-left corner of the screen.

wide & high
This is the width and height of the statictext. Be sure to specify enough width and height to

accomodate the text in "string".

Statictext Commands

print #handle.ext, "a string"
This changes the text displayed on a statictext control. This command sets the contents (the
visible label) of the statictext to be "a string". The handle must be of form #handle.ext that

includes a unique extension so that commands can be printed to the control.

print #handle.ext, "!locate x y width height"
This repositions the statictext control in its window. This only works if the control is placed inside
window of type "window". The control will not update its size and location until a REFRESH
command is sent to the window. See the RESIZE.BAS example program.

print #handle.ext, "!font facenam e pointSize"
This sets the control's font to the specified face and point size. If an exact match cannot be

found, then Liberty BASIC will try to find a close match, with size taking precedence over face.
For more on specifying fonts read How to Specify Fonts

 Example:
 print #handle.ext, "!font times_new_roman 10"

print #handle.ext, "!enable"
This causes the control to be enabled.

418

print #handle.ext, "!disable"
This causes the control to be inactive and grayed-out.

print #handle.ext, "!show"
This causes the control to be visible.

print #handle.ext, "!hide"

This causes the control to be hidden or invisible.

Sam ple Program
 'sample program

 statictext #member, "Name", 10, 10, 40, 18
 statictext #member, "Address", 10, 40, 70, 18
 statictext #member, "City", 10, 70, 60, 18
 statictext #member, "State", 10, 100, 50, 18
 statictext #member, "Zip", 10, 130, 30, 18

 textbox #member.name, 90, 10, 180, 25
 textbox #member.address, 90, 40, 180, 25
 textbox #member.city, 90, 70, 180, 25
 textbox #member.state, 90, 100, 30, 25
 textbox #member.zip, 90, 130, 100, 25

 button #member, "&OK", [memberOK], UL, 10, 160

 WindowWidth = 300 : WindowHeight = 230
 open "Enter Member Info" for dialog as #member
 print #member, "trapclose [quit]"

 wait

[memberOK]
 print #member.name, "!contents? name$"
 print #member.address, "!contents? address$"
 print #member.city, "!contents? city$"
 print #member.state, "!contents? state$"
 print #member.zip, "!contents? zip$"
 cr$ = chr$(13)
 note$ = name$ + cr$ + address$ + cr$ + city$ + cr$ + _
 state$ + cr$ + zip$
 notice "Member Info" + cr$ + note$

[quit]
 close #member
 end

For information on creating controls with different background colors, see Colors and the
Graphical User Interface.

419

 Stop

Description:

Identical to END and used interchangeably.

420

 STOPMIDI
STOPMIDI

Description:
This command stops a MIDI file that is being played with the PLAYMIDI command. It must be
issued before a new PLAYMIDI command can be issued, and to stop MIDI files from playing when
a program ends.

See also: PLAYMIDI, MIDIPOS()

421

 STR$(n)
STR$(numericExpression)

Description:
This function returns a string expressing the result of numericExpression.

Usage:

age = 23
age$ = str$(age)
price = 2.99
price$ = str$(price)
totalApples = 37
print "Total number of apples is " + str$(totalApples)

422

 STRUCT

STRUCT name, field1 as type1 [, field2 as type2, ...]

Description:

This statement builds an single instance of a specified structure thatis required when making
some kinds of API/DLL calls. This does not declare a type of structure, but it creates a single

structure.

Here is an example STRUCT statement that builds a W indows rect structure, used in many
W indows API calls:

 'create the structure winRect
 struct winRect, _
 orgX as long, _
 orgY as long, _
 extentX as long, _
 extentY as long

A value is assigned to a field of a structure in a similar way to variable assignements. The name
of the struct is used first. followed by a dot, then by the name of the field being accessed, then by
another dot, and last by the word "struct." This example assigns a value of "100" to the "orgX"
field of the struct "winRect":

 winRect.orgX.struct = 100

The structure's fields may be used in the same manner as any other variable:

 print winRect.orgX.struct

 or:

 newOriginX = offsetX + winRect.orgX.struct

Some API calls require the size of a struct to be passed as a parameter. Determine the length
(size) of a struct with the LEN() function.

 sizeStruct = len(winRect.struct)

W hen passing a structure in a CALLDLL statement, specify type "as struct", as is done in this

example:

 'WINRECT.BAS - show how to get window position and size
 'and demonstrate how to use the struct statement

 struct winRect, _
 orgX as long, _
 orgY as long, _
 crnrX as long, _
 crnrY as long

423

 open "test me" for window as #win

 open "user32.dll" for dll as #user

 hndl = hwnd(#win)

 calldll #user, "GetWindowRect", _
 hndl as ulong, _
 winRect as struct, _
 result as long

 print "Upper Left x, y of 'test me': "
 print winRect.orgX.struct; ", "; winRect.orgY.struct
 print
 print "Lower Right x, y of 'test me': "
 print winRect.crnrX.struct; ", "; winRect.crnrY.struct

 close #user
 close #win
 wait

 end

See also: CALLDLL, Using Types with STRUCT, Understanding Syntax

424

 STYLEBITS
stylebits #handle, addBits, removeBits, addExtendedBits, removeExtendedBits

Description:
STYLEBITS allows you to change the style of a Liberty BASIC window or control. It accepts a
handle and four parameters. W hen the window is opened it checks to see if there are style bits
for the window or for any controls. If there is a STYLEBITS command it applies the remove bits
first, then applies the add bits. In this way the control is created from the get-go with the desired

style. The STYLEBITS command must be issued before the command to open the window.

This command works on all Liberty BASIC windows and controls, but since the texteditor is not a
native W indows control you will only be able to do things like tweak it's border and perhaps a few
other things.

Some common window and control styles are listed below. To find all possible style bits used to

create controls in W indows, refer to API references online or in books for the functions to
CreateW indow and CreateW indowEx.

#handle
This must be a handle of handle variable that refers to a control. See the code below for a

demonstration.

addBits

This contains all style bits that should be added to the control. If there are more than one, they
must be put together with the bitwise OR operator, like this: _ES_AUTOVSCROLL or
_ES_MULTILINE

removeBits
This removes style bits from the control. To remove a border from a control, this value would be

_W S_BORDER.

addExtendedBits
This adds bits to the extended style. W indows created with an extended style have extended
style bits, like _W S_EX_CLIENTEDGE.

removeExtendedBits

This removes bits from the extended style. W indows created with an extended style have
extended style bits, like _W S_EX_TOOLW INDOW .

Usage:
 'here is a textbox with a password setting
 stylebits #main.pw, _ES_PASSWORD, _ES_AUTOVSCROLL or _ES_MULTILINE,
0, 0
 textbox #main.pw, 10, 10, 250, 25

 'here is one right justified, and we use a handle variable
 justHandle$ = "#main.rjust"
 stylebits #justHandle$, _ES_RIGHT, 0, 0, 0
 textbox #main.rjust, 10, 40, 250, 25

 'here's a silly example of twiddling style bits for a window

425

 stylebits #main, _WS_SYSMENU, _WS_POPUP, _WS_EX_CONTEXTHELP, 0
 open "STYLEBITS demo" for window_popup as #main
 #main.pw "please"
 #main.rjust "on the right"
 wait

W INDOW AND CONTROL STYLE CONSTANTS
window styles - some also work for controls:
_W S_BORDER Creates a window that has a thin-line border.

_W S_CAPTION Creates a window that has a title bar (includes the W S_BORDER style).
_W S_HSCROLL Creates a window that has a horizontal scroll bar.
_W S_MAXIMIZE Creates a window that is initially maximized.

_W S_MAXIMIZEBOX Creates a window that has a Maximize button.
_W S_MINIMIZE Creates a window that is initially minimized. Same as the W S_ICONIC

style.
_W S_MINIMIZEBOX Creates a window that has a Minimize button.
_W S_VSCROLL Creates a window that has a vertical scroll bar.

button styles:
_BS_LEFT Left-justifies the text in the button rectangle.
_BS_RIGHT Right-justifies text in the button rectangle.
_BS_RIGHTBUTTON Positions a radio button's circle or a check box's square on the right

side of the button rectangle.

editbox (textbox) styles:
_ES_CENTER Centers text in a multiline edit control.
_ES_PASSW ORD Displays an asterisk (*) for each character typed into the edit control.
_ES_RIGHT Right-aligns text in a multiline edit control.

listbox styles:
_LBS_MULTICOLUMN Specifies a multicolumn list box that is scrolled horizontally.
_LBS_SORT Sorts strings in the list box alphabetically.

statictext styles:

_SS_CENTER Specifies a simple rectangle and centers the text in the rectangle.
_SS_RIGHT Specifies a simple rectangle and right-aligns the given text in the rectangle.

426

 SUB
See also: Functions and Subroutines, BYREF

sub subName zero or more comma separated parameter variable names

 'code for the sub goes in here

end sub

Description:
This statement defines a subroutine. Zero or more parameters may be passed into the
subroutine. A subroutine cannot contain another subroutine definition, nor a function definition.

The CALL statement is used to access the SUBROUTINE and to pass values into it. The values
must be the same type as the SUB statement defines them to be. So the following example:

 sub mySubName string$, number, string2$

is called like this:

 call mySubName "string value", 123, str$("321")

Local Variables
The variable names inside a subroutine are scoped locally, meaning that the value of any variable
inside a subroutine is different from the value of a variable of the same name outside the
subroutine.

Passing by Reference
Variables passed as arguments into subroutines are passed "by value" which means that a copy

of the variable is passed into the subroutine. The value of the variable is not changed in the main
program if it is changed in the subroutine. A variable may instead by passed "byref" which
means that a reference to the actual variable is passed and a change in the value of this variable

in the subroutine affects the value of the variable in the main program.

Global Variables and Devices
Variables declared with the GLOBAL statement are available in the main program and in

subroutines and functions.

Arrays, structs and handles of files, DLLs and windows are global to a Liberty BASIC program,

and visible inside a subroutine without needing to be passed in.

Special global status is given to certain default variables used for sizing, positioning, and coloring
windows and controls. These include variables W indowW idth, W indowHeight, UpperLeftX,

UpperLeftY, ForegroundColor$, BackgroundColor$, ListboxColor$, TextboxColor$,
ComboboxColor$, TexteditorColor$. The value of these variables, as well as DefaultDir$ and com
can be seen and modified in any subroutine/function.

Branch Labels
Branch labels are locally scoped. Code inside a subroutine cannot see branch labels outside the
subroutine, and code outside a subroutine cannot see branch labels inside any subroutine.

Ending a Subroutine:
The sub definition must end with the expression: end sub

Executing Subroutines

427

Be sure that a program doesn't accidentally flow into a subroutine. A subroutine should only
execute when it is called by command in the program.

wrong:
 for i = 1 to 10
 'do some stuff
 next i

 Sub MySub param1, param2
 'do some stuff
 End Sub

correct:
 for i = 1 to 10
 'do some stuff
 next i

 WAIT

 Sub MySub param1, param2
 'do some stuff
 End Sub

Exam ple:
Usage:

'copy two files into one
fileOne$ = "first.txt"
fileTwo$ = "second.txt"
combined$ = "together.txt"
call mergeFiles fileOne$, fileTwo$, combined$
end

sub mergeFiles firstFile$, secondFile$, merged$
 open merged$ for output as #merged
 open firstFile$ for input as #first
 print #merged, input$(#first, lof(#first));
 close #first
 open secondFile$ for input as #second
 print #merged, input$(#second, lof(#second));
 close #second
 close #merged
end sub

See also: FUNCTION, Recursion, Functions and Subroutines

428

 TAB(n)
Print TAB(n)
Liberty BASIC 4 has the ability to use the TAB function for formatting output to the mainwin and

to the printer. "n" is the character location where the next output will be printed. "tab(7)" causes
the next output to print beginning at column (character) 7, while "tab(21)" causes the next output
to print beginning at column 21. TAB(n) works with both the mainwin PRINT command and with
LPRINT.

 'show how tab() works
 print "x"; tab(7); "sine"; tab(21); "cosine"
 for x = 1 to 10
 print x; tab(7); sin(x); tab(21); cos(x)
 next x
 end

429

 TAN(n)

Description:

This function returns the tangent of the angle n. The angle n should be expressed in radians

Usage:

 for t = 1 to 45
 print "The tangent of "; t; " is "; tan(t)
 next t

Tip:

There are 2 * pi radians in a full circle of 360 degrees. A formula to convert degrees to radians is:
radians = degrees divided by 57.29577951

Note: See also SIN() and COS()

430

 Textbox

TEXTBOX #handle.ext, xpos, ypos, wide, high

Description

The textbox command adds a single item, single line text entry control to a window. It is useful
for generating forms and getting small amounts of user input in the form of text. Liberty BASIC 4

adds PASSW ORD and RIGHTJUSTIFY commands. See below.

#handle.ext
The #handle part must be the same as for the window that contains the textbox control. The

".ext" part must be unique for the textbox.

xpos & ypos
This is the position of the textbox in x and y from the upper-left corner of the window.

wide & high
This is the width and height of the textbox in pixels.

Textbox commands:

print #handle.ext, "a string"
This sets the contents of the textbox to be "a string". Any previous contents of the textbox are
overwritten. To clear a textbox of text, print a blank string to it:

print #handle.ext, ""

print #handle.ext, "!contents? varName$";
This retrieves the contents of the textbox and places them into the variable, varName$.

print #handle, "!font fontName pointsize" ;
Tihs sets the font of the textbox to the specified name and size. If an exact match cannot be
found, then Liberty BASIC will

try to match as closely as possible, with size taking precedence over the facename in the match.
 Note that a font sized too large to fit in the textbox will not allow the text it contains to be

displayed. For more on specifying fonts read How to Specify Fonts Also, see below for Dead
Textbox Problem.

 Example:
 print #handle, "!font Times_New_Roman 10";

print #handle.ext, "!locate x y width height";
This repositions the control in its window. This is effective when the control is placed inside

window of type "window". The control will not update its size and location until a REFRESH
command is sent to the window. See the RESIZE.BAS example program.

print #handle.ext, "!setfocus";
This causes the textbox to receive the input focus. This means that any keypresses will be

431

directed to the textbox.

print #handle.ext, "!enable"
This causes the control to be enabled.

print #handle.ext, "!disable"
This causes the control to be inactive and grayed-out.

print #handle.ext, "!show"
This causes the control to be visible.

print #handle.ext, "!hide"
This causes the control to be hidden or invisible.

Dead Textbox Problem
If it appears that no text can be typed into a textbox, it may be that the textbox is not high
enough to display the current font. Try making the textbox higher, or giving it a font command for
a smaller font. Textboxes can also appear to be dead if too many controls are placed on a

window.

Sam ple Program
' sample program

textbox #name.txt, 20, 10, 260, 25
button #name, "OK", [titleGraph], LR, 5, 0
WindowWidth = 350 : WindowHeight = 90
open "What do you want to name this graph?" for window_nf as #name
print #name.txt, "untitled"

[mainLoop]
wait

[titleGraph]
print #name.txt, "!contents?"
input #name.txt, graphTitle$
notice "The title for your graph is: "; graphTitle$
close #name
end

For information on creating controls with different background colors, see Colors and the
Graphical User Interface.

432

 Texteditor

TEXTEDITOR #handle.ext, xpos, ypos, wide, high

Description

Texteditor is a control similar to textbox, but with scroll bars, and with an enhanced command
set. The commands are essentially the same as that of a window of type "text." NOTICE that

texteditor commands start with an exclamation point, because the control will simply display
anything printed to it if it doesn't start with an exclamation point. The texteditor provides a method
for the user to create and edit large amounts of text. The addition of a texteditor control to a

window automatically causes the menubar to contain an EDIT menu. Right-clicking within a
texteditor control pops up an automatic EDIT menu.

#handle.ext
The #handle part must be the same as for the window that contains the texteditor control. The
".ext" part must be unique for the texteditor.

xpos & ypos
This is the position of the texteditor in x and y from the upper-left corner of the window.

wide & high
This is the width and height of the texteditor in pixels.

Here are the texteditor commands:

print #handle, "!autoresize";

This works with texteditor controls, but not with textbox controls or text windows.

This causes the edges of the control to maintain their distance from the edges of the overall
window. If the user resizes the window, the texteditor control also resizes.

print #handle, "!cls" ;
This clears the texteditor of all text.

print #handle, "!contents varnam e$";
print #handle, "!contents #handle";
This has two forms as described above. The first form causes the contents of the text window to

be replaced with the contents of varname$, and the second form causes the contents of the text

433

window to be replaced with the contents of the stream referenced by #handle (this is the handle of
a file opened for INPUT). This second form is useful for reading large text files quickly into the
window.

Here is an example of the second form:

open "Contents of AUTOEXEC.BAT" for text as #aetext
open "C:\AUTOEXEC.BAT" for input as #autoexec
print #aetext, "!contents #autoexec";
close #autoexec
'stop here
input a$

print #handle, "!contents? string$";
This returns the entire text contained in the control. After this command is issued, the entire text

is contained in the variable string$.

print #handle, "!copy" ;

This causes the currently selected text to be copied to the W INDOW S clipboard.

print #handle, "!cut" ;

This causes the currently selected text to be cut out of the text window and copied to the
W INDOW S clipboard.

print #handle, "!font fontName pointsize" ;

This sets the font of the text window to the specified name and size. If an exact match cannot be
found, then Liberty BASIC will try to match as closely as possible, with size taking precedence

over facename in the match. For more on specifying fonts read How to Specify Fonts

Example:
print #handle, "!font Times_New_Roman 10";

print #handle, "!insert varnam e$";
This inserts the contents of the variable at the current caret (text cursor) position, leaving the
selection highlighted.

print #handle, "!line n string$" ;
This returns the text at line n. n is standing in for a literal number. If n is less than 1 or greater

than the number of lines the texteditor contains, then "" (an empty string) is returned. After this
command is issued, the specified line's text is contained in the variable string$.

print #h, "!lines countVar" ;
This returns the number of lines of text contained in the texteditor, placing the value into the

variable countVar.

print #handle.ext, "!locate x y width height"
This repositions the control in its window. This is effective when the control is placed inside
window of type "window". The control will not update its size and location until a REFRESH

434

command is sent to the window. See the RESIZE.BAS example program.

print #handle, "!modified? answer$" ;
This returns a string (either "true" or "false") that indicates whether any data in the texteditor has
been modified. The variable answer$ holds this returned string. This is useful for checking to see

whether to save the contents of the texteditor before ending a program.

print #h, "!origin? colum nVar rowVar " ;

This causes the current texteditor origin to be returned. W hen a texteditor is first opened, the
result would be column 1, row 1. The result is contained in the variables columnVar and rowVar.

print #handle, "!origin column row" ;

This forces the origin of the texteditor to be column and row. Row and column must be literal
numbers. To use variables for these values, place them outside the quotation marks, preserving
the blank spaces, like this:

print #handle, "!origin ";column;" ";row

print #handle, "!paste" ;
This causes the text in the W INDOW S clipboard (if there is any) to be pasted into the texteditor

at the current caret position.

print #handle, "!select column row" ;
This will put the blinking cursor (caret) at column row. Column and row must be literal numbers.
To express them as variables, place the variables outside the quotation marks and preserve the

blank spaces, like this:

print #handle, "!select ";column;" ";row

print #handle, "!selectall" ;

This causes everything in the texteditor to be selected.

print #handle, "!selection? selected$" ;
This returns the highlighted text from the texteditor. The result will be contained in the variable
selected$.

print #handle, "!setfocus";
This causes W indows to give input focus to this control. This means that if some other control in
the same windows was highlighted and active, that this control now becomes the highlighted and

active control, receiving keyboard input.

print #handle.ext, "!enable"

This causes the control to be enabled.

print #handle.ext, "!disable"
This causes the control to be inactive and grayed-out.

print #handle.ext, "!show"
This causes the control to be visible.

print #handle.ext, "!hide"
This causes the control to be hidden or invisible.

435

See also: Text Commands

For information on creating controls with different background colors, see Colors and the

Graphical User Interface.

436

 TIME$()

Description:

This function returns a string representing the current time of the system clock in 24 hour format.
This function replaces the time$ variable used in QBasic. See also DATE$(), Date and Time

Functions

 'this form of time$() produces this format
 print time$() 'time now as string "16:21:44"
 print time$("seconds") 'seconds since midnight as number 32314

 print time$("milliseconds") 'milliseconds since midnight as number 33221342

 print time$("ms") 'milliseconds since midnight as number 33221342

Usage:

 ' display the opening screen
 print "Main selection screen Time now: "; time$()
 print
 print "1. Add new record"
 print "2. Modify existing record"
 print "3. Delete record"

437

 TIMER
TIMER milliseconds, [branchLabel]
Timer milliseconds subName

Description:
This commands manages a W indows timer. This is useful for controlling the rate of software
execution (games or animation perhaps), or for creating a program or program feature which
activates periodically (a clock perhaps, or an email client which checks for new messages). The

TIMER is deactivated by setting a time value of 0, and no branch label. There is only one
tim er. The elapsed time value and/or branch label to execute can be changed at any time by

issuing a new TIMER command. There are 1000 milliseconds in one second. A value of 1000
causes the timer to fire every one second. A value of 500 causes the timer to fire every half
second, and so on.

Usage:

Branch Label Handler:
 'set a timer to fire in 3 seconds
 'using branch label event handler
 timer 3000, [itHappened]
 'wait here
 wait

[itHappened]
 'deactivate the timer
 timer 0
 confirm "It happened! Do it again?"; answer
 if answer then
 'reactivate the timer
 timer 3000, [itHappened]
 wait
 end if
 end

Subroutine handler:

 'set a timer to fire in 3 seconds
 'using subroutine event handler
 timer 3000, itHappened
 'wait here
 wait

sub itHappened
 'deactivate the timer
 timer 0
 confirm "It happened! Do it again?"; answer
 if answer then
 'reactivate the timer
 timer 3000, itHappened
 end if
 end sub

Be Careful!

438

If the program attempts to execute more code within a timer routine than can be executed in the
timer interval, the timer ticks build up and the program will keep executing them as quickly as it
can. This might make the program appear to have locked up. To avoid a lock-up, place a SCAN

command within the timer routine, so that the program knows when the user activates other
controls, or closes a window.

439

 Titlebar

Description:

This command changes the titlebar of the main window. It doesn't change the title of any other
window.

Here's a real small clock program!

 'ittyclok

[loop]
 if time$ <> time$() then
 time$ = time$()
 titlebar time$
 end if
 scan
 goto [loop]

440

 TRACE n

TRACE number

Description:
This statement sets the trace level for its application program. This is only effective if the program
is run using the Debug menu selection (instead of RUN). If Run is used, then any TRACE
statements are ignored. It allows you to mark places in code that will cause the debugger to

change modes between "step", "animate" and "run." This allows you to use the "run" button to
debug a program, and when it hits a "TRACE 2" command in the code, it will automatically drop

down into "step" mode. See Using the Debugger.

There are three trace levels: 0, 1, and 2. Here are the effects of these levels:

 0 = full speed no trace or RUN

 1 = animated trace or ANIMATE, logs variables and highlights current line
 2 = single step mode or STEP, requires programmer to click STEP button to continue to next
line of code to execute, logs variables

W hen any Liberty BASIC program first starts under Debug mode, the trace level is always initially

2 (STEP). You can then click on any of the buttons to determine what mode to continue in.
W hen a TRACE statement is encountered, the trace level is set accordingly, but you can recover
from this new trace level by clicking again on the desired button.

If you are having trouble debugging code at a certain spot, then you can add a TRACE statement
(usually level 2) just before that location, run in Debug mode and then click on the RUN button in
the debugger. W hen the TRACE statement is reached, the debugger will kick in at that point,
slowing the debugging process to STEP mode.

Usage:

 open "wave" for graphics as #graph
 print #graph, "down"
 for index = 1 to 200
 if index = 20 then trace 2 'Here is the trouble spot
 print #graph, "goto "; index ; " "; 100+int(100*sin(index/20))
 next index
 wait

441

 TRIM$(s$)

TRIM$(stringExpression)

Description:

This function removes any spaces from the start and end of the string in stringExpression. This
can be useful for cleaning up data entry among other things.

Usage:

 sentence$ = " Greetings "
 print len(trim$(sentence$))

Produces: 9

442

 TXCOUNT
txcount(#handle)

Description:
This function gets a count of bytes in a serial communications transmit queue.

 count = txcount(#com)

See also Open "Comn:...", ONCOMERROR

443

 UNLOADBMP

UNLOADBMP "name"

Description:
This command removes from Liberty BASIC the bitmap specified by "name". It also frees the
W indows memory resources associated with that bitmap. This is useful for freeing bitmap
resources when many bitmaps are used in a program. Unload all bitmaps loaded with

LOADBMP when a program closes to insure that system resources are freed.

See also: LOADBMP, HBMP()

444

 UPPER$(s$)
UPPER$(s$)

Description:
This function returns a copy of the contents of the string, string variable, or string expression s$,
but with all letters converted to uppercase.

Usage:

 print upper$("The Taj Mahal")

Produces:

 THE TAJ MAHAL

445

 USING()

USING(templateString, numericExpression)

Description:

This function formats numericExpression as a string using templateString. The rules for the
format are similar to those in Microsoft BASIC's PRINT USING statement, but since using() is a

function, it can be used as part of a larger BASIC expression instead of being useful only for
display output directly. The template string consists of the character "#" to indicate placement
for numerals, and a single dot "." to indicate placement for the decimal point. The template string
must be contained within double quotation marks. If there are more digits contained in a number
than allowed for by the template string, the digits will be truncated to match the template.

A template string looks like this:

amount$ = using("######.##", 1234.56)

As part of a larger expression:

notice "Your total is $" + using("####.##", 1234.5)

A template string can be expressed as a string variable:

template$ = "######.##"
amount$ = using(template$, 1234.56)

Using() may be used in conjunction with 'print'. The following two examples produce the same
result:

amount$ = using("######.##", 123456.78)
print amount$

print using("######.##", 123456.78)

The using() function for Liberty BASIC 3 has been modified so that it rounds its output like

PRINT USING does in other BASICs.

Usage:

' print a column of ten justified numbers
for a = 1 to 10
 print using("####.##", rnd(1)*1000)
next a

'sample output from the routine above:
 72.06
 244.28
 133.74
 99.64
 813.50
 529.65

446

 601.19
 697.91
 5.82
 619.22

447

 UpperLeftX

Description:

The special variables UpperLeftX and UpperLeftY specify the distance, inpixels, from the top-left
ofthe display forthe next-opened window. For example, the following code will open a graphics

window whose upper left corner is located 50 pixels from the left of the display, and 25 pixels from
the top of the display:

 UpperLeftX = 50
 UpperLeftY = 25
 open "test window" for graphics as #testHandle

 input r$

See also: W indowW idth, W indow Height

448

 UpperLeftY

Description:

The special variables UpperLeftX and UpperLeftY specify the distance, inpixels, from the top-left
ofthe display forthe next-opened window. For example, the following code will open a graphics

window whose upper left corner is located 50 pixels from the left of the display, and 25 pixels from
the top of the display:

 UpperLeftX = 50
 UpperLeftY = 25
 open "test window" for graphics as #testHandle

 input r$

See also: W indowW idth, W indow Height

449

 VAL(s$)

VAL(stringExpression)

Description:

This function returns a numeric value for stringExpression if stringExpression represents a
valid numeric value or if it begins with a valid numeric value. If not, then zero is returned.

Usage:

 print 2 * val("3.14") Produces: 6.28

 print val("hello") Produces: 0

 print val("3 blind mice") Produces: 3

450

 Version$

Version$

Description:
This variable holds the version of Liberty BASIC, in this case "4.0".

This is useful so that you can take advantage of whatever differences there are between the

different versions of Liberty BASIC.

Note: see also Platform$

451

 W AIT

Description:

This simple statement causes program execution to stop and wait for user input events. W hen
the user interacts with a window or other control owned by the program and generates an event,

program execution resumes at the event handler appropriate for their interaction.

Usage:

 'demonstrate the wait command (in three places)
 nomainwin
 open "Geometric wite-board" for graphics_nsb as #geo
 print #geo, "trapclose [quit]"
 print #geo, "when rightButtonUp [popupMenu]"
 wait ' stop and wait for a menu item to be chosen

[popupMenu]
 popupmenu "&Square Spiral", [asSquare], "&Triangular Spiral",
[asTriangle]
 wait

[asSquare]
 print #geo, "cls ; home ; down ; color red"
 for x = 1 to 120
 print #geo, "go "; x; " ; turn 87"
 next x
 wait

[asTriangle]
 print #geo, "cls ; home ; down ; color blue"
 for x = 1 to 120
 print #geo, "go "; x; " ; turn 117"
 next x
 wait

[quit]
 close #geo
 end

Note: In general, Liberty BASIC encourages the use of wait over the previous practice of
using input.

452

 W HILE...[EXIT W HILE]...W END

W HILE expression

 {some code}
W END

Description:

These two statements comprise the start and end of a control loop. Between the W HILE and
W END code is placed (optionally) that is executed repeatedly while expression evaluates to true.
The code between any W HILE statement and its associated W END statement will not execute
even once if the W HILE expression initially evaluates to false. Once execution reaches the
W END statement, for as long as the W HILE expression evaluates to true, then execution will

jump back to the W HILE statement. "Expression" can be a boolean, numeric, or string
expression or combination of expressions.

Usage:

 ' loop until midnight (go read a good book)
 while time$ <> "00:00:00"
 ' some action performing code might be placed here
 wend

Or:

 ' loop until a valid response is solicited
 while val(age$) = 0
 input "How old are you?"; age$
 if val(age$) = 0 then print "Invalid response. Try again."
 wend

Note: A program SHOULD NOT exit a W HILE...W END loop using GOTO. It may cause the
program to behave unpredictably. (See EXIT W HILE, below.)

GOSUB, FUNCTION and SUB may be used within a W HILE...W END loop because they only

temporarily redirect program flow or call on other parts of the program. Program execution
resumes within the W HILE/W END loop in these instances. Program execution does not return to
the W HILE/W END loop if GOTO is used within the loop. GOTO should not be used to exit a
W HILE/W END loop. EXIT W HILE will correctly exit the loop before it would have terminated
normally.

The following example is an example of a W HILE...W END loop exited improperly:

 while count < 10
 input "Enter a name (or a blank line to quit) ?"; n$
 if n$ = "" then [exitLoop]
 list$(count) = n$
 count = count + 1
 wend
[exitLoop]

Instead, use the EXIT W HILE statement:

 while count < 10
 input "Enter a name (or a blank line to quit) ?"; n$

453

 if n$ = "" then EXIT WHILE
 wend

[exitLoop]
 print "Done!"

454

 W indowHeight
Description:
The special variables W indowW idth and W indowHeight specify the width and height of the next

window to be opened. If the program's code does not specify the values for these special
variables, their defaults will be 320 and 360 respectively. After a resize event that is trapped by
the resizehandler command, these variables contain the width and height of the client area of the
window. the client area is the workspace of the window that is contained within the sizing frame,
border or titlebar. See resize.bas for an example of this usage.

Usage:

The following example will open a graphics window 250 pixels wide and 100 pixels high.

 WindowWidth = 250
 WindowHeight = 100
 open "test window" for graphics as #testHandle

 input r$

See also: UpperLeftX , UpperLeftY, Resizehandler

455

 W indowW idth

Description:

The special variables W indowW idth and W indowHeight specify the width and height of the next
window to be opened. If the program's code does not specify the values for these special

variables, their defaults will be 320 and 360 respectively. After a resize event that is trapped by
the resizehandler command, these variables contain the width and height of the client area of the
window. the client area is the workspace of the window that is contained within the sizing frame,
border or titlebar. See resize.bas for an example of this usage.

Usage:
The following example will open a graphics window 250 pixels wide and 100 pixels high.

 WindowWidth = 250
 WindowHeight = 100
 open "test window" for graphics as #testHandle

 input r$

See also: UpperLeftX , UpperLeftY, Resizehandler

456

 W instring(Ptr)

W instring(structName.pointer$.struct)

W instring(pointer)

Description:
The W INSTRING() function returns a string when a function returns a pointer to a string. This
function is especially useful when retrieving the text string from a STRUCT that has been altered

by a function, or when an API function returns a pointer to a text string in memory.

Usage:

struct demo,_
name$ as ptr,_
length as long

call DoDemo "hello"

print "Uppercase string is"
print winstring(demo.name$.struct)
print "Length of string is"
print demo.length.struct

sub DoDemo avar$
 demo.name$.struct=upper$(avar$)
 demo.length.struct=len(avar$)
end sub

'OUTPUT

Uppercase string is
HELLO

Length of string is
5

457

 W ORD$(s$, n)

W ORD$(stringExpression, n [,string delimiter])

Description:
This function returns the nth word in the string, string variable or string expression,
stringExpression. The leading and trailing spaces are stripped from stringExpression and then by
default it is broken down into 'words' at the remaining spaces inside. If n is less than 1 or greater

than the number of words in stringExpression, then "" is returned. The string delimiter is optional.
 W hen it is not used, the space character is the delimiter.

Usage:

 print word$("The quick brown fox jumped over the lazy dog", 5)

Produces:

 jumped

And:

 ' display each word of sentence$ on its own line
 sentence$ = "and many miles to go before I sleep."
 token$ = "?"
 while token$ <> ""
 index = index + 1
 token$ = word$(sentence$, index)
 print token$
 wend

Produces:

 and
 many

 miles
 to
 go
 before
 I

 sleep.

Using the optional string delim iter:
You can now specify the delimiter string of one or more characters, so optionally you can read
comma delimited or other strings:

 token$ = "*"
 parseMe$ = "this,is,,a,test"
 idx = 0
 while token$<>""
 idx = idx + 1
 token$ = word$(parseMe$, idx, ",")

458

 if token$ <> "" then print token$
 wend

Also, notice the doubled up comma in the test string. This will be returned as a comma. This is
useful for detecting empty delimited fields in a string. Try substituting the following lines:

 parseMe$ = "thisarfisarfarfaarftest"

and:

 token$ = word$(parseMe$, idx, "arf")

459

 Index
1. Contents
2. W hat's New!

3. Glossary

Liberty BASIC Help
 11. Overview
 13. Installing and Uninstalling

 14. Registering Liberty BASIC
 15. The Liberty BASIC Editor

 20. Editor Preferences
 22. The Liberty BASIC INI file
 23. W riting Programs
 25. FreeForm
 26. Using the Debugger

 35. Lite Debug
 37. Compiler Reporting
 38. Creating a Tokenized File

 42. Using the Runtime Engine
 45. Icon Editor

 47. Lesson Browser
 49. Using a Different Code Editor
 50. Using Inkey$

 51. Using Virtual Key Constants with Inkey$
 53. Error Messages
 55. Error Log Explained
 56. Port I/O
 57. Making API and DLL Calls

 58. TroubleShooting

Language Syntax and Usage
 59. Liberty BASIC Language

 Logic and Structure
 60. Logical Line Extension

 61. The NOMAINW IN command
 62. Functions and Subroutines
 66. Branch Labels, GOTO and GOSUB

 68. Conditional Statements
 71. Select Case

 74. Bitwise Operations
 76. Boolean Evaluations
 78. Looping Structures

 80. Recursion
 81. The Timer Statement
 82. Callbacks for API Functions

 Arrays, Variables and DATA

 83. Variables
 85. Arrays

 87. Sorting Arrays
 88. Arrays with More than Two Dimensions

460

 89. READ and DATA

 File Operations

 92. File Operations
 94. Sequential Files
 98. Binary Files

 100. Random Access Files
 102. Testing for File Existence

 103. Path and Filename

 Mathematics

 105. Mathematics
 107. Numeric Variables
 109. Mathematical Operations
 112. Trigonometry
 114. Numbers and Strings

 117. Date and Time Functions

 Text Usage
 119. Text and Characters
 120. String Literals and Variables
 122. Manipulating Characters
 127. Text Mode Display

 130. Text Commands

 Graphics

 135. Graphics
 138. Reading Mouse Events and Keystrokes

 140. Graphics Commands

 Sprites

 150. Table of Contents
 151. Commands
 154. W hat is a Sprite?
 155. How Do Sprites W ork?
 157. Start with the Background

 160. Designate Sprites
 163. Sprite Properties

 166. Drawing and Collision Detection
 169. Flushing Sprite Graphics
 170. Pauses and Timing
 172. Add a Mask
 176. Step by Step

 177. Simple Demo Program
 179. Lander.bas

 API and DLL Calls
 184. Calling APIs and DLLs

 185. Informational Resources About APIs/DLLs
 186. W hat are APIs/DLLs?
 187. How to Make API/DLL calls

 190. Example CallDLL Programs

461

 193. Using hexadecimal values
 194. Using TYPES with STRUCT and CALLDLL
 195. Passing Strings into API Calls

 196. Caveats

GUI Program m ing

 197. Graphical User Interface
 200. Sending Commands

 202. A Simple Example
 202. Handle Variables
 204. Understanding Syntax

 206. Size and Placement of W indows
 208. W indow Types
 210. Controls - Menus, Buttons, Etc.
 213. Controls and Events
 217. W indow and Dialog Commands

 222. Trapping the Close Event
 224. Colors and the Graphical User Interface

 226. How to Specify Fonts
 228. Buit-in Dialogs
 229. Sounds
 230. Mouse, Keyboard and Joystick

 Com m and Reference
 231. Command Reference A-C
 233. Command Reference D-F

 235. Command Reference G-K
 236. Command Reference L-M

 237. Command Reference N-P
 238. Command Reference R-S
 240. Command Reference T-Z

 241. Additional Commands
 242. Reserved W ords

Keywords in Alphabetical Order
 243. ABS(n)

 244. ACS(n)
 245. ASC(s$)

 250. ASN(n)
 251. ATN(n)
 252. BEEP
 253. BMPBUTTON
 257. BMPSAVE

 258. BUTTON
 262. BYREF
 264. CALL

 265. CALLBACK
 267. CALLDLL

 269. CHECKBOX
 272. CHR$(n)
 272. CLOSE #h

 273. CLS

462

 275. COLORDIALOG
 277. COMBOBOX
 281. CommandLine$

 284. CONFIRM
 285. COS(n)
 286. CURSOR

 287. DATA
 288. DATE$()

 289. DECHEX$()
 290. DefaultDir$
 291. DIM array()

 292. DisplayW idth
 293. DisplayHeight
 294. DO LOOP
 296. Drives$
 297. DUMP

 298. EOF(#h)
 299. END

 300. EXP(n)
 301. EVAL(code$)
 302. EVAL$(code$)
 303. FIELD #h, list...
 304. FILEDIALOG

 306. FILES
 307. FONTDIALOG
 309. FOR...NEXT

 311. FUNCTION
 313. GET #h, n

 314. GETTRIM #h, n
 315. GOSUB label
 316. GLOBAL

 318. GOTO label
 319. GRAPHICBOX
 321. GROUPBOX
 322. HBMP("name")
 323. HEXDEC("value")

 324. HW ND(#handle)
 325. IF THEN

 328. Inkey$
 330. INP(port)
 331. INPUT
 333. INPUT$(#h, n)
 335. INPUTTO$(#h, c$)

 336. INSTR(a$,b$,n)
 337. INT(n)
 338. KILL s$

 339. LEFT$(s$, n)
 340. LEN(s$)

 341. LET
 342. LINE INPUT
 343. LISTBOX

 347. LOADBMP

463

 348. LOCATE
 349. LOF(#h)
 350. LOC(#h)

 351. LOG(n)
 352. LOW ER$(s$)
 353. LPRINT

 354. MAINW IN
 355. MAX()

 356. MAPHANDLE
 358. MENU
 360. MID$()

 361. MIDIPOS()
 362. MIN()
 363. MKDIR()
 364. NAME a$ AS b$
 365. NOMAINW IN

 366. NOTICE
 367. ON ERROR

 369. ONCOMERROR
 370. OPEN
 372. OPEN "COMn:..."
 375. OUT port, byte
 376. Platform$

 377. PLAYMIDI
 378. PLAYW AVE
 379. POPUPMENU

 381. PRINT
 382. PRINTERDIALOG

 384. PrinterFont$
 385. PROMPT
 387. PUT #h, n

 388. RADIOBUTTON
 392. RANDOMIZE
 393. READ
 394. READJOYSTICK
 395. REDIM

 396. REM
 397. REFRESH

 398. RESIZEHANDLER
 400. RESTORE
 402. RESUME
 403. RETURN
 404. RIGHT$(s$, n)

 405. RMDIR()
 406. RND(n)
 407. RUN s$, mode

 408. SCAN
 410. SEEK

 411. SELECT CASE
 414. SIN(n)
 415. SORT

 416. SPACE$(n)

464

 417. SQR(n)
 418. STATICTEXT
 420. STOP

 421. STOPMIDI
 422. STR$(n)
 423. STRUCT

 425. STYLEBITS
 427. SUB

 429. TAB(n)
 430. TAN(n)
 431. TEXTBOX

 433. TEXTEDITOR
 437. TIME$()
 438. TIMER
 440. TITLEBAR
 441. TRACE n

 442. TRIM$(s$)
 443. TXCOUNT(#handle)

 444. UNLOADBMP
 445. UPPER$(s$)
 446. USING()
 448. UpperLeftX
 449. UpperLeftY

 450. VAL(s$)
 451. Version$
 452. W AIT

 453. W HILE...W END
 455. W indowHeight

 456. W indowW idth
 457. W instring
 458. W ORD$(s$,n)

465

 Resize.bas

 'resize.bas

 'This is an example of a program which resizes several
 'controls in a window depending on how the user changes

 'the size of the window.

 nomainwin
 WindowWidth = 550

 WindowHeight = 410

 listbox #resizer.lbox1, array$(), [lbox1DClick], 1, 0, 256, 186
 listbox #resizer.lbox2, array$(), [lbox2DClick], 257, 0, 284, 164

 combobox #resizer.cbox3, array$(), [cbox3DoubleClick], 257, 164, 283, 150
 texteditor #resizer.tedit4, 1, 186, 540, 195

 open "Resizing example" for window as #resizer
 print #resizer, "trapclose [quit]"

[loop]

 print #resizer, "resizehandler [resized]"
 input r$

 goto [loop]

[resized]
 'new sizes for width and height are now contained

 'in the variables WindowWidth and WindowHeight
 wWid = WindowWidth

 wHig = WindowHeight
 upperVert = int(256/550*wWid) 'upper middle vertical edge

 midHoriz = int(186/410*wHig) 'middle horizontal edge
 urWid = upperVert - wWid

 print #resizer.lbox1, "locate 0 0 "; upperVert; " "; int(186/410*wHig)
 print #resizer.lbox2, "locate "; upperVert; " 0 "; wWid-upperVert; " ";

int(186/410*wHig)-23
 print #resizer.cbox3, "locate "; upperVert; " "; midHoriz-23; " "; wWid -

upperVert; " "; 100
 print #resizer.tedit4, "!locate 0 "; midHoriz; " "; wWid; " ";

wHig-midHoriz;
 print #resizer, "refresh"

 goto [loop]

[quit] 'quit the program

 close #resizer
 end

466

