
Pascal Programming
__

Pascal is an influential computer programming language named after the
mathematician Blaise Pascal. It was invented by Niklaus Wirth in 1968 as a
research project into the nascent field of compiler theory.

Contents
 1. Beginning Pascal
 2. Variables and Constants
 3. Input and Output
 4. Boolean Expressions and Control Flow
 5. Pascal syntax and functions
 6. Enumerations
 7. Sets
 8. Arrays
 9. Strings
10. Records
11. Pointers
12. Object Oriented
13. Cheat sheet
14. Appendix

Alternative resources
•http://www.taoyue.com/tutorials/pascal/index.html
•http://wiki.freepascal.org/
•http://chadcrabtree.com/pascal_tutorial/paslist.html

License
Creative Commons Attribution-Share Alike 3.0
//creativecommons.org/licenses/by-sa/3.0/
Source
http://en.wikibooks.org

1

Pascal Programming
__

Beginning
Here is a basic program that does absolutely nothing:

program first;
begin
 (*comment*)
end.

Here is a line by line description of what the different lines do.
 1. program first; - is the "program header". Program headers are for dealing with
multiple programs and "units". For most dialects this is optional.
 2. begin - tells the compiler where the program begins. In more complex
programs this statement might be preceded by statements that declare variables,
set up functions and handle other preparation before the main program begins.
 3. (*comment*) - is a comment that is ignored by the compiler. The (* and *) tell the
compiler to ignore what's in between them, almost all dialects of pascal also use braces
({ and }) for the same purpose. In the original Pascal, these can't be embedded like
this: (*(*example*)*). However, in almost all dialects that use braces also use
precedence, so this works: {(*example*)}. In some dialects such as Free Pascal's default
mode comments can be embedded.
 4. end. - (notice the period) tells the compiler to stop compiling. In fact, anything
after that is completely ignored. As we shall see, there may be many begin and end
statements in a program, but the end statement that terminates the program is the
only statement that ends in a period.

While programs that do absolutely nothing may compile, they aren't generally that
exciting. It would be much better to have a program that introduced itself to the
world. These programs are very popular, especially when introducing a new
language, and if you've ever learned another programming language you may be
familiar with such "Hello World" examples.

program HelloWorld;
begin (*This is where the program begins*)
 writeln('Hello world!');
end. {This is where the program ends.}

2

Pascal Programming
__

Now instead of doing nothing our program contains one line, namely
"writeln('Hello World!');". The command writeln prints its argument to the
terminal. In the current case its argument, 'Hello World!' is a string. If you are
familiar with other programming languages it would be useful to note that in
Pascal strings and characters are contained between single quotes and not double
quotes. The last but important thing to notice is the ; at the end of the writeln
statement. Almost all statements in Pascal should end with a semicolon. This is
because the compiler doesn't care about the white space you put, including line
breaks. So our program would have been just as functional as

program HelloWorld;
begin (*This is where the program begins*)
 writeln('Hello world!');

end. {This is where the program ends.}

or

program HelloWorld;begin (*This is where the program begins*)writeln('Hello
world!');end.{This is where the program ends.}

To the compiler they are exactly the same. But the compiler still needs to know
where one statement ends and the next begins. For this reason Pascal uses the
semicolon to mark where lines end. The observant reader will notice that we only
said that "almost all" lines need to end in a semi-colon. We shall point out the
exceptions as they arise, there are three Exceptions in this program. The first
exceptions is the line "begin", and the second is the line end. (since this terminates
the program it ends in a period instead of a semicolon.). The last exception is that the
line that comes before an "end" doesn't need to end in a semicolon. So really in this
program the line "writeln('Hello World!');" didn't actually need a semicolon despite all
the discussion about it. On the other hand, there is no harm in including the semicolon.
It also makes the life easier later if you decide to add a line after the "writeln"
command, because then you no don't need to remember to add it later.
Unlike many programming languages the Pascal language is not case sensitive!
For example consider the following program:

program HelloWorld;
begin (*This is where the program begins*)
 writeln('Hello world!');
 WriteLn('It is nice to meet you.')
end. {This is where the program ends.}

3

Pascal Programming
__

Here both "writeln" and "WriteLn" refer to the same function. We could have also
changed any of the other keywords in the program to as we liked. One of the benefits of
ignoring white space and case is that it allows us to structure the program in which
ever way is most readable to us.
As a final comment, depending on your operating system and how you start any of
these programs you have compiled, you may find that the window closes the
instant the program is finished, which for these programs is almost instantly. One
useful trick to avoid this is to ask the program to wait for input from the user. This
can be done with the "readln" command. So our simple HelloWorld program becomes:

program HelloWorld;
begin (*This is where the program begins*)
 writeln('Hello world!');
 readln; {This reads a line of input from the keyborad}
 {So now the program waits for us to press enter
:)}
end. {This is where the program ends.}

4

Pascal Programming
__

Variables and Constants
Naming
... All names of things that are defined are identifiers. An identifier consists of
255 significant characters (letters, digits and the underscore character), from
which the first must be an alphanumeric character, or an underscore (_) ...
Van Canneyt, Michaël. "Free Pascal: Reference guide.". Retrieved 2008-08-17.
Pascal's identifiers are case-insensitive, meaning that for everything except
characters and strings its case doesn't matter (THING, thing, ThInG, and etc are the
same).

Constants
program Useless;
const
 zilch = 0;
begin
 (*some code*)
 if zilch = zilch then
 (*more code*)
end.

Constants (unlike variables) can't be changed while the program is running. This
assumption allows the compiler to simply replace zilch instead of wasting time to
analyze it or wasting memory. As you may expect, constants must be definable at
compile-time. However, Pascal was also designed so that it could be compiled in 1
pass from top to bottom(the reason being to make compiling fast and simple).
Simply put, constants must be definable from the code before it, otherwise the
compiler gives an error. For example, this would not compile:

program Fail;
const
 zilch = c-c;
 c = 1;
begin
end.

but this will:

5

Pascal Programming
__

program Succeed;
const
 c = 1;
 zilch = c-c;
begin
end.

It should be noted that in standard Pascal, constants must be defined before
anything else (most compilers wont enforce it though). Constants may also be
typed but must be in this form: identifier: type = value;.

Variables
Variables must first be declared and typed under the var like so:

var
 number: integer;

You can also define multiple variables with the same type like this:

var
 number,othernumber: integer;

Declaration tells the compiler to pick a place in memory for the variable. The type
tells compiler how the variable is formatted. A variable's value can be changed at
run time like this: variable := value. There are more types but, we will concentrate
on these for now:
type definition
integer a whole number from -32768 to 32767
real a floating point number from 1E-38 to

1E+38
boolean either true or false
char a character in a character set (almost

always ASCII)

6

Pascal Programming
__

Input and Output
Output
Before you learn more about Pascal it is important to know how to actually do
something. For now, we will use console input and output. Here is an example of
how output is done:

program output;
begin
 writeln(1);
 write('1');
end.

writeln() displays what ever is in the parentheses and prints a "new line character",
making newly displayed characters start on the next line.
; is simply grammatical; it just separates the two statements.
write() displays what ever is in the parentheses without printing a "new line
character".
Do note that characters and strings must be placed within single quotation marks.
You may have noticed that write and writeln work for more than one type. You may
also wonder how write(1) and write('1') could do the same thing yet, 1 and '1' be
represented in completely different ways. Like wise, how 49 and '1' may be
represented the same way yet, write(49) and write('1') don't do the same thing. The
answer is that compiler always knows the type and thus how it's formatted.

readln;

end. </source> As you notice, the parentheses are not required when no
parameters are present.

7

Pascal Programming
__

Boolean Expressions and Control Flow
Conditional Statements
If..Then..Else
The simplest control structure is the if..then..else statement.

if var1 = 0 then
 writeln('var1 is 0!') (*No semicolon before an 'Else' keyword*)
else if var1 = 1 then
begin
 writeln('var1 is 1!');
 (*More code*)
end (*No semicolon before an 'Else' keyword*)
else if var1 = 2 then
begin
 writeln('var1 is 2!');
 (*More code*)
end (*No semicolon before an 'Else' keyword*)
else
begin
 writeln('var1 is not 0, 1, or 2!');
 (*More code*)
end; (*Semicolon used to indicate the end of the If-then-else*)

Case
Case var1 of
 1 : writeln('var1 is 1!');
 2 : Begin
 writeln('var1 is 2!');
 (*More code*)
 End;
 Else writeln('var1 is neither 1 nor 2!'); (*'else' can be used instead of
the 'otherwise' keyword*)
end;

Loops

8

Pascal Programming
__

For
For var1 := 0 to 12 do (*For conditional with only one statement:*)
 writeln('var1 is ', var1);
For var2 := 12 downto 0 do Begin (*For conditional with multiple
statements:*)
 writeln('var2 is ', var2);
 (*More code*)
End;

While
While var1 = 0 do (*While the condition is True, perform the following code*)
 writeln('woo, an infinite loop!');
While var2 = 0 do Begin (*While-do with multiple statements:*)
 writeln('aww, no infinite loop!');
 var2 := 1;
End;

Repeat..Until
Repeat (*Repeat the following until the condition is True:*)
 writeln('var1 might be 0!');
 (*More code - Begin..End is not required between Repeat..Until*)
 (*Semicolon needed before the 'Until' keyword*)
Until var1 = 0;

9

Pascal Programming
__

Syntax and functions
Syntax
As you've seen in the earlier chapter, Pascal programs have a standard structure
which looks like the following:

Program program_name;
{ Global variables }
Var
 A_Variable: Variable_Type;
{ Other functions/procedures }
Procedure SayHello;
 { Local variables }
 Var
 T : String;
 Begin
 { Redundant code to illustrate the use of local variables in a procedure }
 T := 'Hello';
 Writeln(T);
 End;
{ Main function }
Begin
 { Do something }
 SayHello;
End.

A program has a program header, followed by global variable definitions,
procedure or function definitions and finally the main function.

Variables
As you may already figure, variable definitions are put in a block beginning with a
var keyword, followed by definitions of the variables you wish to define. This block
has no explicit end marker.

10

Pascal Programming
__

As you can see from the example, unlike C/C++, Pascal variables are declared
outside the code-body of the function (i.e. they are not declared within the begin
and end pairs), but are instead declared after the definition of the
procedure/function and before the begin keyword. For global variables, they are
defined after the program header.
A declaration in the var block יas the following syntax:

A_Variable,Another_Variable ... : Variable_Type;

Declarations may occur on multiple lines, as in the following:
a,b : integer;
c : integer;
d,e : string;
f : real;
g : extended;
h,i,j,k : byte;
l,m,n,o : byte;

Basic numeric types include: longint (32-bit, hardware dependent), integer (16-bit,
hardware dependent), shortint (8-bit). Their unsigned counterparts are cardinal
(available only in some versions of Pascal), word, byte. Decimal numbers are
supported using the real type, and the extended type (available only in some
versions of Pascal)
Other types include the char (for holding characters), the string (as its name
suggests).
(For now, arrays, pointers, types and records will be covered in a later chapter)

Functions/Procedures
Before we begin, let us first clarify the key difference between functions and
procedures. A procedure is set of instructions to be executed, with no return value.
A function is a procedure with a return value. For readers familiar with C/C++, a
procedure is simply a function with a void return value, as in void proc_sayhello().
The definition of function/procedures is thus as such:

Function Func_Name(params...) : Return_Value;
Procedure Proc_Name(params...);

11

Pascal Programming
__

The function/procedure definition is usually followed by the local variables and the
body. However, to provide prototypes, simply add a forward keyword behind the
definition instead of the local variables and the body. Of course, the whole function
must be defined somewhere else in the program. The following example illustrates
the use of this:

Function Add(A, B : Integer): Integer; Forward;
Function Bad(A, B, C : Integer) : Integer;
Begin
 Bad := Add(Add(A,B),C);
End;
Function Add(A, B : Integer) : Integer;
Begin
 Add := A + B;
End;

In this example, Add is first defined as a function taking two integer variables and
returning an integer, but it is defined as a forward definition (prototype), and thus
no body is written. Later, we see that Add is defined with a body. Note that the two
definitions of Add must be congruent with each other, or the compiler will
complain.
From the above example, we can also gather that in Pascal, a function's return
value is given by the value of the variable with the function's name (or by the
variable named result), when the function returns. As you can see in the Bad
function, an undefined variable named "Bad" has been assigned a value. That is the
return value for the Bad function. Similarly, in Add, the variable named "Add" has
been assigned a value, which is its return value.
Note that unlike C or other languages, assigning a return value to a function does
not return from the function. Thus, the function will continue executing, as in the
following example:

12

Pascal Programming
__

Function Weird(A : Integer) : Integer;
Var
 S : Integer;
Begin
 S := A/2;
 If S < 10 Then
 Weird := 1;
 S := S + 9;
 If S >= 10 Then
 Weird := 0;
 Weird := 2;
End;

If A happens to be 6, the function will not return the expected result of 1 or even 0.
Instead, it would return a result of 2, because the function to execute continues
even after the return value is set. In fact, as you would notice, the function would
return 2 all the time because it runs all the way to the end, at which the return
value is set to 2.
To mimic C style function returns, the exit statement must be used. The exit
statement in Pascal, unlike C, exits from the current block of code (in this case, the
function), and NOT from the program. The code would then look like this:

13

Pascal Programming
__

Function Weird(A : Integer) : Integer;
Var
 S : Integer;
Begin
 S := A/2;
 If S < 10 Then
 Begin
 Weird := 1;
 Exit;
 End;
 S := S + 9;

 If S >= 10 Then
 Begin
 Weird := 0;
 Exit;
 End;
 Weird := 2;
End;

Note that a third exit is not necessary at the end of the function since nothing else
would be executed that could overwrite the function return.

14

Pascal Programming
__

Enumerations
Sometimes, programmers need a way of expressing ordinal values as names. A
good example is Pascal's boolean type, which is essentially an enumeration type
that holds the values False and True. We can make our own with the following.

type
 TMonth = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec);

A variable declared as an enumeration type such as TMonth is restricted to using
only those values. It is possible to explicitly typecast a record variable to an ordinal
type, but this is impractical most of the time.

var
 month: TMonth;
begin
 month := Mar;
end;

Extensions and optimizations
C-style enumerations
Some compilers, such as Free Pascal, offer an enumeration syntax in the style of
C's enums. That is, ordinal values may be associated with the constants declared in
an enumeration.

type
 TMonth = (Jan = 0, Feb, Mar, Apr = 45, May);

Note that, just like in C, ordinal values assigned to an enumeration's constants
must be in order from least to greatest, otherwise the compiler will generate an
error.

15

Pascal Programming
__

Sets
With enumerations, there comes the opportunity to use sets. Sets store multiple
values of an enumeration. They act as a set of switches, so to speak. I suppose an
example should give a clearer meaning to this.

type
 Skills = (Cooking, Cleaning, Driving, Videogames, Eating);
var
 Slob: set of Skills = [Videogames, Eating];

Here, we've made a variable Slob, which represents a set of the Skills
enumeration. By default, set types are usually stored internally as LongInts if they
have under 32 values. Anything above that, and they are stored as one byte per
element. Modern compilers limit set types to up to 255 values maximum.
Putting set variables to use in code is as follows:

Slob := Slob + [Driving]; // Append a value to our existing Slob variable
if Videogames in Slob then // if Slob has the Videogames value...
 writeln('Is he a level 45 dungeon master?');

16

Pascal Programming
__

Arrays
Lists, or Arrays are types in Pascal that can be used to store multiple data using
one variable.

Static Size Arrays
These lists are defined in syntax of:

type MyArray1 = array[0..100] of integer;
type MyArray2 = array[0..5] of array[0..10] of char;
 {or}
type MyArray2 = array[0..5,0..10] of char;

Examples of this would be having a list of different types or records.

type my_list_of_names = array[0..7] of string;
var the_list: my_list_of_names;
begin
 the_list[5] := 'John';
 the_list[0] := 'Newbie';
end;

This would create an array of ['Newbie','','','','','John','','']. We can access these
variables the same way as we have set them:

begin
 writeln('Name 0: ', the_list[0]);
 writeln('Name 5: ', the_list[5]);
end;

The following example shows an array with indices of chars.

17

Pascal Programming
__

var
 a: array['A'..'Z'] of integer;
 s: string;
 i: byte;
begin
 readln(s); {reads the string}
 for i := 1 to length(s) do {executes the code for each letter in the string}
 if upcase(s[i]) in['A'..'Z'] then
 inc(a[upcase(s[i])]);
 {counts the number the times a letter is counted. the case doesn't count}
 writeln('The number of times the letter A appears in the string is
',a['A']);
 {returns 5 if the string is 'Abracadabra'}
end.

18

Pascal Programming
__

Dynamic Arrays
Lists also can contain unlimited number of items, depending on the amount of
computer memory. This is acheived by dynamic arrays, which appeared with
Delphi (not available with Turbo Pascal). To declare a dynamic array, simply
declare an array without bounds :

var a: array of <element_type>;

Then, define the size at any moment with the function SetLength
SetLength(a, <New_Length>);

The indices of the array will from 0 to length(a)-1.
You can get the current length with the Length function, as for String type. To go
through the array, you can write for example :

var
 i: integer;
 a: array of integer;

begin
 randomize;
 setlength(a, 10); { a will contain 10 random numbers }
 for i := 0 to length(a)-1 do
 a[i] := random(10)+1;
end;

The memory is freed automatically when the array is not used anymore, but you
can free it before by assigning nil value to the variable which is the same as
defining a length of 0.

19

Pascal Programming
__

Strings
String is just an array of ASCII characters.

Definition
string type is defined like this:

type string = packed array [0..255] of char;

Consider this code:

program string_sample;
 uses crt;
 var s: string;
 i: longint;
 begin
 s:="This is a example of string";
 writeln(s[1]);
 writeln(ord(s[0]));
 readln;
 end.

The output:

T27

We can see that:
•Because strings are just an ASCII array, we can access to any character in string
just like array (s[1] in the example above will return the character T)
•What is the purpose of s[0]? s[0] stores the length of the string s but the length is
not stored as a number, it is stored as the ASCII character of the length. For
example, if string s has the length of 65, s[0] will return the character A, because
the ASCII number of A is 65. And the first character of the string is stored in s[1].
So a string can only store up to 255 characters. But don't use this method to
retrieve the length of a string because there is a function that can do that
(see below)

20

Pascal Programming
__

Declare
Just like longint or integer:

var s: string;

In the above example, string s can store up to 255 characters.
But what if you want the string s to store up to 10 characters?

var s: string[10]; {OK, so now s can only store up to 10 chars}

21

Pascal Programming
__

Records
Often, it becomes necessary for programmers to want or need to store structured
data, such as the attributes of a person, for example. In Pascal, we can declare a
record type. This is a user-defined data type to store structured data as follows:

type
 TPerson = record
 name: String[16];
 age: Integer;
 gender: TGender; // TGender is assumed here to be an enumerated type that
holds the values Male and Female
 end;

Next, we can use TPerson as a type in our code in the following ways.

var
 p: TPerson;
 x: integer;
begin
 p.name := 'Bob';
 p.age := 37;
 p.gender := Male;
 x := p.age;
end;

The 'with' clause
As you can see in the above example, the calls to our record variable get a little
tedious. Fortunately, Pascal offers us the 'with' clause. This will ease the way you
use record (and Turbo Pascal-compatible object) variables.

with p do
begin
 name := 'Bob';
 age := 37;
 gender := Male;
end;

22

Pascal Programming
__

Pointers
Pointers are pointers or addresses to specific variables in the memory. Pointers
allow the developer to make an alias or referencing of a specific variable.
Professionally, Pointers are being used for lists since they require less memory
although they are more intricate.
A sample pointer app:

program Pointers;

var
 number : integer;
 { ^ before the type shows that it's a pointer }
 numbers_pointer : ^integer;

begin
 { Set to 5 }
 number := 5;
 { Output }
 writeln('Number is ', number);

 { Assign the number's address, which is @number to numbers_pointer }
 numbers_pointer := @number;
 { To access the pointer's address, you've got to add a ^ after the pointer
variable's name: }
 numbers_pointer^ := 8;
 writeln('Pointed Content is: ', numbers_pointer^); { 8 }

 writeln('Number is: ', number); { Should be 8 }
end.

Pointers are introduced as lists, explained above. Simply, you've got to point to the
next or the previous record.
Note that there are three ways pointers are notated:
- the "@" indicates the memory address of another type; it is a common way of
initializing a pointer. - when "^" is placed before a name, you are asking for a
pointer for a particular type, like a pointer to an integer or a char. Alternately you
can use the generic "Pointer" type if you wish to use a pointer to reference many
kinds of objects. - when "^" is placed after a name, you are asking for a
dereference - for an existing pointer to return the variable it's referencing. So if
you have a variable you wish to change, but have only a pointer to access it from,
you use "variable^" to obtain the value.
Pascal pointers are often notated as "Pvar" where "var" or "Tvar" is the original.

23

Pascal Programming
__

One significant difference between C and Pascal programming is that C requires
the use of pointers in more cases. When you call a function in C, there is no "var"
keyword to indicate pass-by-reference; instead, C expects you to call the function
with a pointer to the variable you want changed, and then dereference the pointer
inside the function. Although the functionality is nearly the same, Pascal was
originally designed to use pass-by-reference for subroutines, and pointers for
complex data structures; later implementations added more generalized
functionality for pointers.
Modern Pascal adds plain pointer type, named Pointer, which is compatible to C's
void*. This pointer type is semantically compatible with any other pointers. Therefore,
the following code snippet is valid:

var
 P: Pointer;
 PL: PLongWord;
 PB: PByte;
 PC: PChar;
begin
 New(PL);
 // Assuming little endian, the byte order would be: $41424300
 PL^ := $00434241;
 P := PL;
 // Now PB can read PI's value byte per byte
 PB := PByte(P);
 // Byte order cross check
 WriteLn(PB^,' ',(PB + 1)^,' ',(PB + 2)^,' ',(PB + 3)^);
 PC := PChar(P);
 // Guess what?
 WriteLn(PC);
 Dispose(PL);
end.

Another Modern Pascal enhancement regarding pointers is that you can treat it as
array of infinite length. The byte order cross check above could be rewritten as:

WriteLn(PB[0],' ',PB[1],' ',PB[2],' ',PB[3]);

Be careful, this enhancement also brings bad things. For instance, what if you
access index that's out of your program's memory region? That's why you better be
sure to have range checking on whenever you use this feature (except for a
guaranteed free of errors code).

24

Pascal Programming
__

Object oriented
Object Oriented Pascal allows the user to create applications with Classes and
Types. This saves the developer time on developing programs that would be very
flexible.
This is a sample program (tested with the FreePascal compiler) that will store a
number 1 in private variable One, increase it by one and then print it.

program types; // this is a simple program
 type MyType=class
 private
 One:Integer;
 public
 function Myget():integer;
 procedure Myset(val:integer);
 procedure Increase();
 end;
 function MyType.Myget():integer;
 begin
 Myget:=One;
 end;
 procedure MyType.Myset(val:integer);
 begin
 One:=val;
 end;
 procedure MyType.Increase();
 begin
 One:=One+1;
 end;
 var
 NumberClass:MyType;
 begin
 NumberClass:=MyType.Create; // creating instance
 NumberClass.Myset(1);
 NumberClass.Increase();
 writeln('Result: ',NumberClass.Myget());
 NumberClass.Free; // destroy instance
 end.

This example is very basic and would be pretty useless when used as OOP. Much
more complicated examples can be found in Delphi and Lazarus which include a lot
of Object Oriented programming.

25

Pascal Programming
__

Cheatsheet
Syntax cheat sheet
•monospaced denotes keywords and syntax
•[] denotes optional syntax
•| denotes multiple possible syntaxes
•() denotes grouped syntax

Statements
syntax definition availability
if condition then begin
statement(s) end; if
condition then statement;

Conditional statement standard

while condition do begin
statement(s) end; while
condition do statement;

while loop standard

repeat statement(s) until
condition;

repeat loop standard

with variable do begin
statement(s) end; with
variable do statement;

Eases the use of a variable
or pointer variable of a
structured type by omitting
the dot notation for the
variable.

standard

26

Pascal Programming
__

Appendix
Noteworthy types
type definition size (in bytes) availability
AnsiChar one ANSI-standard

textual character
1

AnsiString an array of ANSI-
standard characters
of indefinite length
with an optional size
constraint

1 * number of
characters

Boolean true or false 1 standard
Byte whole number

ranging from 0 to
255

1

Cardinal synonym depending
on processor type
(16 bit=Word, 32
bit=LongWord, 64
bit=QWord)

varies (2, 4, 8)

Char one textual
character (likely
ASCII)

1 standard

Comp a floating point
number ranging 19-
20 digits that is
effectively a 64-bit
integer

8

Currency a floating point
number ranging 19-
20 digits that is a
fixed point data type

8

Double a floating point
number ranging 15-
16 digits

8

DWord whole number 4

27

Pascal Programming
__

ranging from 0 to
4,294,967,295

Extended a floating point
number ranging 19-
20 digits

10

Int64 whole number
ranging from
-9,223,372,036,854,
775,808 to
9,223,372,036,854,7
75,807

8

Integer synonym depending
on processor type
(16 bit=SmallInt, 32
bit=LongInt, 64
bit=Int64)

varies (2, 4, 8) standard

LongInt whole number
ranging from
-2,147,483,640 to
2,147,483,647

4

LongWord whole number
ranging from 0 to
4,294,967,295

4

Pointer an untyped pointer
holding an address

32 bit=4, 64 bit=8 standard

PtrUInt a pointer type
implicitly
convertable to an
unsigned integer

32 bit=4, 64 bit=8

QWord whole number
ranging from 0 to
18,446,744,073,709,
551,615

8 Free Pascal

Real a floating point
number whose
range is platform
dependent

4 or 8 standard

ShortInt whole number
ranging from -128 to

1

28

Pascal Programming
__

127
ShortString an array of textual

characters of up to
255 elements (likely
ASCII) with an
optional size
constraint

1 * number of
characters (max
255)

standard

Single a floating point
number ranging 7-8
digits

4

SmallInt whole number
ranging from
-32,768 to 32,767

4

String synonym for
ShortString (or
AnsiString with the
$H preprocessor
directive turned on)

1 * number of
characters (max
255)

standard

UInt64 whole number
ranging from 0 to
18,446,744,073,709,
551,615

8 Free Pascal, Delphi
8 or later

WideChar one UTF-8 textual
character

2

WideString an array of UTF-8
characters of
indefinite length
with an optional size
constraint

2 * number of
characters

Word whole number
ranging from 0 to
65,535

2

Noteworthy preprocessor directives

29

Pascal Programming
__

directive description value(s) example availability
$COPERATORS allows use of C-

style operators
OFF or ON

{$COPERATOR
S ON}
i += 5;
i -= 5;
i *= 5;
i /= 5;

Free Pascal

$DEFINE defines a symbol
for the
preprocessor (if
'$macro on', can
have a value
assigned)

symbol name
(:= value if
'$macro on') {$DEFINE

Foo}
{$DEFINE
Bar := 5}

standard

$H implies whether
the String type
is a ShortString
or AnsiString

- or + Delphi, Free
Pascal

$I inserts a file's
contents into
the current
source code

filename

{$I
hello.txt}

standard

$IF begins a
preprocessor
conditional
statement

compile-time
boolean
expression {$IF

DEFINED(DEL
PHI) OR
DECLARED(Fo
o)}

standard

$IFDEF begins a
preprocessor
conditional

preprocessor
symbol

{$IFDEF

standard

30

Pascal Programming
__

statement
depending if a
preprocessor
symbol is
defined

MSWINDOWS}

$IFNDEF begins a
preprocessor
conditional
statement
depending if a
preprocessor
symbol is not
defined

preprocessor
symbol

{$IFNDEF
UNIX}

standard

$IFOPT begins a
preprocessor
conditional
statement
depending on
the status of a
preprocessor
switch

compiler option

{$IFOPT D+}

standard

$INCLUDE inserts a file's
contents into
the current
source code

filename

{$INCLUDE
hello.txt}

standard

$INLINE allows inline
functions and
procedures

OFF or ON

unit Foo;
{$INLINE
ON}
interface
 function
Give5:
integer;
inline;
implementat
ion
 function
Give5:
integer;
 begin

Free Pascal

31

Pascal Programming
__

Give5 := 5;
 end;
end.

$MACRO allows defined
symbols to hold
values

OFF or ON

{$MACRO ON}
{$DEFINE
Foo := 7}

Free Pascal

$MODE sets the Pascal
dialect

DELPHI, FPC,
MACPAS,
OBJFPC, TP

Free Pascal

$R embeds a
resource file
into the code

a file name

{$R *.dfm}

Delphi, Free
Pascal

32

Pascal Programming
__

$STATIC allows use of the
'static' keyword

OFF or ON

unit Foo;
{$STATIC
ON}
{$MODE
OBJFPC}
interface
 type
 Bar =
class

function
Baz:
string;
static;
 end;
implementat
ion
 function
Bar.Baz:
string;
 begin

Result :=
'This
function is
not part of
a Bar
instance.';
 end;
end.

Free Pascal

33

