
PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information.
PDF generated at: Mon, 19 May 2014 16:15:50 UTC

Programming Languages
The theory of programming

Contents
Articles

Computer programming 1
History of programming languages 9
Comparison of programming languages 15
Computer program 55
Programming language 60
Abstraction 73
Programmer 81
Language primitive 85
Assembly language 86
Machine code 98
Source code 101
Command 104
Execution 106

Theory 108

Programming language theory 108
Type system 112
Strongly typed programming language 124
Weak typing 127
Syntax 130
Scripting language 134

References
Article Sources and Contributors 139
Image Sources, Licenses and Contributors 143

Article Licenses
License 144

Computer programming 1

Computer programming

Software development process

A software developer at work

Core activities

•• Requirements
•• Specification
•• Architecture
•• Construction
•• Design
•• Testing
•• Debugging
•• Deployment
•• Maintenance

Methodologies

•• Waterfall
•• Prototype model
•• Incremental
•• Iterative
•• V-Model
•• Spiral
•• Scrum
•• Cleanroom
•• RAD
•• DSDM
•• RUP
•• XP
•• Agile
•• Lean
•• Dual Vee Model
•• TDD
•• FDD
•• DDD
•• MDD

Supporting disciplines

http://en.wikipedia.org/w/index.php?title=Software_development_process
http://en.wikipedia.org/w/index.php?title=File%3ACoding_Shots_Annual_Plan_high_res-5.jpg
http://en.wikipedia.org/w/index.php?title=Software_developer
http://en.wikipedia.org/w/index.php?title=Requirements_analysis
http://en.wikipedia.org/w/index.php?title=Functional_specification
http://en.wikipedia.org/w/index.php?title=Software_architecture
http://en.wikipedia.org/w/index.php?title=Software_construction
http://en.wikipedia.org/w/index.php?title=Software_design
http://en.wikipedia.org/w/index.php?title=Software_testing
http://en.wikipedia.org/w/index.php?title=Debugging
http://en.wikipedia.org/w/index.php?title=Software_deployment
http://en.wikipedia.org/w/index.php?title=Software_maintenance
http://en.wikipedia.org/w/index.php?title=Software_development_methodology
http://en.wikipedia.org/w/index.php?title=Waterfall_model
http://en.wikipedia.org/w/index.php?title=Software_prototyping
http://en.wikipedia.org/w/index.php?title=Incremental_build_model
http://en.wikipedia.org/w/index.php?title=Iterative_and_incremental_development
http://en.wikipedia.org/w/index.php?title=V-Model_%28software_development%29
http://en.wikipedia.org/w/index.php?title=Spiral_model
http://en.wikipedia.org/w/index.php?title=Scrum_%28software_development%29
http://en.wikipedia.org/w/index.php?title=Cleanroom_software_engineering
http://en.wikipedia.org/w/index.php?title=Rapid_application_development
http://en.wikipedia.org/w/index.php?title=Dynamic_systems_development_method
http://en.wikipedia.org/w/index.php?title=IBM_Rational_Unified_Process
http://en.wikipedia.org/w/index.php?title=Extreme_programming
http://en.wikipedia.org/w/index.php?title=Agile_software_development
http://en.wikipedia.org/w/index.php?title=Lean_software_development
http://en.wikipedia.org/w/index.php?title=Dual_Vee_Model
http://en.wikipedia.org/w/index.php?title=Test-driven_development
http://en.wikipedia.org/w/index.php?title=Feature-driven_development
http://en.wikipedia.org/w/index.php?title=Domain-driven_design
http://en.wikipedia.org/w/index.php?title=Model-driven_development

Computer programming 2

•• Configuration management
•• Documentation
•• Quality assurance (SQA)
•• Project management
•• User experience

Tools

•• Compiler
•• Debugger
•• Profiler
•• GUI designer
•• Modeling
•• IDE
•• Build automation

•• v
•• t
• e [1]

Computer programming (often shortened to programming) is a process that leads from an original formulation of
a computing problem to executable programs. It involves activities such as analysis, understanding, and generically
solving such problems resulting in an algorithm, verification of requirements of the algorithm including its
correctness and its resource consumption, implementation (commonly referred to as coding) of the algorithm in a
target programming language, testing, debugging, and maintaining the source code, implementation of the build
system and management of derived artefacts such as machine code of computer programs. The algorithm is often
only represented in human-parsable form and reasoned about using logic. Source code is written in one or more
programming languages (such as C, C++, C#, Java, Python, Smalltalk, JavaScript, etc.). The purpose of
programming is to find a sequence of instructions that will automate performing a specific task or solve a given
problem. The process of programming thus often requires expertise in many different subjects, including knowledge
of the application domain, specialized algorithms and formal logic.

Overview
Within software engineering, programming (the implementation) is regarded as one phase in a software development
process.
There is an on-going debate on the extent to which the writing of programs is an art form, a craft, or an engineering
discipline. In general, good programming is considered to be the measured application of all three, with the goal of
producing an efficient and evolvable software solution (the criteria for "efficient" and "evolvable" vary
considerably). The discipline differs from many other technical professions in that programmers, in general, do not
need to be licensed or pass any standardized (or governmentally regulated) certification tests in order to call
themselves "programmers" or even "software engineers." Because the discipline covers many areas, which may or
may not include critical applications, it is debatable whether licensing is required for the profession as a whole. In
most cases, the discipline is self-governed by the entities which require the programming, and sometimes very strict
environments are defined (e.g. United States Air Force use of AdaCore and security clearance). However,
representing oneself as a "professional software engineer" without a license from an accredited institution is illegal in
many parts of the world.
Another on-going debate is the extent to which the programming language used in writing computer programs
affects the form that the final program takes.Wikipedia:Citation needed This debate is analogous to that surrounding
the Sapir–Whorf hypothesis[2] in linguistics and cognitive science, which postulates that a particular spoken
language's nature influences the habitual thought of its speakers. Different language patterns yield different patterns

http://en.wikipedia.org/w/index.php?title=Software_configuration_management
http://en.wikipedia.org/w/index.php?title=Software_documentation
http://en.wikipedia.org/w/index.php?title=Software_quality_assurance
http://en.wikipedia.org/w/index.php?title=Software_project_management
http://en.wikipedia.org/w/index.php?title=User_experience
http://en.wikipedia.org/w/index.php?title=Programming_tool
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=Debugger
http://en.wikipedia.org/w/index.php?title=Profiling_%28computer_programming%29
http://en.wikipedia.org/w/index.php?title=Graphical_user_interface_builder
http://en.wikipedia.org/w/index.php?title=UML_tools
http://en.wikipedia.org/w/index.php?title=Integrated_development_environment
http://en.wikipedia.org/w/index.php?title=Build_automation
http://en.wikipedia.org/w/index.php?title=Template:Software_development_process
http://en.wikipedia.org/w/index.php?title=Template_talk:Software_development_process
http://en.wikipedia.org/w/index.php?title=Template:Software_development_process&action=edit
http://en.wikipedia.org/w/index.php?title=Algorithm
http://en.wikipedia.org/w/index.php?title=Algorithm
http://en.wikipedia.org/w/index.php?title=Software_testing
http://en.wikipedia.org/w/index.php?title=Debugging
http://en.wikipedia.org/w/index.php?title=Algorithm
http://en.wikipedia.org/w/index.php?title=Logic
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Smalltalk
http://en.wikipedia.org/w/index.php?title=JavaScript
http://en.wikipedia.org/w/index.php?title=List_of_programming_languages
http://en.wikipedia.org/w/index.php?title=Application_domain
http://en.wikipedia.org/w/index.php?title=Algorithms
http://en.wikipedia.org/w/index.php?title=Logic
http://en.wikipedia.org/w/index.php?title=Software_engineering
http://en.wikipedia.org/w/index.php?title=Software_development_process
http://en.wikipedia.org/w/index.php?title=Software_development_process
http://en.wikipedia.org/w/index.php?title=Art
http://en.wikipedia.org/w/index.php?title=Craft
http://en.wikipedia.org/w/index.php?title=Engineering
http://en.wikipedia.org/w/index.php?title=United_States_Air_Force
http://en.wikipedia.org/w/index.php?title=AdaCore
http://en.wikipedia.org/w/index.php?title=Controversies_over_the_term_Engineer
http://en.wikipedia.org/w/index.php?title=Controversies_over_the_term_Engineer
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Linguistic_relativity
http://en.wikipedia.org/w/index.php?title=Linguistics
http://en.wikipedia.org/w/index.php?title=Cognitive_science

Computer programming 3

of thought. This idea challenges the possibility of representing the world perfectly with language, because it
acknowledges that the mechanisms of any language condition the thoughts of its speaker community.

History
See also: History of programming languages

Ada Lovelace created the first algorithm designed
for processing by a computer and is usually

recognized as history's first computer
programmer.

Ancient cultures had no conception of computing beyond arithmetic,
algebra, and geometry, occasionally aping elements of calculus (e.g.
the method of exhaustion). The only mechanical device that existed for
numerical computation at the beginning of human history was the
abacus, invented in Sumeria circa 2500 BC. Later, the Antikythera
mechanism, invented some time around 100 BC in ancient Greece, is
the first known mechanical calculator utilizing gears of various sizes
and configuration to perform calculations,[3] which tracked the metonic
cycle still used in lunar-to-solar calendars, and which is consistent for
calculating the dates of the Olympiads. The Kurdish medieval scientist
Al-Jazari built programmable automata in 1206 AD. One system
employed in these devices was the use of pegs and cams placed into a
wooden drum at specific locations, which would sequentially trigger
levers that in turn operated percussion instruments. The output of this
device was a small drummer playing various rhythms and drum
patterns. The Jacquard loom, which Joseph Marie Jacquard developed
in 1801, uses a series of pasteboard cards with holes punched in them.
The hole pattern represented the pattern that the loom had to follow in
weaving cloth. The loom could produce entirely different weaves using
different sets of cards. Charles Babbage adopted the use of punched
cards around 1830 to control his Analytical Engine. The first computer program was written for the Analytical
Engine by mathematician Ada Lovelace to calculate a sequence of Bernoulli numbers. The synthesis of numerical
calculation, predetermined operation and output, along with a way to organize and input instructions in a manner
relatively easy for humans to conceive and produce, led to the modern development of computer programming.
Development of computer programming accelerated through the Industrial Revolution.

http://en.wikipedia.org/w/index.php?title=Thought
http://en.wikipedia.org/w/index.php?title=Ada_Lovelace
http://en.wikipedia.org/w/index.php?title=Algorithm
http://en.wikipedia.org/w/index.php?title=File%3AAda_lovelace.jpg
http://en.wikipedia.org/w/index.php?title=Arithmetic
http://en.wikipedia.org/w/index.php?title=Algebra
http://en.wikipedia.org/w/index.php?title=Geometry
http://en.wikipedia.org/w/index.php?title=Calculus
http://en.wikipedia.org/w/index.php?title=Method_of_exhaustion
http://en.wikipedia.org/w/index.php?title=Abacus
http://en.wikipedia.org/w/index.php?title=Sumer
http://en.wikipedia.org/w/index.php?title=Antikythera_mechanism
http://en.wikipedia.org/w/index.php?title=Antikythera_mechanism
http://en.wikipedia.org/w/index.php?title=Ancient_Greece
http://en.wikipedia.org/w/index.php?title=Metonic_cycle
http://en.wikipedia.org/w/index.php?title=Metonic_cycle
http://en.wikipedia.org/w/index.php?title=Olympiad
http://en.wikipedia.org/w/index.php?title=Kurdish_people
http://en.wikipedia.org/w/index.php?title=Al-Jazari
http://en.wikipedia.org/w/index.php?title=Humanoid_robot
http://en.wikipedia.org/w/index.php?title=Cam
http://en.wikipedia.org/w/index.php?title=Lever
http://en.wikipedia.org/w/index.php?title=Percussion_instrument
http://en.wikipedia.org/w/index.php?title=Jacquard_loom
http://en.wikipedia.org/w/index.php?title=Card_stock
http://en.wikipedia.org/w/index.php?title=Charles_Babbage
http://en.wikipedia.org/w/index.php?title=Punched_cards
http://en.wikipedia.org/w/index.php?title=Punched_cards
http://en.wikipedia.org/w/index.php?title=Analytical_Engine
http://en.wikipedia.org/w/index.php?title=Ada_Lovelace
http://en.wikipedia.org/w/index.php?title=Bernoulli_number
http://en.wikipedia.org/w/index.php?title=Industrial_Revolution

Computer programming 4

Data and instructions were once stored on
external punched cards, which were kept in order

and arranged in program decks.

In the 1880s, Herman Hollerith invented the recording of data on a
medium that could then be read by a machine. Prior uses of machine
readable media, above, had been for lists of instructions (not data) to
drive programmed machines such as Jacquard looms and mechanized
musical instruments. "After some initial trials with paper tape, he
settled on punched cards..." To process these punched cards, first
known as "Hollerith cards" he invented the keypunch, sorter, and
tabulator unit record machines.[4] These inventions were the foundation
of the data processing industry. In 1896 he founded the Tabulating
Machine Company (which later became the core of IBM). The addition
of a control panel (plugboard) to his 1906 Type I Tabulator allowed it
to do different jobs without having to be physically rebuilt. By the late
1940s, there were several unit record calculators, such as the IBM 602
and IBM 604, whose control panels specified a sequence (list) of
operations and thus were programmable machines.

The invention of the von Neumann architecture allowed computer
programs to be stored in computer memory. Early programs had to be painstakingly crafted using the instructions
(elementary operations) of the particular machine, often in binary notation. Every model of computer would likely
use different instructions (machine language) to do the same task. Later, assembly languages were developed that let
the programmer specify each instruction in a text format, entering abbreviations for each operation code instead of a
number and specifying addresses in symbolic form (e.g., ADD X, TOTAL). Entering a program in assembly
language is usually more convenient, faster, and less prone to human error than using machine language, but because
an assembly language is little more than a different notation for a machine language, any two machines with
different instruction sets also have different assembly languages.

Some of the earliest computer programmers were women. According to Dr. Sadie Plant, programming is essentially
feminine—not simply because women, from Ada Lovelace to Grace Hopper, were the first programmers, but
because of the historical and theoretical ties between programming and what Freud called the quintessentially
feminine invention of weaving, between female sexuality as mimicry and the mimicry grounding Turing's vision of
computers as universal machines. Women, Plant argues, have not merely had a minor part to play in the emergence
of digital machines...Theirs is not a subsidiary role which needs to be rescued for posterity, a small supplement
whose inclusion would set the existing records straight...Hardware, software, wetware-before their beginnings and
beyond their ends, women have been the simulators, assemblers, and programmers of the digital machines.[5]

Wired control panel for an IBM 402 Accounting
Machine

In 1954, FORTRAN was invented; it was the first high level
programming language to have a functional implementation, as
opposed to just a design on paper. (A high-level language is, in very
general terms, any programming language that allows the programmer
to write programs in terms that are more abstract than assembly
language instructions, i.e. at a level of abstraction "higher" than that of
an assembly language.) It allowed programmers to specify calculations
by entering a formula directly (e.g. Y = X*2 + 5*X + 9). The program
text, or source, is converted into machine instructions using a special
program called a compiler, which translates the FORTRAN program
into machine language. In fact, the name FORTRAN stands for
"Formula Translation". Many other languages were developed,

http://en.wikipedia.org/w/index.php?title=Punched_card
http://en.wikipedia.org/w/index.php?title=File%3APunchCardDecks.agr.jpg
http://en.wikipedia.org/w/index.php?title=Herman_Hollerith
http://en.wikipedia.org/w/index.php?title=Program_%28machine%29
http://en.wikipedia.org/w/index.php?title=Music_roll
http://en.wikipedia.org/w/index.php?title=Music_roll
http://en.wikipedia.org/w/index.php?title=Punched_card
http://en.wikipedia.org/w/index.php?title=Keypunch
http://en.wikipedia.org/w/index.php?title=Tabulating_machine
http://en.wikipedia.org/w/index.php?title=Unit_record_equipment
http://en.wikipedia.org/w/index.php?title=Tabulating_Machine_Company
http://en.wikipedia.org/w/index.php?title=Tabulating_Machine_Company
http://en.wikipedia.org/w/index.php?title=IBM
http://en.wikipedia.org/w/index.php?title=Plugboard
http://en.wikipedia.org/w/index.php?title=IBM_602
http://en.wikipedia.org/w/index.php?title=IBM_604
http://en.wikipedia.org/w/index.php?title=Von_Neumann_architecture
http://en.wikipedia.org/w/index.php?title=Computer_memory
http://en.wikipedia.org/w/index.php?title=Binary_numeral_system
http://en.wikipedia.org/w/index.php?title=Machine_language
http://en.wikipedia.org/w/index.php?title=Sadie_Plant
http://en.wikipedia.org/w/index.php?title=Grace_Hopper
http://en.wikipedia.org/w/index.php?title=IBM_402_Accounting_Machine
http://en.wikipedia.org/w/index.php?title=IBM_402_Accounting_Machine
http://en.wikipedia.org/w/index.php?title=File%3AIBM402plugboard.Shrigley.wireside.jpg
http://en.wikipedia.org/w/index.php?title=FORTRAN
http://en.wikipedia.org/w/index.php?title=High-level_language
http://en.wikipedia.org/w/index.php?title=High-level_language
http://en.wikipedia.org/w/index.php?title=Abstraction_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Compiler

Computer programming 5

including some for commercial programming, such as COBOL. Programs were mostly still entered using punched
cards or paper tape. (See computer programming in the punch card era). By the late 1960s, data storage devices and
computer terminals became inexpensive enough that programs could be created by typing directly into the
computers. Text editors were developed that allowed changes and corrections to be made much more easily than
with punched cards. (Usually, an error in punching a card meant that the card had to be discarded and a new one
punched to replace it.)
As time has progressed, computers have made giant leaps in the area of processing power. This has brought about
newer programming languages that are more abstracted from the underlying hardware. Popular programming
languages of the modern era include ActionScript, C, C++, C#, Haskell, PHP, Java, JavaScript, Objective-C, Perl,
Python, Ruby, Smalltalk, SQL, Visual Basic, and dozens more. Although these high-level languages usually incur
greater overhead, the increase in speed of modern computers has made the use of these languages much more
practical than in the past. These increasingly abstracted languages typically are easier to learn and allow the
programmer to develop applications much more efficiently and with less source code. However, high-level
languages are still impractical for a few programs, such as those where low-level hardware control is necessary or
where maximum processing speed is vital. Computer programming has become a popular career in the developed
world, particularly in the United States, Europe, and Japan. Due to the high labor cost of programmers in these
countries, some forms of programming have been increasingly subject to offshore outsourcing (importing software
and services from other countries, usually at a lower wage), making programming career decisions in developed
countries more complicated, while increasing economic opportunities for programmers in less developed areas,
particularly China and India.

Modern programming

Quality requirements
Whatever the approach to development may be, the final program must satisfy some fundamental properties. The
following properties are among the most relevant:
• Reliability: how often the results of a program are correct. This depends on conceptual correctness of algorithms,

and minimization of programming mistakes, such as mistakes in resource management (e.g., buffer overflows and
race conditions) and logic errors (such as division by zero or off-by-one errors).

• Robustness: how well a program anticipates problems due to errors (not bugs). This includes situations such as
incorrect, inappropriate or corrupt data, unavailability of needed resources such as memory, operating system
services and network connections, user error, and unexpected power outages.

• Usability: the ergonomics of a program: the ease with which a person can use the program for its intended
purpose or in some cases even unanticipated purposes. Such issues can make or break its success even regardless
of other issues. This involves a wide range of textual, graphical and sometimes hardware elements that improve
the clarity, intuitiveness, cohesiveness and completeness of a program's user interface.

• Portability: the range of computer hardware and operating system platforms on which the source code of a
program can be compiled/interpreted and run. This depends on differences in the programming facilities provided
by the different platforms, including hardware and operating system resources, expected behavior of the hardware
and operating system, and availability of platform specific compilers (and sometimes libraries) for the language of
the source code.

• Maintainability: the ease with which a program can be modified by its present or future developers in order to
make improvements or customizations, fix bugs and security holes, or adapt it to new environments. Good
practices during initial development make the difference in this regard. This quality may not be directly apparent
to the end user but it can significantly affect the fate of a program over the long term.

http://en.wikipedia.org/w/index.php?title=COBOL
http://en.wikipedia.org/w/index.php?title=Paper_tape
http://en.wikipedia.org/w/index.php?title=Computer_programming_in_the_punch_card_era
http://en.wikipedia.org/w/index.php?title=Data_storage_device
http://en.wikipedia.org/w/index.php?title=Computer_terminal
http://en.wikipedia.org/w/index.php?title=Text_editor
http://en.wikipedia.org/w/index.php?title=ActionScript
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Haskell_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=PHP
http://en.wikipedia.org/w/index.php?title=Objective-C
http://en.wikipedia.org/w/index.php?title=Perl
http://en.wikipedia.org/w/index.php?title=Ruby_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Visual_Basic
http://en.wikipedia.org/w/index.php?title=Computational_overhead
http://en.wikipedia.org/w/index.php?title=Career
http://en.wikipedia.org/w/index.php?title=United_States
http://en.wikipedia.org/w/index.php?title=Europe
http://en.wikipedia.org/w/index.php?title=Japan
http://en.wikipedia.org/w/index.php?title=Offshore_outsourcing
http://en.wikipedia.org/w/index.php?title=China
http://en.wikipedia.org/w/index.php?title=India
http://en.wikipedia.org/w/index.php?title=Reliability_engineering%23Software_reliability
http://en.wikipedia.org/w/index.php?title=Buffer_overflow
http://en.wikipedia.org/w/index.php?title=Race_condition
http://en.wikipedia.org/w/index.php?title=Off-by-one_error
http://en.wikipedia.org/w/index.php?title=Robustness_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Usability
http://en.wikipedia.org/w/index.php?title=Ergonomics
http://en.wikipedia.org/w/index.php?title=Software_portability
http://en.wikipedia.org/w/index.php?title=Computer_hardware
http://en.wikipedia.org/w/index.php?title=Operating_system
http://en.wikipedia.org/w/index.php?title=Interpreter_%28computing%29
http://en.wikipedia.org/w/index.php?title=Maintainability
http://en.wikipedia.org/w/index.php?title=Software_bug
http://en.wikipedia.org/w/index.php?title=Vulnerability_%28computing%29

Computer programming 6

• Efficiency/performance: the amount of system resources a program consumes (processor time, memory space,
slow devices such as disks, network bandwidth and to some extent even user interaction): the less, the better. This
also includes careful management of resources, for example cleaning up temporary files and eliminating memory
leaks.

Readability of source code
In computer programming, readability refers to the ease with which a human reader can comprehend the purpose,
control flow, and operation of source code. It affects the aspects of quality above, including portability, usability and
most importantly maintainability.
Readability is important because programmers spend the majority of their time reading, trying to understand and
modifying existing source code, rather than writing new source code. Unreadable code often leads to bugs,
inefficiencies, and duplicated code. A study[6] found that a few simple readability transformations made code shorter
and drastically reduced the time to understand it.
Following a consistent programming style often helps readability. However, readability is more than just
programming style. Many factors, having little or nothing to do with the ability of the computer to efficiently
compile and execute the code, contribute to readability. Some of these factors include:
• Different indentation styles (whitespace)
•• Comments
•• Decomposition
• Naming conventions for objects (such as variables, classes, procedures, etc.)
Various visual programming languages have also been developed with the intent to resolve readability concerns by
adopting non-traditional approaches to code structure and display.

Algorithmic complexity
The academic field and the engineering practice of computer programming are both largely concerned with
discovering and implementing the most efficient algorithms for a given class of problem. For this purpose,
algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution
time or memory consumption, in terms of the size of an input. Expert programmers are familiar with a variety of
well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are
best suited to the circumstances.

Methodologies
The first step in most formal software development processes is requirements analysis, followed by testing to
determine value modeling, implementation, and failure elimination (debugging). There exist a lot of differing
approaches for each of those tasks. One approach popular for requirements analysis is Use Case analysis. Many
programmers use forms of Agile software development where the various stages of formal software development are
more integrated together into short cycles that take a few weeks rather than years. There are many approaches to the
Software development process.
Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture
(MDA). The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA.
A similar technique used for database design is Entity-Relationship Modeling (ER Modeling).
Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and
logic languages.

http://en.wikipedia.org/w/index.php?title=Algorithmic_efficiency
http://en.wikipedia.org/w/index.php?title=Performance_engineering
http://en.wikipedia.org/w/index.php?title=Temporary_file
http://en.wikipedia.org/w/index.php?title=Memory_leak
http://en.wikipedia.org/w/index.php?title=Memory_leak
http://en.wikipedia.org/w/index.php?title=Readability
http://en.wikipedia.org/w/index.php?title=Code_duplication
http://en.wikipedia.org/w/index.php?title=Programming_style
http://en.wikipedia.org/w/index.php?title=Indentation_style
http://en.wikipedia.org/w/index.php?title=Comment_%28computer_programming%29
http://en.wikipedia.org/w/index.php?title=Decomposition_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Naming_conventions_%28programming%29
http://en.wikipedia.org/w/index.php?title=Visual_programming_language
http://en.wikipedia.org/w/index.php?title=Big_O_notation
http://en.wikipedia.org/w/index.php?title=Requirements_analysis
http://en.wikipedia.org/w/index.php?title=Use_Case
http://en.wikipedia.org/w/index.php?title=Agile_software_development
http://en.wikipedia.org/w/index.php?title=OOAD
http://en.wikipedia.org/w/index.php?title=Model-Driven_Architecture
http://en.wikipedia.org/w/index.php?title=Unified_Modeling_Language
http://en.wikipedia.org/w/index.php?title=Entity-Relationship_Model
http://en.wikipedia.org/w/index.php?title=Object-oriented_programming
http://en.wikipedia.org/w/index.php?title=Procedural_programming
http://en.wikipedia.org/w/index.php?title=Functional_programming
http://en.wikipedia.org/w/index.php?title=Logic_programming

Computer programming 7

Measuring language usage
It is very difficult to determine what are the most popular of modern programming languages. Some languages are
very popular for particular kinds of applications (e.g., COBOL is still strong in the corporate data
center,Wikipedia:Citation needed often on large mainframes, FORTRAN in engineering applications, scripting
languages in Web development, and C in embedded applications), while some languages are regularly used to write
many different kinds of applications. Also many applications use a mix of several languages in their construction and
use. New languages are generally designed around the syntax of a previous language with new functionality added
(for example C++ adds object-orientedness to C, and Java adds memory management and bytecode to C++, and as a
consequence loses efficiency and the ability for low-level manipulation).
Methods of measuring programming language popularity include: counting the number of job advertisements that
mention the language,[7] the number of books sold and courses teaching the language (this overestimates the
importance of newer languages), and estimates of the number of existing lines of code written in the language (this
underestimates the number of users of business languages such as COBOL).

Debugging

The bug from 1947 which is at the origin of a
popular (but incorrect) etymology for the

common term for a software defect.

Debugging is a very important task in the software development
process since having defects in a program can have significant
consequences for its users. Some languages are more prone to some
kinds of faults because their specification does not require compilers to
perform as much checking as other languages. Use of a static code
analysis tool can help detect some possible problems.

Debugging is often done with IDEs like Eclipse, Kdevelop, NetBeans,
Code::Blocks, and Visual Studio. Standalone debuggers like gdb are
also used, and these often provide less of a visual environment, usually
using a command line.

Programming languages
Main articles: Programming language and List of programming languages
Different programming languages support different styles of programming (called programming paradigms). The
choice of language used is subject to many considerations, such as company policy, suitability to task, availability of
third-party packages, or individual preference. Ideally, the programming language best suited for the task at hand
will be selected. Trade-offs from this ideal involve finding enough programmers who know the language to build a
team, the availability of compilers for that language, and the efficiency with which programs written in a given
language execute. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages
are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and
easier to use but execute less quickly. It is usually easier to code in "high-level" languages than in "low-level" ones.
Allen Downey, in his book How To Think Like A Computer Scientist, writes:

The details look different in different languages, but a few basic instructions appear in just about every
language:

•• Input: Gather data from the keyboard, a file, or some other device.
•• Output: Display data on the screen or send data to a file or other device.
•• Arithmetic: Perform basic arithmetical operations like addition and multiplication.

http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Mainframe_computer
http://en.wikipedia.org/w/index.php?title=Fortran_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=World_Wide_Web
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Embedded_software
http://en.wikipedia.org/w/index.php?title=Bytecode
http://en.wikipedia.org/w/index.php?title=Measuring_programming_language_popularity
http://en.wikipedia.org/w/index.php?title=Software_bug
http://en.wikipedia.org/w/index.php?title=File%3AH96566k.jpg
http://en.wikipedia.org/w/index.php?title=Static_code_analysis
http://en.wikipedia.org/w/index.php?title=Static_code_analysis
http://en.wikipedia.org/w/index.php?title=Integrated_development_environment
http://en.wikipedia.org/w/index.php?title=Eclipse_%28software%29
http://en.wikipedia.org/w/index.php?title=Kdevelop
http://en.wikipedia.org/w/index.php?title=NetBeans
http://en.wikipedia.org/w/index.php?title=Code::Blocks
http://en.wikipedia.org/w/index.php?title=Visual_Studio
http://en.wikipedia.org/w/index.php?title=Gdb
http://en.wikipedia.org/w/index.php?title=Command_line
http://en.wikipedia.org/w/index.php?title=List_of_programming_languages
http://en.wikipedia.org/w/index.php?title=Programming_paradigm
http://en.wikipedia.org/w/index.php?title=Allen_Downey

Computer programming 8

•• Conditional Execution: Check for certain conditions and execute the appropriate sequence of statements.
•• Repetition: Perform some action repeatedly, usually with some variation.

Many computer languages provide a mechanism to call functions provided by shared libraries. Provided the
functions in a library follow the appropriate run time conventions (e.g., method of passing arguments), then these
functions may be written in any other language.

Programmers
Main article: Programmer
See also: Software developer and Software engineer
Computer programmers are those who write computer software. Their jobs usually involve:
•• Coding
•• Debugging
•• Documentation
•• Integration
•• Maintenance
•• Requirements analysis
•• Software architecture
•• Software testing
•• Specification

References
[1] http:/ / en. wikipedia. org/ w/ index. php?title=Template:Software_development_process& action=edit
[2] Kenneth E. Iverson, the originator of the APL programming language, believed that the Sapir–Whorf hypothesis applied to computer

languages (without actually mentioning the hypothesis by name). His Turing award lecture, "Notation as a tool of thought", was devoted to
this theme, arguing that more powerful notations aided thinking about computer algorithms. Iverson K.E.," Notation as a tool of thought (http:/
/ elliscave. com/ APL_J/ tool. pdf)", Communications of the ACM, 23: 444-465 (August 1980).

[3] " Ancient Greek Computer's Inner Workings Deciphered (http:/ / news. nationalgeographic. com/ news/ 2006/ 11/ 061129-ancient-greece.
html)". National Geographic News. November 29, 2006.

[4] U.S. Census Bureau: The Hollerith Machine (http:/ / www. census. gov/ history/ www/ innovations/ technology/ the_hollerith_tabulator.
html)

[5][5] Chun, Wendy. "On Software, or the Persistence of Visual Knowledge." Grey Room 18. Boston: 2004, pgs. 34-35
[6] James L. Elshoff, Michael Marcotty, Improving computer program readability to aid modification (http:/ / doi. acm. org/ 10. 1145/ 358589.

358596), Communications of the ACM, v.25 n.8, p.512-521, Aug 1982.
[7] Survey of Job advertisements mentioning a given language (http:/ / www. computerweekly. com/ Articles/ 2007/ 09/ 11/ 226631/

sslcomputer-weekly-it-salary-survey-finance-boom-drives-it-job. htm)

Further reading
• A.K. Hartmann, Practical Guide to Computer Simulations (http:/ / www. worldscibooks. com/ physics/ 6988.

html), Singapore: World Scientific (2009)
• A. Hunt, D. Thomas, and W. Cunningham, The Pragmatic Programmer. From Journeyman to Master,

Amsterdam: Addison-Wesley Longman (1999)
• Brian W. Kernighan, The Practice of Programming, Pearson (1999)
• Weinberg, Gerald M., The Psychology of Computer Programming, New York: Van Nostrand Reinhold

http://en.wikipedia.org/w/index.php?title=Shared_library
http://en.wikipedia.org/w/index.php?title=Argument_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Software_developer
http://en.wikipedia.org/w/index.php?title=Software_engineer
http://en.wikipedia.org/w/index.php?title=Documentation
http://en.wikipedia.org/w/index.php?title=System_integration
http://en.wikipedia.org/w/index.php?title=Software_maintenance
http://en.wikipedia.org/w/index.php?title=Software_architecture
http://en.wikipedia.org/w/index.php?title=Specification
http://en.wikipedia.org/w/index.php?title=Template:Software_development_process&action=edit
http://en.wikipedia.org/w/index.php?title=Kenneth_E._Iverson
http://en.wikipedia.org/w/index.php?title=APL_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Turing_award
http://elliscave.com/APL_J/tool.pdf
http://elliscave.com/APL_J/tool.pdf
http://news.nationalgeographic.com/news/2006/11/061129-ancient-greece.html
http://news.nationalgeographic.com/news/2006/11/061129-ancient-greece.html
http://www.census.gov/history/www/innovations/technology/the_hollerith_tabulator.html
http://www.census.gov/history/www/innovations/technology/the_hollerith_tabulator.html
http://doi.acm.org/10.1145/358589.358596
http://doi.acm.org/10.1145/358589.358596
http://www.computerweekly.com/Articles/2007/09/11/226631/sslcomputer-weekly-it-salary-survey-finance-boom-drives-it-job.htm
http://www.computerweekly.com/Articles/2007/09/11/226631/sslcomputer-weekly-it-salary-survey-finance-boom-drives-it-job.htm
http://www.worldscibooks.com/physics/6988.html
http://www.worldscibooks.com/physics/6988.html
http://en.wikipedia.org/w/index.php?title=World_Scientific
http://en.wikipedia.org/w/index.php?title=Gerald_Weinberg

Computer programming 9

External links

Library resources about
Computer programming

• Online books (http:/ / tools. wmflabs. org/ ftl/ cgi-bin/ ftl?st=wp& su=Computer+ programming& library=OLBP)
• Resources in your library (http:/ / tools. wmflabs. org/ ftl/ cgi-bin/ ftl?st=wp& su=Computer+ programming)
• Resources in other libraries (http:/ / tools. wmflabs. org/ ftl/ cgi-bin/ ftl?st=wp& su=Computer+ programming& library=0CHOOSE0)

• Software engineering (http:/ / www. dmoz. org/ Computers/ Software/ Software_Engineering/) at DMOZ
• Programming Wikia (http:/ / code. wikia. com/ wiki/ Programmer's_Wiki)

History of programming languages
This article discusses the major developments in the history of programming languages [1] . For a detailed timeline of
events, see: Timeline of programming languages.

Early history
The first programming languages predate the modern computer.
During a nine-month period in 1842-1843, Ada Lovelace translated the memoir of Italian mathematician Luigi
Menabrea about Charles Babbage's newest proposed machine, the Analytical Engine. With the article she appended a
set of notes which specified in complete detail a method for calculating Bernoulli numbers with the Analytical
Engine, recognized by some historians as the world's first computer program.
Herman Hollerith realized that he could encode information on punch cards when he observed that train conductors
encode the appearance of the ticket holders on the train tickets using the position of punched holes on the tickets.
Hollerith then encoded the 1890 census data on punch cards.
The first computer codes were specialized for their applications. In the first decades of the 20th century, numerical
calculations were based on decimal numbers. Eventually it was realized that logic could be represented with
numbers, not only with words. For example, Alonzo Church was able to express the lambda calculus in a formulaic
way. The Turing machine was an abstraction of the operation of a tape-marking machine, for example, in use at the
telephone companies. Turing machines set the basis for storage of programs as data in the von Neumann architecture
of computers by representing a machine through a finite number. However, unlike the lambda calculus, Turing's
code does not serve well as a basis for higher-level languages—its principal use is in rigorous analyses of
algorithmic complexity.
Like many "firsts" in history, the first modern programming language is hard to identify. From the start, the
restrictions of the hardware defined the language. Punch cards allowed 80 columns, but some of the columns had to
be used for a sorting number on each card. FORTRAN included some keywords which were the same as English
words, such as "IF", "GOTO" (go to) and "CONTINUE". The use of a magnetic drum for memory meant that
computer programs also had to be interleaved with the rotations of the drum. Thus the programs were more
hardware-dependent.
To some people, what was the first modern programming language depends on how much power and
human-readability is required before the status of "programming language" is granted. Jacquard looms and Charles
Babbage's Difference Engine both had simple, extremely limited languages for describing the actions that these
machines should perform. One can even regard the punch holes on a player piano scroll as a limited domain-specific
language, albeit not designed for human consumption.

http://en.wikipedia.org/w/index.php?title=Wikipedia:LIBRARY
http://tools.wmflabs.org/ftl/cgi-bin/ftl?st=wp&su=Computer+programming&library=OLBP
http://tools.wmflabs.org/ftl/cgi-bin/ftl?st=wp&su=Computer+programming
http://tools.wmflabs.org/ftl/cgi-bin/ftl?st=wp&su=Computer+programming&library=0CHOOSE0
http://www.dmoz.org/Computers/Software/Software_Engineering/
http://en.wikipedia.org/w/index.php?title=DMOZ
http://code.wikia.com/wiki/Programmer%27s_Wiki
http://www.activatedesign.co.nz/history-of-computer-programming-languages
http://en.wikipedia.org/w/index.php?title=Timeline_of_programming_languages
http://en.wikipedia.org/w/index.php?title=Ada_Lovelace
http://en.wikipedia.org/w/index.php?title=Luigi_Menabrea
http://en.wikipedia.org/w/index.php?title=Luigi_Menabrea
http://en.wikipedia.org/w/index.php?title=Charles_Babbage
http://en.wikipedia.org/w/index.php?title=Analytical_engine
http://en.wikipedia.org/w/index.php?title=Bernoulli_number
http://en.wikipedia.org/w/index.php?title=Herman_Hollerith
http://en.wikipedia.org/w/index.php?title=Punched_card
http://en.wikipedia.org/w/index.php?title=Train
http://en.wikipedia.org/w/index.php?title=Conductor_%28transportation%29
http://en.wikipedia.org/w/index.php?title=Alonzo_Church
http://en.wikipedia.org/w/index.php?title=Lambda_calculus
http://en.wikipedia.org/w/index.php?title=Turing_machine
http://en.wikipedia.org/w/index.php?title=Von_Neumann_architecture%23Development_of_the_stored-program_concept
http://en.wikipedia.org/w/index.php?title=Computational_complexity_theory
http://en.wikipedia.org/w/index.php?title=Drum_memory
http://en.wikipedia.org/w/index.php?title=Difference_engine
http://en.wikipedia.org/w/index.php?title=Player_piano
http://en.wikipedia.org/w/index.php?title=Domain-specific_language
http://en.wikipedia.org/w/index.php?title=Domain-specific_language

History of programming languages 10

First programming languages
In the 1940s, the first recognizably modern electrically powered computers were created. The limited speed and
memory capacity forced programmers to write hand tuned assembly language programs. It was eventually realized
that programming in assembly language required a great deal of intellectual effort and was error-prone.
The first programming languages designed to communicate instructions to a computer were written in the 1950s. An
early high-level programming language to be designed for a computer was Plankalkül, developed for the German Z3
by Konrad Zuse between 1943 and 1945. However, it was not implemented until 1998 and 2000.[2]

John Mauchly's Short Code, proposed in 1949, was one of the first high-level languages ever developed for an
electronic computer.[3] Unlike machine code, Short Code statements represented mathematical expressions in
understandable form. However, the program had to be translated into machine code every time it ran, making the
process much slower than running the equivalent machine code.
At the University of Manchester, Alick Glennie developed Autocode in the early 1950s. A programming language, it
used a compiler to automatically convert the language into machine code. The first code and compiler was developed
in 1952 for the Mark 1 computer at the University of Manchester and is considered to be the first compiled
high-level programming language.
The second autocode was developed for the Mark 1 by R. A. Brooker in 1954 and was called the "Mark 1
Autocode". Brooker also developed an autocode for the Ferranti Mercury in the 1950s in conjunction with the
University of Manchester. The version for the EDSAC 2 was devised by D. F. Hartley of University of Cambridge
Mathematical Laboratory in 1961. Known as EDSAC 2 Autocode, it was a straight development from Mercury
Autocode adapted for local circumstances, and was noted for its object code optimisation and source-language
diagnostics which were advanced for the time. A contemporary but separate thread of development, Atlas Autocode
was developed for the University of Manchester Atlas 1 machine.
Another early programming language was devised by Grace Hopper in the US, called FLOW-MATIC. It was
developed for the UNIVAC I at Remington Rand during the period from 1955 until 1959. Hopper found that
business data processing customers were uncomfortable with mathematical notation, and in early 1955, she and her
team wrote a specification for an English programming language and implemented a prototype.[4] The
FLOW-MATIC compiler became publicly available in early 1958 and was substantially complete in 1959.[5]

Flow-Matic was a major influence in the design of COBOL, since only it and its direct descendent AIMACO were in
actual use at the time.[6] The language Fortran was developed at IBM in the mid 1950s, and became the first widely
used high-level general purpose programming language.
Other languages still in use today, include LISP (1958), invented by John McCarthy and COBOL (1959), created by
the Short Range Committee, heavily influenced by Grace Hopper. Another milestone in the late 1950s was the
publication, by a committee of American and European computer scientists, of "a new language for algorithms"; the
ALGOL 60 Report (the "ALGOrithmic Language"). This report consolidated many ideas circulating at the time and
featured three key language innovations:
• nested block structure: code sequences and associated declarations could be grouped into blocks without having

to be turned into separate, explicitly named procedures;
• lexical scoping: a block could have its own private variables, procedures and functions, invisible to code outside

that block, that is, information hiding.
Another innovation, related to this, was in how the language was described:
• a mathematically exact notation, Backus-Naur Form (BNF), was used to describe the language's syntax. Nearly all

subsequent programming languages have used a variant of BNF to describe the context-free portion of their
syntax.

Algol 60 was particularly influential in the design of later languages, some of which soon became more popular. The
Burroughs large systems were designed to be programmed in an extended subset of Algol.

http://en.wikipedia.org/w/index.php?title=High-level_programming_language
http://en.wikipedia.org/w/index.php?title=Plankalk%C3%BCl
http://en.wikipedia.org/w/index.php?title=Z3_%28computer%29
http://en.wikipedia.org/w/index.php?title=Konrad_Zuse
http://en.wikipedia.org/w/index.php?title=John_Mauchly
http://en.wikipedia.org/w/index.php?title=Short_Code_%28computer_language%29
http://en.wikipedia.org/w/index.php?title=Electronic_computer
http://en.wikipedia.org/w/index.php?title=University_of_Manchester
http://en.wikipedia.org/w/index.php?title=Alick_Glennie
http://en.wikipedia.org/w/index.php?title=Autocode
http://en.wikipedia.org/w/index.php?title=High-level_programming_language
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=Manchester_Mark_1
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=Tony_Brooker
http://en.wikipedia.org/w/index.php?title=Ferranti_Mercury
http://en.wikipedia.org/w/index.php?title=EDSAC
http://en.wikipedia.org/w/index.php?title=D._F._Hartley
http://en.wikipedia.org/w/index.php?title=University_of_Cambridge_Mathematical_Laboratory
http://en.wikipedia.org/w/index.php?title=University_of_Cambridge_Mathematical_Laboratory
http://en.wikipedia.org/w/index.php?title=Atlas_Autocode
http://en.wikipedia.org/w/index.php?title=Atlas_Computer_%28Manchester%29
http://en.wikipedia.org/w/index.php?title=Grace_Hopper
http://en.wikipedia.org/w/index.php?title=FLOW-MATIC
http://en.wikipedia.org/w/index.php?title=UNIVAC_I
http://en.wikipedia.org/w/index.php?title=Remington_Rand
http://en.wikipedia.org/w/index.php?title=English_language
http://en.wikipedia.org/w/index.php?title=COBOL
http://en.wikipedia.org/w/index.php?title=AIMACO
http://en.wikipedia.org/w/index.php?title=Fortran
http://en.wikipedia.org/w/index.php?title=Lisp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=John_McCarthy_%28computer_scientist%29
http://en.wikipedia.org/w/index.php?title=COBOL
http://en.wikipedia.org/w/index.php?title=Grace_Hopper
http://en.wikipedia.org/w/index.php?title=ALGOL
http://en.wikipedia.org/w/index.php?title=Block_%28programming%29
http://en.wikipedia.org/w/index.php?title=Scope_%28programming%29
http://en.wikipedia.org/w/index.php?title=Information_hiding
http://en.wikipedia.org/w/index.php?title=Backus-Naur_Form
http://en.wikipedia.org/w/index.php?title=Context-free_grammar
http://en.wikipedia.org/w/index.php?title=Burroughs_large_systems

History of programming languages 11

Algol's key ideas were continued, producing ALGOL 68:
•• syntax and semantics became even more orthogonal, with anonymous routines, a recursive typing system with

higher-order functions, etc.;
• not only the context-free part, but the full language syntax and semantics were defined formally, in terms of Van

Wijngaarden grammar, a formalism designed specifically for this purpose.
Algol 68's many little-used language features (for example, concurrent and parallel blocks) and its complex system
of syntactic shortcuts and automatic type coercions made it unpopular with implementers and gained it a reputation
of being difficult. Niklaus Wirth actually walked out of the design committee to create the simpler Pascal language.
Some important languages that were developed in this period include:

• 1951 - Regional Assembly Language • 1959 - RPG
• 1952 - Autocode • 1962 - APL
• 1954 - IPL (forerunner to LISP) • 1962 - Simula
• 1955 - FLOW-MATIC (led to COBOL) • 1962 - SNOBOL
• 1957 - FORTRAN (First compiler) • 1963 - CPL (forerunner to C)
• 1957 - COMTRAN (precursor to COBOL) • 1964 - BASIC
• 1958 - LISP • 1964 - PL/I
• 1958 - ALGOL 58 • 1966 - JOSS
• 1959 - FACT (forerunner to COBOL) • 1967 - BCPL (forerunner to C)
• 1959 - COBOL

Establishing fundamental paradigms
The period from the late 1960s to the late 1970s brought a major flowering of programming languages. Most of the
major language paradigms now in use were invented in this period:
• Simula, invented in the late 1960s by Nygaard and Dahl as a superset of Algol 60, was the first language

designed to support object-oriented programming.
• C, an early systems programming language, was developed by Dennis Ritchie and Ken Thompson at Bell Labs

between 1969 and 1973.
• Smalltalk (mid-1970s) provided a complete ground-up design of an object-oriented language.
• Prolog, designed in 1972 by Colmerauer, Roussel, and Kowalski, was the first logic programming language.
• ML built a polymorphic type system (invented by Robin Milner in 1973) on top of Lisp, pioneering statically

typed functional programming languages.
Each of these languages spawned an entire family of descendants, and most modern languages count at least one of
them in their ancestry.
The 1960s and 1970s also saw considerable debate over the merits of "structured programming", which essentially
meant programming without the use of Goto. This debate was closely related to language design: some languages
did not include GOTO, which forced structured programming on the programmer. Although the debate raged hotly
at the time, nearly all programmers now agree that, even in languages that provide GOTO, it is bad programming
style to use it except in rare circumstances. As a result, later generations of language designers have found the
structured programming debate tedious and even bewildering.
To provide even faster compile times, some languages were structured for "one-pass compilers" which expect
subordinate routines to be defined first, as with Pascal, where the main routine, or driver function, is the final section
of the program listing.
Some important languages that were developed in this period include:

http://en.wikipedia.org/w/index.php?title=ALGOL_68
http://en.wikipedia.org/w/index.php?title=Van_Wijngaarden_grammar
http://en.wikipedia.org/w/index.php?title=Van_Wijngaarden_grammar
http://en.wikipedia.org/w/index.php?title=Niklaus_Wirth
http://en.wikipedia.org/w/index.php?title=Pascal_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Regional_Assembly_Language
http://en.wikipedia.org/w/index.php?title=IBM_RPG
http://en.wikipedia.org/w/index.php?title=Autocode
http://en.wikipedia.org/w/index.php?title=APL_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Information_Processing_Language
http://en.wikipedia.org/w/index.php?title=Simula
http://en.wikipedia.org/w/index.php?title=FLOW-MATIC
http://en.wikipedia.org/w/index.php?title=SNOBOL
http://en.wikipedia.org/w/index.php?title=Fortran
http://en.wikipedia.org/w/index.php?title=Combined_Programming_Language
http://en.wikipedia.org/w/index.php?title=COMTRAN
http://en.wikipedia.org/w/index.php?title=BASIC
http://en.wikipedia.org/w/index.php?title=Lisp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=PL/I
http://en.wikipedia.org/w/index.php?title=ALGOL_58
http://en.wikipedia.org/w/index.php?title=JOSS
http://en.wikipedia.org/w/index.php?title=FACT_computer_language
http://en.wikipedia.org/w/index.php?title=BCPL
http://en.wikipedia.org/w/index.php?title=COBOL
http://en.wikipedia.org/w/index.php?title=Simula
http://en.wikipedia.org/w/index.php?title=Kristen_Nygaard
http://en.wikipedia.org/w/index.php?title=Ole-Johan_Dahl
http://en.wikipedia.org/w/index.php?title=Object-oriented_programming
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=System_programming
http://en.wikipedia.org/w/index.php?title=Dennis_Ritchie
http://en.wikipedia.org/w/index.php?title=Ken_Thompson
http://en.wikipedia.org/w/index.php?title=Bell_Labs
http://en.wikipedia.org/w/index.php?title=Smalltalk
http://en.wikipedia.org/w/index.php?title=Prolog
http://en.wikipedia.org/w/index.php?title=Alain_Colmerauer
http://en.wikipedia.org/w/index.php?title=Phillipe_Roussel
http://en.wikipedia.org/w/index.php?title=Robert_Kowalski
http://en.wikipedia.org/w/index.php?title=Logic_programming
http://en.wikipedia.org/w/index.php?title=ML_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Robin_Milner
http://en.wikipedia.org/w/index.php?title=Functional_programming
http://en.wikipedia.org/w/index.php?title=Structured_programming
http://en.wikipedia.org/w/index.php?title=Goto
http://en.wikipedia.org/w/index.php?title=Programming_style
http://en.wikipedia.org/w/index.php?title=Programming_style
http://en.wikipedia.org/w/index.php?title=One-pass_compiler
http://en.wikipedia.org/w/index.php?title=Pascal_%28programming_language%29

History of programming languages 12

• 1968 - Logo
• 1969 - B (forerunner to C)
• 1970 - Pascal
• 1970 - Forth
• 1972 - C

• 1972 - Smalltalk
• 1972 - Prolog
• 1973 - ML
• 1975 - Scheme
• 1978 - SQL (a query language, later extended)

1980s: consolidation, modules, performance
The 1980s were years of relative consolidation in imperative languages. Rather than inventing new paradigms, all of
these movements elaborated upon the ideas invented in the previous decade. C++ combined object-oriented and
systems programming. The United States government standardized Ada, a systems programming language intended
for use by defense contractors. In Japan and elsewhere, vast sums were spent investigating so-called fifth-generation
programming languages that incorporated logic programming constructs. The functional languages community
moved to standardize ML and Lisp. Research in Miranda, a functional language with lazy evaluation, began to take
hold in this decade.
One important new trend in language design was an increased focus on programming for large-scale systems through
the use of modules, or large-scale organizational units of code. Modula, Ada, and ML all developed notable module
systems in the 1980s. Module systems were often wedded to generic programming constructs---generics being, in
essence, parametrized modules (see also polymorphism in object-oriented programming).
Although major new paradigms for imperative programming languages did not appear, many researchers expanded
on the ideas of prior languages and adapted them to new contexts. For example, the languages of the Argus and
Emerald systems adapted object-oriented programming to distributed systems.
The 1980s also brought advances in programming language implementation. The RISC movement in computer
architecture postulated that hardware should be designed for compilers rather than for human assembly
programmers. Aided by processor speed improvements that enabled increasingly aggressive compilation techniques,
the RISC movement sparked greater interest in compilation technology for high-level languages.
Language technology continued along these lines well into the 1990s.
Some important languages that were developed in this period include:

• 1980 - C++ (as C with classes, renamed in 1983) • 1986 - Erlang
• 1983 - Ada • 1987 - Perl
• 1984 - Common Lisp • 1988 - Tcl
• 1984 - MATLAB • 1988 - Mathematica
• 1985 - Eiffel • 1989 - FL (Backus)
• 1986 - Objective-C

1990s: the Internet age
The rapid growth of the Internet in the mid-1990s was the next major historic event in programming languages. By
opening up a radically new platform for computer systems, the Internet created an opportunity for new languages to
be adopted. In particular, the JavaScript programming language rose to popularity because of its early integration
with the Netscape Navigator web browser. Various other scripting languages achieved widespread use in developing
customized application for web servers such as PHP. The 1990s saw no fundamental novelty in imperative
languages, but much recombination and maturation of old ideas. This era began the spread of functional languages.
A big driving philosophy was programmer productivity. Many "rapid application development" (RAD) languages
emerged, which usually came with an IDE, garbage collection, and were descendants of older languages. All such
languages were object-oriented. These included Object Pascal, Visual Basic, and Java. Java in particular received
much attention. More radical and innovative than the RAD languages were the new scripting languages. These did

http://en.wikipedia.org/w/index.php?title=Logo_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=B_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Pascal_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Forth_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Smalltalk
http://en.wikipedia.org/w/index.php?title=Prolog
http://en.wikipedia.org/w/index.php?title=ML_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Scheme_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Imperative_language
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Fifth-generation_programming_language
http://en.wikipedia.org/w/index.php?title=Fifth-generation_programming_language
http://en.wikipedia.org/w/index.php?title=Miranda_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Lazy_evaluation
http://en.wikipedia.org/w/index.php?title=Modula
http://en.wikipedia.org/w/index.php?title=Generic_programming
http://en.wikipedia.org/w/index.php?title=Polymorphism_in_object-oriented_programming
http://en.wikipedia.org/w/index.php?title=Argus_%28computer_system%29
http://en.wikipedia.org/w/index.php?title=Emerald_%28computer_system%29
http://en.wikipedia.org/w/index.php?title=Distributed_computing
http://en.wikipedia.org/w/index.php?title=Reduced_instruction_set_computer
http://en.wikipedia.org/w/index.php?title=Computer_architecture
http://en.wikipedia.org/w/index.php?title=Computer_architecture
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=Central_processing_unit
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=C_with_classes
http://en.wikipedia.org/w/index.php?title=Erlang_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Perl
http://en.wikipedia.org/w/index.php?title=Common_Lisp
http://en.wikipedia.org/w/index.php?title=Tcl
http://en.wikipedia.org/w/index.php?title=MATLAB
http://en.wikipedia.org/w/index.php?title=Mathematica
http://en.wikipedia.org/w/index.php?title=Eiffel_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=FL_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Objective-C
http://en.wikipedia.org/w/index.php?title=Imperative_language
http://en.wikipedia.org/w/index.php?title=Imperative_language
http://en.wikipedia.org/w/index.php?title=Functional_language
http://en.wikipedia.org/w/index.php?title=Integrated_development_environment
http://en.wikipedia.org/w/index.php?title=Garbage_collection_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Object-oriented_programming
http://en.wikipedia.org/w/index.php?title=Object_Pascal
http://en.wikipedia.org/w/index.php?title=Visual_Basic
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29

History of programming languages 13

not directly descend from other languages and featured new syntaxes and more liberal incorporation of features.
Many consider these scripting languages to be more productive than even the RAD languages, but often because of
choices that make small programs simpler but large programs more difficult to write and
maintain.Wikipedia:Citation needed Nevertheless, scripting languages came to be the most prominent ones used in
connection with the Web.
Some important languages that were developed in this period include:

• 1990 - Haskell • 1995 - Java
• 1991 - Python • 1995 - Delphi (Object Pascal)
• 1991 - Visual Basic • 1995 - JavaScript
• 1993 - Ruby • 1995 - PHP
• 1993 - Lua • 1996 - WebDNA
• 1994 - CLOS (part of ANSI Common Lisp) • 1997 - Rebol
• 1995 - Ada 95 • 1999 - D

Current trends
Programming language evolution continues, in both industry and research. Some of the current trends include:
• Increasing support for functional programming in mainstream languages used commercially, including pure

functional programming for making code easier to reason about and easier to parallelise (at both micro- and
macro- levels)

• Constructs to support concurrent and distributed programming.
• Mechanisms for adding security and reliability verification to the language: extended static checking, dependent

typing, information flow control, static thread safety.
• Alternative mechanisms for modularity: mixins, delegates, aspects.
•• Component-oriented software development.
• Metaprogramming, reflection or access to the abstract syntax tree
•• Increased emphasis on distribution and mobility.
• Integration with databases, including XML and relational databases.
• Support for Unicode so that source code (program text) is not restricted to those characters contained in the ASCII

character set; allowing, for example, use of non-Latin-based scripts or extended punctuation.
• XML for graphical interface (XUL, XAML).
• Open source as a developmental philosophy for languages, including the GNU compiler collection and recent

languages such as Python, Ruby, and Squeak.
• AOP or Aspect Oriented Programming allowing developers to code by places in code extended behaviors.
• Massively parallel languages for coding 2000 processor GPU graphics processing units and supercomputer arrays

including OpenCL
Some important languages developed during this period include:

• 2000 - ActionScript
• 2001 - C#
• 2001 - Visual Basic .NET
• 2002 - F#
• 2003 - Groovy

• 2003 - Scala
• 2007 - Clojure
• 2009 - Go
• 2011 - Dart
• 2012 - Rust

http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Haskell_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Embarcadero_Delphi
http://en.wikipedia.org/w/index.php?title=Visual_Basic
http://en.wikipedia.org/w/index.php?title=JavaScript
http://en.wikipedia.org/w/index.php?title=Ruby_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=PHP
http://en.wikipedia.org/w/index.php?title=Lua_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=WebDNA
http://en.wikipedia.org/w/index.php?title=CLOS
http://en.wikipedia.org/w/index.php?title=Common_Lisp
http://en.wikipedia.org/w/index.php?title=REBOL
http://en.wikipedia.org/w/index.php?title=Ada_95
http://en.wikipedia.org/w/index.php?title=D_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Functional_programming
http://en.wikipedia.org/w/index.php?title=Purely_functional
http://en.wikipedia.org/w/index.php?title=Purely_functional
http://en.wikipedia.org/w/index.php?title=Concurrent_computing
http://en.wikipedia.org/w/index.php?title=Distributed_computing
http://en.wikipedia.org/w/index.php?title=Dependent_typing
http://en.wikipedia.org/w/index.php?title=Dependent_typing
http://en.wikipedia.org/w/index.php?title=Thread_safety
http://en.wikipedia.org/w/index.php?title=Mixin
http://en.wikipedia.org/w/index.php?title=Delegation_%28programming%29
http://en.wikipedia.org/w/index.php?title=Aspect-oriented_programming
http://en.wikipedia.org/w/index.php?title=Metaprogramming
http://en.wikipedia.org/w/index.php?title=Reflection_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Abstract_syntax_tree
http://en.wikipedia.org/w/index.php?title=XML
http://en.wikipedia.org/w/index.php?title=Relational_database
http://en.wikipedia.org/w/index.php?title=Unicode
http://en.wikipedia.org/w/index.php?title=ASCII
http://en.wikipedia.org/w/index.php?title=Latin
http://en.wikipedia.org/w/index.php?title=XUL
http://en.wikipedia.org/w/index.php?title=Extensible_Application_Markup_Language
http://en.wikipedia.org/w/index.php?title=Open_source
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Ruby_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Squeak
http://en.wikipedia.org/w/index.php?title=Aspect_Oriented_Programming
http://en.wikipedia.org/w/index.php?title=OpenCL
http://en.wikipedia.org/w/index.php?title=ActionScript
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Visual_Basic_.NET
http://en.wikipedia.org/w/index.php?title=F_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Groovy_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Scala_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Clojure
http://en.wikipedia.org/w/index.php?title=Go_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Dart_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Rust_%28programming_language%29

History of programming languages 14

Prominent people
Some key people who helped develop programming languages (in alpha order):
• Joe Armstrong, creator of Erlang.
• John Backus, inventor of Fortran.
• Alan Cooper, developer of Visual Basic.
• Edsger W. Dijkstra, developed the framework for structured programming.
• Jean-Yves Girard, co-inventor of the polymorphic lambda calculus (System F).
• James Gosling, developer of Oak, the precursor of Java.
• Anders Hejlsberg, developer of Turbo Pascal, Delphi and C#.
• Rich Hickey, creator of Clojure.
• Grace Hopper, developer of Flow-Matic, influencing COBOL.
• Jean Ichbiah, chief designer of Ada, Ada 83
• Kenneth E. Iverson, developer of APL, and co-developer of J along with Roger Hui.
• Alan Kay, pioneering work on object-oriented programming, and originator of Smalltalk.
• Brian Kernighan, co-author of the first book on the C programming language with Dennis Ritchie, coauthor of the

AWK and AMPL programming languages.
• Yukihiro Matsumoto, creator of Ruby.
• John McCarthy, inventor of LISP.
• Bertrand Meyer, inventor of Eiffel.
• Robin Milner, inventor of ML, and sharing credit for Hindley–Milner polymorphic type inference.
• John von Neumann, originator of the operating system concept.
• Martin Odersky, creator of Scala, and previously a contributor to the design of Java.
• John C. Reynolds, co-inventor of the polymorphic lambda calculus (System F).
• Dennis Ritchie, inventor of C. Unix Operating System, Plan 9 Operating System.
• Nathaniel Rochester, inventor of first assembler (IBM 701).
• Guido van Rossum, creator of Python.
• Bjarne Stroustrup, developer of C++.
• Ken Thompson, inventor of B, Go Programming Language, Inferno Programming Language, and Unix Operating

System co-author.
• Larry Wall, creator of the Perl programming language (see Perl and Perl 6).
• Niklaus Wirth, inventor of Pascal, Modula and Oberon.
• Stephen Wolfram, creator of Mathematica.

References
[1] http:/ / www. activatedesign. co. nz/ history-of-computer-programming-languages
[2] Rojas, Raúl, et al. (2000). "Plankalkül: The First High-Level Programming Language and its Implementation". Institut für Informatik, Freie

Universität Berlin, Technical Report B-3/2000. (full text) (http:/ / www. zib. de/ zuse/ Inhalt/ Programme/ Plankalkuel/ Plankalkuel-Report/
Plankalkuel-Report. htm)

[3][3] Sebesta, W.S Concepts of Programming languages. 2006;M6 14:18 pp.44. ISBN 0-321-33025-0
[4][4] Hopper (1978) p. 16.
[5][5] Sammet (1969) p. 316
[6][6] Sammet (1978) p. 204.

http://en.wikipedia.org/w/index.php?title=Joe_Armstrong_%28programming%29
http://en.wikipedia.org/w/index.php?title=Erlang_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=John_Backus
http://en.wikipedia.org/w/index.php?title=Fortran
http://en.wikipedia.org/w/index.php?title=Alan_Cooper
http://en.wikipedia.org/w/index.php?title=Visual_Basic
http://en.wikipedia.org/w/index.php?title=Edsger_W._Dijkstra
http://en.wikipedia.org/w/index.php?title=Jean-Yves_Girard
http://en.wikipedia.org/w/index.php?title=Polymorphic_lambda_calculus
http://en.wikipedia.org/w/index.php?title=James_Gosling
http://en.wikipedia.org/w/index.php?title=Oak_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Anders_Hejlsberg
http://en.wikipedia.org/w/index.php?title=Turbo_Pascal
http://en.wikipedia.org/w/index.php?title=Embarcadero_Delphi
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Rich_Hickey
http://en.wikipedia.org/w/index.php?title=Clojure
http://en.wikipedia.org/w/index.php?title=Grace_Hopper
http://en.wikipedia.org/w/index.php?title=Flow-Matic
http://en.wikipedia.org/w/index.php?title=COBOL
http://en.wikipedia.org/w/index.php?title=Jean_Ichbiah
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Ada_83
http://en.wikipedia.org/w/index.php?title=Kenneth_E._Iverson
http://en.wikipedia.org/w/index.php?title=APL_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=J_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Roger_Hui
http://en.wikipedia.org/w/index.php?title=Alan_Kay
http://en.wikipedia.org/w/index.php?title=Smalltalk
http://en.wikipedia.org/w/index.php?title=Brian_Kernighan
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Dennis_Ritchie
http://en.wikipedia.org/w/index.php?title=AWK
http://en.wikipedia.org/w/index.php?title=AMPL_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Yukihiro_Matsumoto
http://en.wikipedia.org/w/index.php?title=Ruby_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=John_McCarthy_%28computer_scientist%29
http://en.wikipedia.org/w/index.php?title=Lisp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Bertrand_Meyer
http://en.wikipedia.org/w/index.php?title=Eiffel_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Robin_Milner
http://en.wikipedia.org/w/index.php?title=ML_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Hindley%E2%80%93Milner
http://en.wikipedia.org/w/index.php?title=Parametric_polymorphism
http://en.wikipedia.org/w/index.php?title=Type_inference
http://en.wikipedia.org/w/index.php?title=John_von_Neumann
http://en.wikipedia.org/w/index.php?title=Operating_system
http://en.wikipedia.org/w/index.php?title=Martin_Odersky
http://en.wikipedia.org/w/index.php?title=Scala_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=John_C._Reynolds
http://en.wikipedia.org/w/index.php?title=Dennis_Ritchie
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Nathaniel_Rochester_%28computer_scientist%29
http://en.wikipedia.org/w/index.php?title=Guido_van_Rossum
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Bjarne_Stroustrup
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=Ken_Thompson
http://en.wikipedia.org/w/index.php?title=B_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Larry_Wall
http://en.wikipedia.org/w/index.php?title=Perl
http://en.wikipedia.org/w/index.php?title=Perl_6
http://en.wikipedia.org/w/index.php?title=Niklaus_Wirth
http://en.wikipedia.org/w/index.php?title=Pascal_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Modula
http://en.wikipedia.org/w/index.php?title=Oberon_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Stephen_Wolfram
http://en.wikipedia.org/w/index.php?title=Mathematica
http://www.activatedesign.co.nz/history-of-computer-programming-languages
http://en.wikipedia.org/w/index.php?title=Ra%C3%BAl_Rojas
http://www.zib.de/zuse/Inhalt/Programme/Plankalkuel/Plankalkuel-Report/Plankalkuel-Report.htm
http://www.zib.de/zuse/Inhalt/Programme/Plankalkuel/Plankalkuel-Report/Plankalkuel-Report.htm

History of programming languages 15

Further reading
• Rosen, Saul, (editor), Programming Systems and Languages, McGraw-Hill, 1967
• Sammet, Jean E., Programming Languages: History and Fundamentals, Prentice-Hall, 1969
• Sammet, Jean E., "Programming Languages: History and Future", Communications of the ACM, of Volume 15,

Number 7, July 1972
• Richard L. Wexelblat (ed.): History of Programming Languages, Academic Press 1981.
• Thomas J. Bergin and Richard G. Gibson (eds.): History of Programming Languages, Addison Wesley, 1996.

External links
• History and evolution of programming languages (http:/ / www. scriptol. com/ programming/ history. php).
• Graph of programming language history (http:/ / www. levenez. com/ lang/ history. html)

Comparison of programming languages

Programming language
comparisons

•• General comparison
•• Basic syntax
•• Basic instructions
•• Arrays
•• Associative arrays
•• String operations
•• String functions
•• List comprehension
•• Object-oriented programming
•• Object-oriented constructors
•• Database access
•• Evaluation strategy
•• List of "Hello World" programs

•• Web application frameworks
•• Comparison of the Java and .NET platforms

•• Comparison of individual programming languages
•• ALGOL 58's influence on ALGOL 60
•• ALGOL 60: Comparisons with other languages
•• Comparison of ALGOL 68 and C++
•• ALGOL 68: Comparisons with other languages
•• Compatibility of C and C++
•• Comparison of Pascal and Borland Delphi
•• Comparison of Object Pascal and C
•• Comparison of Pascal and C
•• Comparison of Java and C++
•• Comparison of C# and Java
•• Comparison of C# and Visual Basic .NET
•• Comparison of Visual Basic and Visual Basic .NET

•• v
•• t
• e [1]

http://en.wikipedia.org/w/index.php?title=Saul_Rosen
http://en.wikipedia.org/w/index.php?title=Jean_E._Sammet
http://en.wikipedia.org/w/index.php?title=Richard_L._Wexelblat
http://en.wikipedia.org/w/index.php?title=Academic_Press
http://en.wikipedia.org/w/index.php?title=Thomas_J._Bergin
http://en.wikipedia.org/w/index.php?title=Richard_G._Gibson
http://www.scriptol.com/programming/history.php
http://www.levenez.com/lang/history.html
http://en.wikipedia.org/w/index.php?title=Comparison_of_programming_languages_%28syntax%29
http://en.wikipedia.org/w/index.php?title=Comparison_of_programming_languages_%28basic_instructions%29
http://en.wikipedia.org/w/index.php?title=Comparison_of_programming_languages_%28array%29
http://en.wikipedia.org/w/index.php?title=Comparison_of_programming_languages_%28mapping%29
http://en.wikipedia.org/w/index.php?title=Comparison_of_programming_languages_%28strings%29
http://en.wikipedia.org/w/index.php?title=Comparison_of_programming_languages_%28string_functions%29
http://en.wikipedia.org/w/index.php?title=Comparison_of_programming_languages_%28list_comprehension%29
http://en.wikipedia.org/w/index.php?title=Comparison_of_programming_languages_%28object-oriented_programming%29
http://en.wikipedia.org/w/index.php?title=Constructor_%28object-oriented_programming%29
http://en.wikipedia.org/w/index.php?title=Comparison_of_database_access
http://en.wikipedia.org/w/index.php?title=Evaluation_strategy
http://en.wikibooks.org/wiki/Computer_Programming/Hello_world
http://en.wikipedia.org/w/index.php?title=Comparison_of_web_application_frameworks
http://en.wikipedia.org/w/index.php?title=Comparison_of_the_Java_and_.NET_platforms
http://en.wikipedia.org/w/index.php?title=ALGOL_58%23ALGOL_58%27s_influence_on_ALGOL_60
http://en.wikipedia.org/w/index.php?title=ALGOL_60%23Comparisons_with_other_languages
http://en.wikipedia.org/w/index.php?title=Comparison_of_ALGOL_68_and_C%2B%2B
http://en.wikipedia.org/w/index.php?title=ALGOL_68%23Comparisons_with_other_languages
http://en.wikipedia.org/w/index.php?title=Compatibility_of_C_and_C%2B%2B
http://en.wikipedia.org/w/index.php?title=Comparison_of_Pascal_and_Delphi
http://en.wikipedia.org/w/index.php?title=Comparison_of_Object_Pascal_and_C
http://en.wikipedia.org/w/index.php?title=Comparison_of_Pascal_and_C
http://en.wikipedia.org/w/index.php?title=Comparison_of_Java_and_C%2B%2B
http://en.wikipedia.org/w/index.php?title=Comparison_of_C_Sharp_and_Java
http://en.wikipedia.org/w/index.php?title=Comparison_of_C_Sharp_and_Visual_Basic_.NET
http://en.wikipedia.org/w/index.php?title=Comparison_of_Visual_Basic_and_Visual_Basic_.NET
http://en.wikipedia.org/w/index.php?title=Template:Programming_language_comparisons
http://en.wikipedia.org/w/index.php?title=Template_talk:Programming_language_comparisons
http://en.wikipedia.org/w/index.php?title=Template:Programming_language_comparisons&action=edit

Comparison of programming languages 16

Comparison of programming languages is a common topic of discussion among software engineers. Basic
instructions of several programming languages are compared here.

Conventions of this article
The bold is the literal code. The non-bold is interpreted by the reader. Statements in guillemets (« … ») are optional.
Tab ↹ indicates a necessary indent (with whitespace).

Type identifiers

Integers

8 bit (byte) 16 bit (short integer) 32 bit 64 bit (long integer) Word size Arbitrarily precise (bignum)

Signed Unsigned Signed Unsigned Signed Unsigned Signed Unsigned Signed Unsigned

Ada
[2] range -2**7 ..

2**7 - 1[j]

range 0 ..

2**8 - 1[j] or

mod 2**8[k]

range -2**15 ..

2**15 - 1[j]

range 0 ..

2**16 - 1[j] or

mod 2**16[k]

range -2**31 ..

2**31 - 1[j]

range 0 ..

2**32 - 1[j]

or mod

2**32[k]

range -2**63 ..

2**63 - 1[j]

mod 2**64[k] Integer[j] range 0 ..

2**Integer'<wbr/>Size

- 1[j] or mod

Integer'<wbr/>Size[k]

N/A

ALGOL 68

(variable-width)
short short int[c]

N/A
short int[c]

N/A
int[c]

N/A
long int[c]

N/A
int[c] N/A

long long int [a][g]

bytes & bits

C (C99

fixed-width)

int8_t uint8_t int16_t uint16_t int32_t uint32_t int64_t uint64_t int unsigned int

N/A

C++ (C++11

fixed-width)

C (C99

variable-width)

signed char unsigned

char

short[c] unsigned

short[c]

long[c] unsigned

long[c]

long long[c] unsigned

long long[c]

C++ (C++11

variable-width)

Objective-C signed char unsigned

char

short[c] unsigned

short[c]

long[c] unsigned

long[c]

long long[c] unsigned

long long[c]

int

or

NSInteger

unsigned int

or

NSUInteger

C# sbyte byte short ushort int uint long ulong IntPtr UIntPtr System.Numerics<wbr/>.BigInteger

(.NET 4.0)

Java byte N/A char[b] N/A N/A N/A N/A java.math<wbr/>.BigInteger

Go int8 uint8 or

byte

int16 uint16 int32 uint32 int64 uint64 int uint big.Int

D byte ubyte short ushort int uint long ulong N/A N/A BigInt

Common

Lisp
[3]

bignum

Scheme

ISLISP
[4] bignum

Pascal (FPC) shortint byte smallint word longint longword int64 qword integer cardinal N/A

Visual Basic N/A Byte Integer N/A Long N/A N/A

N/A

N/A

Visual Basic

.NET

SByte Short UShort Integer UInteger Long ULong System.Numerics<wbr/>.BigInteger

(.NET 4.0)

http://en.wikipedia.org/w/index.php?title=Software_engineer
http://en.wikipedia.org/w/index.php?title=Guillemets
http://en.wikipedia.org/w/index.php?title=Integer_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Byte
http://en.wikipedia.org/w/index.php?title=Short_integer
http://en.wikipedia.org/w/index.php?title=Long_integer
http://en.wikipedia.org/w/index.php?title=Arbitrary-precision_arithmetic
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=ALGOL_68
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C99
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=C%2B%2B11
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C99
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=C%2B%2B11
http://en.wikipedia.org/w/index.php?title=Objective-C
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Go_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=D_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Common_Lisp
http://en.wikipedia.org/w/index.php?title=Common_Lisp
http://en.wikipedia.org/w/index.php?title=Scheme_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=ISLISP
http://en.wikipedia.org/w/index.php?title=Pascal_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Free_Pascal
http://en.wikipedia.org/w/index.php?title=Visual_Basic
http://en.wikipedia.org/w/index.php?title=Visual_Basic_.NET
http://en.wikipedia.org/w/index.php?title=Visual_Basic_.NET

Comparison of programming languages 17

Python 2.x N/A N/A N/A N/A int N/A long

Python 3.x N/A N/A N/A N/A N/A int

S-Lang N/A N/A N/A N/A N/A N/A

Fortran
INTEGER<wbr/>(KIND

= n)[f]

N/A
INTEGER<wbr/>(KIND

= n)[f]

N/A
INTEGER<wbr/>(KIND

= n)[f]

N/A
INTEGER<wbr/>(KIND

= n)[f]

N/A

PHP N/A N/A
int [m]

N/A
int [m]

N/A N/A [e]

Perl 5
N/A[d] N/A[d] N/A[d] N/A[d] N/A[d] Math::BigInt

Perl 6 int8 uint8 int16 uint16 int32 uint32 int64 uint64 Int N/A

Ruby N/A N/A N/A N/A Fixnum N/A Bignum

Scala Byte N/A Short
Char[l] Int N/A Long N/A N/A N/A scala.math.BigInt

Seed7 N/A N/A N/A N/A N/A N/A integer N/A N/A N/A bigInteger

Smalltalk N/A N/A N/A N/A SmallInteger[i] N/A LargeInteger[i]

Windows

PowerShell
N/A N/A N/A N/A N/A N/A

OCaml

N/A N/A

int32

N/A

int64

N/A

int

or

nativeint

open Big_int;;

big_int

F# sbyte byte int16 uint16 int32 or int uint32 uint64 nativeint unativeint bigint

Standard ML
N/A

Word8.word

N/A
Int32.int Word32.word Int64.int Word64.word int word LargeInt.int or

IntInf.int

Haskell (GHC) «import Int»

Int8

«import

Word»

Word8

«import Int»

Int16

«import

Word»

Word16

«import Int»

Int32

«import

Word»

Word32

«import Int»

Int64

«import Word»

Word64

Int «import Word»

Word

Integer

Eiffel INTEGER_8 NATURAL_8 INTEGER_16 NATURAL_16 INTEGER_32 NATURAL_32 INTEGER_64 NATURAL_64 INTEGER NATURAL N/A

COBOL[h] BINARY-CHAR

«SIGNED»

BINARY-CHAR

UNSIGNED

BINARY-SHORT

«SIGNED»

BINARY-SHORT

UNSIGNED

BINARY-LONG

«SIGNED»

BINARY-LONG

UNSIGNED

BINARY-DOUBLE

«SIGNED»

BINARY-DOUBLE

UNSIGNED

N/A N/A N/A

Mathematica N/A N/A N/A N/A N/A Integer

^a The standard constants int shorts and int lengths can be used to determine how many 'short's and
'long's can be usefully prefixed to 'short int' and 'long int'. The actually size of the 'short int', 'int'
and 'long int' is available as constants short max int, max int and long max int etc.
^b Commonly used for characters.
^c The ALGOL 68, C and C++ languages do not specify the exact width of the integer types short, int, long,
and (C99, C++11) long long, so they are implementation-dependent. In C and C++ short, long, and long
long types are required to be at least 16, 32, and 64 bits wide, respectively, but can be more. The int type is
required to be at least as wide as short and at most as wide as long, and is typically the width of the word size on
the processor of the machine (i.e. on a 32-bit machine it is often 32 bits wide; on 64-bit machines it is often 64 bits
wide). C99 and C++11Wikipedia:Citation needed also define the [u]intN_t exact-width types in the stdint.h
header. SeeC syntax#Integral types for more information.
^d Perl 5 does not have distinct types. Integers, floating point numbers, strings, etc. are all considered "scalars".
^e PHP has two arbitrary-precision libraries. The BCMath library just uses strings as datatype. The GMP library
uses an internal "resource" type.
^f The value of "n" is provided by the SELECTED_INT_KIND[5] intrinsic function.
^g ALGOL 68G's run time option --precision "number" can set precision for long long ints to the

http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=S-Lang_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Fortran
http://en.wikipedia.org/w/index.php?title=PHP
http://en.wikipedia.org/w/index.php?title=Perl
http://en.wikipedia.org/w/index.php?title=Perl_6
http://en.wikipedia.org/w/index.php?title=Ruby_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Scala_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Seed7
http://en.wikipedia.org/w/index.php?title=Smalltalk
http://en.wikipedia.org/w/index.php?title=Windows_PowerShell
http://en.wikipedia.org/w/index.php?title=Windows_PowerShell
http://en.wikipedia.org/w/index.php?title=OCaml
http://en.wikipedia.org/w/index.php?title=F_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Standard_ML
http://en.wikipedia.org/w/index.php?title=Haskell_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Glasgow_Haskell_Compiler
http://en.wikipedia.org/w/index.php?title=Eiffel_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=COBOL
http://en.wikipedia.org/w/index.php?title=Mathematica
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Stdint.h
http://en.wikipedia.org/w/index.php?title=C_syntax%23Integral_types
http://en.wikipedia.org/w/index.php?title=ALGOL_68G

Comparison of programming languages 18

required "number" significant digits. The standard constants long long int width and long long max
int can be used to determine actual precision.
^h COBOL allows the specification of a required precision and will automatically select an available type capable of
representing the specified precision. "PIC S9999", for example, would required a signed variable of four decimal
digits precision. If specified as a binary field, this would select a 16 bit signed type on most platforms.
^i Smalltalk automatically chooses an appropriate representation for integral numbers. Typically, two
representations are present, one for integers fitting the native word size minus any tag bit (SmallInteger) and one
supporting arbitrary sized integers (LargeInteger). Arithmetic operations support polymorphic arguments and return
the result in the most appropriate compact representation.
^j Ada range types are checked for boundary violations at run-time (as well as at compile-time for static
expressions). Run time boundary violations raise a "constraint error" exception. Ranges are not restricted to powers
of two. Commonly predefined Integer subtypes are: Positive (range 1 .. Integer'Last) and Natural
(range 0 .. Integer'Last). Short_Short_Integer (8 bit), Short_Integer (16 bit) and
Long_Integer (64 bit) are also commonly predefined, but not required by the Ada standard. Run time checks can
be disabled if performance is more important than integrity checks.
^k Ada modulo types implement modulo arithmetic in all operations, i.e. no range violations are possible. Modulos
are not restricted to powers of two.
^l Commonly used for characters like Java's char.
^m int in PHP has the same width as long type in C has on that system [c].

Floating point

Single precision Double precision Processor dependent

Ada Float Long_Float N/A

ALGOL 68 real[a] long real[a] short real, long long real, etc.[d]

C float[b] double long double[f]

Objective-C

C++ (STL)

C# float

N/AJava

Go float32 float64

D float double real

Common Lisp

Scheme

ISLISP

Pascal (Free Pascal) single double real

Visual Basic Single Double

N/AVisual Basic .NET

Xojo

Python
N/A

float

JavaScript Number
[6] N/A

S-Lang

Fortran REAL(KIND = n)[c]

http://en.wikipedia.org/w/index.php?title=COBOL
http://en.wikipedia.org/w/index.php?title=Smalltalk
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Floating_point
http://en.wikipedia.org/w/index.php?title=Single_precision
http://en.wikipedia.org/w/index.php?title=Double_precision
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29

Comparison of programming languages 19

PHP float

Perl

Perl 6 num32 num64 Num

Ruby N/A Float

N/A
Scala Float Double

Seed7 N/A float

Smalltalk Float Double

Windows PowerShell

OCaml N/A float

N/AF# float32

Standard ML N/A real

Haskell (GHC) Float Double

Eiffel REAL_32 REAL_64

COBOL FLOAT-BINARY-7[e] FLOAT-BINARY-34[e] FLOAT-SHORT, FLOAT-LONG, FLOAT-EXTENDED

Mathematica N/A N/A Real

^a The standard constants real shorts and real lengths can be used to determine how many 'short's
and 'long's can be usefully prefixed to 'short real' and 'long real'. The actually size of the 'short real',
'real' and 'long real' is available as constants short max real, max real and long max real etc.
With the constants short small real, small real and long small real available for each type's
machine epsilon.
^b declarations of single precision often are not honored
^c The value of "n" is provided by the SELECTED_REAL_KIND[7] intrinsic function.
^d ALGOL 68G's run time option --precision "number" can set precision for long long reals to the
required "number" significant digits. The standard constants long long real width and 'long long max
real can be used to determine actual precision.
^e These IEEE floating-point types will be introduced in the next COBOL standard.
^f Same size as 'double' on many implementations.

Complex numbers

Integer Single precision Double precision Half and Quadruple precision etc.

Ada N/A Complex[b] Complex[b] Complex[b]

ALGOL 68
N/A

compl long compl etc. short compl etc. & long long
compl etc.

C (C99) [8] N/A float complex double complex

N/A

C++ (STL) N/A std::complex<float> std::complex<double>

C#
N/A N/A

System.Numerics.Complex

(.Net 4.0)

Java N/A N/A N/A

Go N/A complex64 complex128

D N/A cfloat cdouble

http://en.wikipedia.org/w/index.php?title=Machine_epsilon
http://en.wikipedia.org/w/index.php?title=ALGOL_68G
http://en.wikipedia.org/w/index.php?title=Complex_number
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29

Comparison of programming languages 20

Objective-C N/A N/A N/A

Common Lisp

Scheme

Pascal N/A N/A

Visual Basic N/A N/A

Visual Basic .NET
N/A N/A

System.Numerics.Complex

(.Net 4.0)

Perl Math::Complex

Perl 6 complex64 complex128 Complex

Python complex

N/A

JavaScript N/A N/A

S-Lang N/A N/A

Fortran COMPLEX(KIND = n)[a]

Ruby Complex N/A Complex

Scala N/A N/A N/A

Seed7 N/A N/A complex

Smalltalk Complex Complex Complex

Windows
PowerShell

N/A N/A

OCaml N/A N/A Complex.t

F# System.Numerics.Complex

(.Net 4.0)

Standard ML N/A N/A N/A

Haskell (GHC)
N/A

Complex.Complex

Float

Complex.Complex Double

Eiffel N/A N/A N/A

COBOL N/A N/A N/A

Mathematica Complex N/A N/A Complex

^a The value of "n" is provided by the SELECTED_REAL_KIND intrinsic function.
^b Generic type which can be instantiated with any base floating point type.

Other variable types

Comparison of programming languages 21

Text Boolean Enumeration Object/Universal

Character String[a]

Ada Character String &

Bounded_String

&

Unbounded_String

Boolean (item
1
, item

2
, ...) tagged null record

ALGOL 68 char string & bytes bool & bits N/A - User defined [9] N/A

C (C99) char

wchar_t

N/A bool[b] enum «name» {item
1
, item

2
,

... };

void *

C++ (STL) «std::»string

Objective-C unichar NSString * BOOL id

C# char string bool enum name {item
1
, item

2
,

... }

object

Java String boolean Object

Go rune string bool const (

item
1
= iotaitem

2

...

)

interface{}

D char string bool enum name {item
1
, item

2
,

... }

std.variant.Variant

Common
Lisp

Scheme

ISLISP

Pascal (ISO) char N/A boolean (item
1
, item

2
, ...) N/A

Object
Pascal
(Delphi)

string variant

Visual Basic N/A String Boolean Enum name item1 item2 ... End
Enum

Variant

Visual Basic
.NET

Char Object

Xojo N/A Object or Variant

Python N/A[d] str bool object

JavaScript N/A[d] String Boolean Object

S-Lang

Fortran CHARACTER(LEN

= *)

CHARACTER(LEN =

:), allocatable
LOGICAL(KIND

= n)[f]

CLASS(*)

PHP N/A[d] string bool object

Perl N/A[d]

Perl 6 Char Str Bool enum name <item
1
item

2
...>

or

enum name

<<:item
1
(value):item

2
(value)

...>>

Mu

http://en.wikipedia.org/w/index.php?title=Boolean_datatype
http://en.wikipedia.org/w/index.php?title=Enumerated_type
http://en.wikipedia.org/w/index.php?title=Object_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Top_type
http://en.wikipedia.org/w/index.php?title=Character_%28computing%29
http://en.wikipedia.org/w/index.php?title=String_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://rosettacode.org/wiki/Enumerations#ALGOL_68
http://en.wikipedia.org/w/index.php?title=Void_type
http://en.wikipedia.org/w/index.php?title=Pointer_%28computer_programming%29
http://en.wikipedia.org/w/index.php?title=Std::string
http://en.wikipedia.org/w/index.php?title=Variant_type

Comparison of programming languages 22

Ruby N/A[d] String Object[c] Object

Scala Char String Boolean object name extends

Enumeration {val item1, item2, ...
= Value}

Any

Seed7 char string boolean const type: name is new

enum

item
1
,

item
2
, ...

end enum;

Windows
PowerShell

OCaml char string bool N/A[e] N/A

F# type name = item
1
= value |

item
2
= value | ...

obj

Standard
ML N/A[e] N/A

Haskell
(GHC)

Char String Bool
N/A[e] N/A

Eiffel CHARACTER STRING BOOLEAN N/A ANY

COBOL PIC X PIC X(string

length) or

PIC X«X...»

PIC

1«(number

of digits)»

or

PIC 1«1...»

N/A

OBJECT REFERENCE

Mathematica N/A[d] String N/A

^a specifically, strings of arbitrary length and automatically managed.
^b This language represents a boolean as an integer where false is represented as a value of zero and true by a
non-zero value.
^c All values evaluate to either true or false. Everything in TrueClass evaluates to true and everything in
FalseClass evaluates to false.
^d This language does not have a separate character type. Characters are represented as strings of length 1.
^e Enumerations in this language are algebraic types with only nullary constructors
^f The value of "n" is provided by the SELECTED_INT_KIND intrinsic function.

Derived types

Array
Further information: Comparison of programming languages (array)

http://en.wikipedia.org/w/index.php?title=Array_data_type
http://en.wikipedia.org/w/index.php?title=Comparison_of_programming_languages_%28array%29

Comparison of programming languages 23

fixed size array dynamic size array

one-dimensional array multi-dimensional array one-dimensional array multi-dimensional array

Ada array (<first> .. <last>)

of <type>

or

array (<discrete_type>) of <type>

array (<first
1
> .. <last

1
>, <first

2
> ..

<last
2
>, ...) of <type>

or

array (<discrete_type
1
>, <discrete_type

2
>,

...) of <type>

array (<discrete_type> range <>) of <type> array (<discrete_type
1
> range <>, <discrete_type

2
> range

<>, ...) of <type>

ALGOL 68 [first:last]<wbr/>«modename»

or simply:

[size]<wbr/>«modename»

[first
1
:last

1
,

first
2
:last

2
]<wbr/>«modename»

or

[first
1
:last

1
][first

2
:last

2
]<wbr/>«modename»

etc.

flex[first:last]<wbr/>«modename»

or simply:

flex[size]<wbr/>«modename»

flex[first
1
:last

1
, first

2
:last

2
]<wbr/>«modename»

or

flex[first
1
:last

1
]<wbr/>flex[first

2
:last

2
]<wbr/>«modename»

etc.

C (C99)
type name[size][a] type name[size

1
][size

2
][a]

type *name

or within a block:

int n = ...; type name[n]

C++ (STL) «std::»array<type,

size>(C++11)

«std::»vector<type>

C# type[] type[,,...] System<wbr/>.Collections<wbr/>.ArrayList

or

System<wbr/>.Collections<wbr/>.Generic<wbr/>.List<wbr/><type>

Java
type[][b] type[][]...[b]

ArrayList or ArrayList<type>

D type[size] type[size
1
][size

2
] type[]

Go [size]type [size
1
][size

2
]...type []type [][]type

Objective-C NSArray NSMutableArray

JavaScript N/A N/A Array[d]

Common

Lisp

Scheme

ISLISP

Pascal
array[first..last] of type[c] array[first

1
..last

1
] of

array[first
2
..last

2
] ... of type [c]

or

array[first
1
..last

1
, first

2
..last

2
, ...] of

type [c]

N/A N/A

Object

Pascal

(Delphi)

array of type array of array ... of type

Visual

Basic

Visual

Basic .NET

System<wbr/>.Collections<wbr/>.ArrayList

or

System<wbr/>.Collections<wbr/>.Generic<wbr/>.List<wbr/>(Of

type)

Python list

S-Lang

Fortran type :: name(size) type :: name(size
1
, size

2
,...) type, ALLOCATABLE :: name(:) type, ALLOCATABLE :: name(:,:,...)

PHP array

Perl

Perl 6 Array[type] or Array of type

http://en.wikipedia.org/w/index.php?title=Array_data_structure
http://en.wikipedia.org/w/index.php?title=Array_data_structure
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Std::array
http://en.wikipedia.org/w/index.php?title=Std::vector

Comparison of programming languages 24

Ruby Array

Scala Array[type] Array[...[Array[type]]...] ArrayBuffer[type]

Seed7 array type

or

array [idxType] type

array array type

or

array [idxType] array [idxType] type

array type

or

array [idxType] type

array array type

or

array [idxType] array [idxType] type

Smalltalk Array OrderedCollection

Windows

PowerShell

type[] type[,,...]

OCaml type array type array ... array

F# type [] or type array type [,,...] System<wbr/>.Collections<wbr/>.ArrayList

or

System<wbr/>.Collections<wbr/>.Generic<wbr/>.List<wbr/><type>

Standard

ML

type vector or type array

Haskell

(GHC)

COBOL level-number type OCCURS

size «TIMES».

one-dimensional array definition...
level-number type OCCURS min-size TO max-size «TIMES»

DEPENDING «ON» size.[e]

N/A

^a In most expressions (except the sizeof and & operators), values of array types in C are automatically
converted to a pointer of its first argument. See C syntax#Arrays for further details of syntax and pointer operations.
^b The C-like "type x[]" works in Java, however "type[] x" is the preferred form of array declaration.
^c Subranges are used to define the bounds of the array.
^d JavaScript's array are a special kind of object.
^e The DEPENDING ON clause in COBOL does not create a 'true' variable length array and will always allocate
the maximum size of the array.

Other types

Simple composite types Algebraic data types Unions

Records Tuple expression

http://en.wikipedia.org/w/index.php?title=C_syntax%23Arrays
http://en.wikipedia.org/w/index.php?title=Algebraic_data_type
http://en.wikipedia.org/w/index.php?title=Union_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Record_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Tuple

Comparison of programming languages 25

Ada type identifier is «abstract» «tagged»

«limited» [record

fieldname
1
 : type;

fieldname
2
 : type;

...

end record | null record]

N/A

Any combination of records, unions and
enumerations (as well as references to those,
enabling recursive types).

type identifier

(variation :

discrete_type) is record

case variation is

when

choice_list
1

=>

fieldname
1

: type;

...

when

choice_list
2

=>

fieldname
2

: type;

...

...

end case;

end record

ALGOL 68 struct (modename «fieldname», ...); Required types and operators can be user defined union (modename, ...);

C (C99) struct «name» {type name;...};
N/A

N/A

union {type name;...};

Objective-C

C++ struct «name» {type name;...};
[b] «std::»tuple<type

1
..type

n
>

C# struct name {type name;...}

N/AJava N/A[a]

JavaScript N/A

D struct name {type name;...} std.variant.Algebraic!(type,...) union {type name;...}

Go struct {«name» type...}

Common
Lisp

(cons val
1
val

2
)
[c]

Scheme N/A

ISLISP

Pascal record

name: type;...

end
N/A N/A

record

case type of

value: (types);...

end

Visual
Basic

Visual
Basic .NET

Structure name

Dim name As type

...

End Structure

Python
N/A[a] «(»val

1
, val

2
, val

3
, ...

«)»
N/A

S-Lang struct {name [=value], ...}

http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=User-defined_function
http://en.wikipedia.org/w/index.php?title=C%2B%2B11%23Tuple_types

Comparison of programming languages 26

Fortran TYPE name

type :: name
...

END TYPE

PHP N/A[a]

Perl N/A[d]

N/A
Perl 6 N/A[a]

Ruby OpenStruct.new({:name
=> value})

Scala case class name(«var» name: type, ...) (val
1
, val

2
, val

3
, ...) abstract class name

case class Foo(«parameters»)

extends name

case class Bar(«parameters»)

extends name

...

or
abstract class name

case object Foo extends name

case object Bar extends name

...

or combination of case classes and case objects

Windows
PowerShell

OCaml type name = {«mutable» name : type;...} «(»val
1
, val

2
, val

3
, ...

«)»

type name = Foo «of type» | Bar

«of type» | ...

N/A

F#

Standard
ML

type name = {name : type,...} (val
1
, val

2
, val

3
, ...) datatype name = Foo «of type» |

Bar «of type» | ...

Haskell data Name = Constr {name :: type,...} data Name = Foo «types» | Bar

«types» | ...

COBOL level-number name type clauses.

 level-number+n name type clauses.

 ...

N/A N/A
name REDEFINES variable

type.

^a Only classes are supported.
^b structs in C++ are actually classes, but have default public visibility and are also POD objects. C++11
extended this further, to make classes act identically to POD objects in many more cases.
^c pair only
^d Although Perl doesn't have records, because Perl's type system allows different data types to be in an array,
"hashes" (associative arrays) that don't have a variable index would effectively be the same as records.
^e Enumerations in this language are algebraic types with only nullary constructors

http://en.wikipedia.org/w/index.php?title=Plain_old_data_structure

Comparison of programming languages 27

Variable and constant declarations

variable constant type synonym

Ada identifier : type «:=

initial_value»[e]

identifier : constant

type := final_value

subtype identifier is

type

ALGOL 68 modename name «:= initial_value»; modename name = value; mode synonym = modename;

C (C99) type name «= initial_value»; enum{ name = value }; typedef type synonym;

Objective-C

C++ const type name = value;

C# type name «= initial_value»; or

var name = value;

const type name = value;

or

readonly type name =

value;

using synonym = type;

D type name «= initial_value»; or

auto name = value;

const type name = value;

or

immutable type name =

value;

alias type synonym;

Java type name «= initial_value»; final type name = value;
N/A

JavaScript var name «= initial_value»; const name = value;

Go var name type «= initial_value» or

name := initial_value

const name «type» =

initial_value

type synonym type

Common Lisp (defparameter name initial_value)

or

(defvar name initial_value) or

(setf (symbol-value 'symbol)

initial_value)

(defconstant name value) (deftype synonym ()

'type)

Scheme (define name initial_value)

ISLISP (defglobal name initial_value) or

(defdynamic name initial_value)

(defconstant name value)
N/A

Pascal[a] name: type «= initial_value» name = value synonym = type

Visual Basic Dim name As type Const name As type =

value
Visual Basic
.NET

Dim name As type«= initial_value» Imports synonym = type

Xojo Dim name As type«= initial_value» N/A

Python name = initial_value

N/A
synonym = type[b]

CoffeeScript N/A

S-Lang name = initial_value; typedef struct {...}

typename

Fortran type name type, PARAMETER :: name

= value

PHP $name = initial_value; define("name", value);

const name = value

(5.3+) N/A

Perl «my» $name «= initial_value»;[c] use constant name =>

value;

http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=ALGOL_68
http://en.wikipedia.org/w/index.php?title=Typedef
http://en.wikipedia.org/w/index.php?title=Typedef
http://en.wikipedia.org/w/index.php?title=CoffeeScript

Comparison of programming languages 28

Perl 6 «my «type»» $name «=

initial_value»;[c]

«my «type»» constant

name = value;

::synonym ::= type

Ruby name = initial_value Name = value synonym = type[b]

Scala var name«: type» = initial_value val name«: type» = value type synonym = type

Windows
PowerShell

«[type]» $name = initial_value
N/A N/A

Bash shell name=initial_value N/A N/A

OCaml let name «: type ref» = ref value[d] let name «: type» =

value

type synonym = type

F# let mutable name «: type» = value

Standard ML val name «: type ref» = ref value[d] val name «: type» =

value

Haskell «name::type;» name =

value

type Synonym = type

Forth VARIABLE name (in some systems use

value VARIABLE name instead)

value CONSTANT name

COBOL level-number name type clauses. «0»1 name CONSTANT «AS»

value.

level-number name type

clauses «IS» TYPEDEF.

Mathematica name=initialvalue N/A N/A

^a Pascal has declaration blocks. See Comparison of programming languages (basic instructions)#Functions.
^b Types are just regular objects, so you can just assign them.
^c In Perl, the "my" keyword scopes the variable into the block.
^d Technically, this does not declare name to be a mutable variable—in ML, all names can only be bound once;
rather, it declares name to point to a "reference" data structure, which is a simple mutable cell. The data structure can
then be read and written to using the ! and := operators, respectively.
^[e] If no initial value is given, an invalid value is automatically assigned (which will trigger a run-time exception if
it used before a valid value has been assigned). While this behaviour can be suppressed it is recommended in the
interest of predictability. If no invalid value can be found for a type (for example in case of an unconstraint integer
type), a valid, yet predictable value is chosen instead.

Control flow

Conditional statements

if else if select case conditional expression

http://en.wikipedia.org/w/index.php?title=Forth_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Comparison_of_programming_languages_%28basic_instructions%29%23Functions
http://en.wikipedia.org/w/index.php?title=Control_flow
http://en.wikipedia.org/w/index.php?title=Conditional_%28programming%29
http://en.wikipedia.org/w/index.php?title=Switch_statement
http://en.wikipedia.org/w/index.php?title=Conditional_%28programming%29%23If_expressions

Comparison of programming languages 29

Ada if condition then

statements

«else

statements»

end if

if condition
1
 then

statements

elsif condition
2
 then

statements

...

«else

statements»

end if

case expression is

when value_list
1
 => statements

when value_list
2
 => statements

...

«when others => statements»

end case

(if condition
1
 then

expression
1

«elsif condition
2
 then

expression
2
»

...

else

expression
n

)

(case expression is

when value_list
1
 => expression

1

when value_list
2
 => expression

2

...

«when others => expression
n
»

)

Seed7 case expression of

when set1 : statements

...

«otherwise: statements»

end case

Modula-2 if condition then

statements

«else

statements»

end

if condition
1
 then

statements

elsif condition
2
 then

statements

...

«else

statements»

end

case expression of

caseLabelList : statements |

...

«else statements»

end

ALGOL 68

& "brief

form"

if condition then statements «else

statements» fi

if condition then statements elif condition then

statements fi

case switch in statements, statements«,...

out statements» esac

(condition | valueIfTrue | valueIfFalse)

(condition | statements «| statements») (condition | statements |: condition | statements) (variable | statements,... «| statements»)

C (C99) if (condition) {instructions}

«else {instructions}»

if (condition) {instructions}

else if (condition) {instructions}

...

«else {instructions}»

switch (variable) {case case1: instructions

«break;»...«default: instructions»}

condition ? valueIfTrue : valueIfFalse

Objective-C

C++ (STL)

D

Java

JavaScript

PHP

C# switch (variable) {case case1: instructions; «jump

statement;»...«default: instructions; «jump statement;»» }

Windows

PowerShell

if (condition) { instructions }

elseif (condition) { instructions }

...

«else { instructions }»

switch (variable) { case1 { instructions

«break;» } ... «default { instructions }»}

http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Seed7
http://en.wikipedia.org/w/index.php?title=Modula-2
http://en.wikipedia.org/w/index.php?title=ALGOL_68
http://en.wikipedia.org/w/index.php?title=%3F:
http://en.wikipedia.org/w/index.php?title=%3F:

Comparison of programming languages 30

Go if condition {instructions}

«else {instructions}»

if condition {instructions}

else if condition {instructions}

...

«else {instructions}»

or

switch {case condition: instructions ...«default: instructions»}

switch variable {case case1: instructions ...«default:

instructions»}

Perl if (condition) {instructions}

«else {instructions}»

or

unless (notcondition) {instructions}

«else {instructions}»

if (condition) {instructions}

elsif (condition) {instructions}

...

«else {instructions}»

or

unless (notcondition) {instructions}

elsif (condition) {instructions}

...

«else {instructions}»

use feature "switch";

...

given (variable) {when (case1) { instructions

}...«default { instructions }»}

condition ? valueIfTrue : valueIfFalse

Perl 6 if condition {instructions}

«else {instructions}»

or

unless notcondition {instructions}

if condition {instructions}

elsif condition {instructions}

...

«else {instructions}

given variable {when case1 { instructions }...«default {

instructions }»}

condition ?? valueIfTrue !! valueIfFalse

Ruby if condition

instructions

«else

instructions»

if condition

instructions

elsif condition

instructions

...

«else

instructions»

end

case variable

when case1

instructions

...

«else

instructions»

end

condition ? valueIfTrue : valueIfFalse

Scala if (condition) {instructions}

«else {instructions}»

if (condition) {instructions}

else if (condition) {instructions}

...

«else {instructions}»

expression match {

case pattern1 => expression

case pattern2 => expression

...

«case _ => expression»

}[b]

if (condition) valueIfTrue else

valueIfFalse

Smalltalk condition ifTrue:

trueBlock

«ifFalse:

falseBlock»

end

condition ifTrue: trueBlock ifFalse:

falseBlock

Common

Lisp

(when condition

instructions)

or

(unless condition

instructions)

or

(if condition(progn instructions)«(progn

instructions)»)

(cond (condition1 instructions)

(condition2 instructions)...«(t instructions)»)

(case expression(case1 instructions)(case2

instructions)...«(otherwise instructions)»)

(if condition valueIfTrue valueIfFalse)

Scheme (when conditioninstructions) or

(if condition (begin instructions)

«(begin instructions)»)

(cond (condition1 instructions) (condition2

instructions) ...«(else instructions)»)

(case (variable) ((case1) instructions)

((case2) instructions) ...«(else

instructions)»)

http://en.wikipedia.org/w/index.php?title=%3F:
http://en.wikipedia.org/w/index.php?title=%3F:
http://en.wikipedia.org/w/index.php?title=%3F:
http://en.wikipedia.org/w/index.php?title=%3F:
http://en.wikipedia.org/w/index.php?title=%3F:

Comparison of programming languages 31

ISLISP (if condition(progn instructions)«(progn

instructions)»)

(cond (condition1 instructions)

(condition2 instructions)...«(t instructions)»)

(case expression(case1 instructions)(case2

instructions)...«(t instructions)»)

(if condition valueIfTrue valueIfFalse)

Pascal
if condition then begin

instructions

end

«else begin

instructions

end»[c]

if condition then begin

instructions

end

else if condition then begin

instructions

end

...

«else begin

instructions

end»[c]

case variable of

case1: instructions

...

«else: instructions»

end[c]

Visual

Basic

If condition Then

instructions

«Else

instructions»

End If

If condition Then

instructions

ElseIf condition Then

instructions

...

«Else

instructions»

End If

Select Case variable

Case case1

instructions

...

«Case Else

instructions»

End Select

IIf(condition, valueIfTrue, valueIfFalse)

Visual

Basic .NET

If(condition, valueIfTrue, valueIfFalse)

Xojo

Python [a] if condition :

Tab ↹ instructions
«else:

Tab ↹ instructions»

if condition :

Tab ↹ instructions
elif condition :

Tab ↹ instructions
...

«else:

Tab ↹ instructions»

valueIfTrue if condition else

valueIfFalse

(Python 2.5+)

S-Lang if (condition) { instructions } «else {

instructions }»

if (condition) { instructions } else if (condition)

{ instructions } ... «else { instructions }»

switch (variable) { case case1:

instructions } { case case2: instructions }

...

Fortran IF (condition) THEN instructions ELSE

instructions ENDIF

IF (condition) THEN instructions ELSEIF (condition) THEN

instructions ...

ELSE instructions ENDIF

SELECT CASE(variable) CASE (case1) instructions ...

CASE DEFAULT instructions END SELECT

Forth condition IF instructions « ELSE

instructions» THEN

condition IF instructions ELSE condition IF

instructions THEN THEN

value CASE

case OF instructions ENDOF

case OF instructions ENDOF

 default instructions

ENDCASE

condition IF valueIfTrue ELSE

valueIfFalse THEN

http://en.wikipedia.org/w/index.php?title=IIf

Comparison of programming languages 32

OCaml if condition then begin instructions end

«else begin instructions end»

if condition then begin instructions end else if

condition then begin instructions end ... «else

begin instructions end»

match value with pattern1 -> expression| pattern2 ->

expression ... «| _ -> expression»#endnote_pattern

matching[b]

if condition then valueIfTrue else

valueIfFalse

F# if condition then

Tab ↹ instructions
«else

Tab ↹ instructions»

if condition then

Tab ↹ instructions
elif condition then

Tab ↹ instructions
...

«else

Tab ↹ instructions»

Standard

ML

if condition then «(»instructions «)»

else «(» instructions «)»

if condition then «(»instructions «)»

else if condition then «(» instructions «)»

...

else «(» instructions «)»

case value ofpattern1 => expression | pattern2 =>

expression ... «| _ => expression»#endnote_pattern

matching[b]

Haskell

(GHC)

if condition then expression else

expression

or

when condition (do instructions)

or

unless notcondition (do instructions)

result | condition = expression

| condition = expression

| otherwise = expression

case value of {pattern1 -> expression;pattern2

->expression; ... «_ -> expression»}[b]

Bash shell if condition-command; then

expression

«else

expression»

fi

if condition-command; then

expression

elif condition-command; then

expression

«else

expression»

fi

case "$variable" in

"$condition1")

command...

"$condition2")

command...

esac

CoffeeScript if condition then expression «else

expression»

if condition then expression else if condition then

expression «else expression»

switch expression

when condition then expression

else expression

All conditions are expressions

if condition

expression

«else

expression»

if condition

expression

else if condition

expression

«else

expression»

expression if condition unless condition

expression

else unless condition

expression

«else

expression»

switch expression

when condition

expression

«else

expression»

unless condition

expression

«else

expression»

expression unless condition

COBOL
IF condition «THEN»

expression

«ELSE

expression».

[d]

EVALUATE expression «ALSO expression...»

WHEN case-or-condition «ALSO

case-or-condition...»

expression

...

«WHEN OTHER

expression»

END-EVALUATE

Comparison of programming languages 33

if else if select case conditional expression

^a A single instruction can be written on the same line following the colon. Multiple instructions are grouped
together in a block which starts on a newline (The indentation is required). The conditional expression syntax does
not follow this rule.
^b This is pattern matching and is similar to select case but not the same. It is usually used to deconstruct algebraic
data types.
^c In languages of the Pascal family, the semicolon is not part of the statement. It is a separator between statements,
not a terminator.
^d END-IF may be used instead of the period at the end.

Loop statements

while do while for i = first to last foreach

Ada while condition loop

statements

end loop

loop

statements

exit when not

condition

end loop

for index in

«reverse» [first ..

last |

discrete_type] loop

statements

end loop

for item of «reverse»

iterator loop

statements

end loop

(for [all | some] [in

| of] [first .. last |

discrete_type |

iterator] =>

predicate)[b]

ALGOL 68 «for index» «from first» «by increment» «to last» «while

condition» do statements od

for key «to upb list»
do «typename

val=list[key];»

statements od
«while condition» do
statements od

«while statements;

condition» do
statements od

«for index» «from

first» «by

increment» «to last»

do statements od

http://en.wikipedia.org/w/index.php?title=Switch_statement
http://en.wikipedia.org/w/index.php?title=Conditional_%28programming%29%23If_expressions
http://en.wikipedia.org/w/index.php?title=Block_%28programming%29
http://en.wikipedia.org/w/index.php?title=Pattern_matching
http://en.wikipedia.org/w/index.php?title=Algebraic_data_type
http://en.wikipedia.org/w/index.php?title=Algebraic_data_type
http://en.wikipedia.org/w/index.php?title=Control_flow%23Loops
http://en.wikipedia.org/w/index.php?title=While_loop
http://en.wikipedia.org/w/index.php?title=Do_while_loop
http://en.wikipedia.org/w/index.php?title=For_loop
http://en.wikipedia.org/w/index.php?title=Foreach
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=ALGOL_68

Comparison of programming languages 34

C (C99) while (condition) {
instructions }

do { instructions }

while (condition)

for («type» i =

first; i <= last;

++i) { instructions

}

N/A

Objective-C for (type item in set)

{ instructions }

C++ (STL) «std::»for_each(start,

end, function) (C++11)
for (type item : set)

{ instructions }

C# foreach (type item in

set) { instructions }

Java for (type item : set)

{ instructions }

JavaScript for (var i = first;

i <= last; i++) {

instructions }

for (var index in set)

{ instructions }

or

for each (var item in

set) { instructions }

(JS 1.6+, deprecated[10])
or
for (var item of set)

{ instructions }

(EcmaScript 6 proposal,
supported in Firefox[11])

PHP foreach

(range(first,

last-1) as $i) {

instructions } or

for ($i = first; $i

<= last; $i++) {

instructions }

foreach (set as item)

{ instructions }

or

foreach (set as key =>

item) { instructions }

Windows
PowerShell

for ($i = first; $i

-le last; $i++) {

instructions }

foreach (item in set)

{ instructions using

item }

D foreach (i; first

... last) {

instructions }

foreach («type» item;

set) { instructions }

Go for condition {

instructions }

for i := first; i <=

last; i++ {

instructions }

for key, item := range

set { instructions }

Perl while (condition) {
instructions } or

until (notcondition) {
instructions }

do { instructions }

while (condition)

or

do { instructions }

until

(notcondition)

for«each»«$i» (0 ..

N-1) { instructions

} or

for ($i = first; $i

<= last; $i++) {

instructions }

for«each» «$item»

(set) { instructions }

Perl 6 while condition {

instructions } or

until notcondition {

instructions }

repeat {

instructions }

while condition or

repeat {

instructions }

until notcondition

for first..last ->

$i { instructions }

or

loop ($i = first; $i

<=last; $i++) {

instructions }

for set« -> $item» {

instructions }

http://en.wikipedia.org/w/index.php?title=C%2B%2B11
http://en.wikipedia.org/w/index.php?title=EcmaScript_6

Comparison of programming languages 35

Ruby while condition

instructions

end

or

until notcondition

instructions

end

begin

instructions

end while condition

or

begin

instructions

end until

notcondition

for i in

first...last

instructions

end

or

first.upto(last-1) {

|i| instructions }

for item in set

instructions

end

or

set.each { |item|

instructions }

Bash shell while condition ;do

instructions

done

or

until notcondition ;do

instructions

done

N/A

for ((i = first; i

<= last; ++i)) ; do

instructions

done

for item in set ;do

instructions

done

Scala while (condition) {
instructions }

do { instructions }

while (condition)

for (i <- first to

last «by 1») {

instructions }

or

first to last «by 1»

foreach (i => {

instructions })

for (item <- set) {

instructions }

or

set foreach (item => {

instructions })

Smalltalk conditionBlock

whileTrue:

loopBlock

loopBlock doWhile:

conditionBlock

first to: last do:

loopBlock

collection do:

loopBlock

Common
Lisp

(loopwhile
conditiondoinstructions) or
(do () (notcondition)

instructions)

(loopdoinstructionswhile
condition)

(loopfor i from first to last
«by 1»doinstructions) or
(dotimes (i

N)instructions) or
(do ((i first (1+

i))) ((>= i last))

instructions)

(loopfor item in
setdoinstructions) or
(dolist (item set)

instructions)

or

(mapc function list)

or

(map 'type function

sequence)

Scheme (do () (notcondition)

instructions) or

(let loop () (if

condition (begin

instructions (loop))))

(let loop ()

(instructions (if

condition (loop))))

(do ((i first (+ i

1))) ((>= i last))

instructions) or

(let loop ((i

first)) (if (< i

last) (begin

instructions (loop

(+ i 1)))))

(for-each (lambda

(item) instructions)

list)

ISLISP (while

conditioninstructions)

(tagbody loop

instructions (if

condition (go

loop))

(for ((i first (+ i

1))) ((>= i last))

instructions)

(mapc (lambda (item)

instructions) list)

Pascal while condition do

begin

instructions

end

repeat

instructions

until notcondition;

for i := first «step

1» to last do begin

instructions

end;[a]

for item in set do ...

Comparison of programming languages 36

Visual Basic Do While condition

instructions

Loop

or

Do Until notcondition

instructions

Loop

Do

instructions

Loop While

condition

or

Do

instructions

Loop Until

notcondition

For i = first To

last «Step 1»

instructions

Next i

For Each item In set

instructions

Next item

Visual Basic
.NET

For i «As type» =

first To last «Step

1»

instructions

Next i[a]

For Each item As type

In set

instructions

Next item
Xojo While condition

instructions

Wend

Do Until

notcondition

instructions

Loop

or

Do

instructions

Loop Until

notcondition

Python while condition :

Tab ↹ instructions
«else:

Tab ↹ instructions»

N/A

for i in

range(first, last):

Tab ↹ instructions
«else:

Tab ↹
instructions»(Python
3.x)
for i in

xrange(first, last):

Tab ↹ instructions
«else:

Tab

↹instructions»(Python
2.x)

for item in set:

Tab ↹ instructions
«else:

Tab ↹ instructions»

S-Lang while (condition) {

instructions } «then

optional-block»

do { instructions }

while (condition)

«then

optional-block»

for (i = first; i <

last; i++) {

instructions } «then

optional-block»

foreach item(set)

«using (what)» {

instructions } «then

optional-block»

Fortran DO WHILE (condition)

instructions ENDDO
DO instructions IF
(condition) EXIT ENDDO

DO I = first,last

instructions ENDDO
N/A

Forth BEGIN « instructions »

condition WHILE

instructions REPEAT

BEGIN instructions

condition UNTIL

limit start DO

instructions LOOP N/A

OCaml while condition do

instructions done
N/A

for i = first to

last-1 do

instructions done

Array.iter (fun item

-> instructions) array

List.iter (fun item ->

instructions) list

F# while condition do

Tab ↹ instructions
N/A

for i = first to

last-1 do

Tab ↹ instructions

for item in set do

Tab ↹ instructions
or

Seq.iter (fun item ->

instructions) set

Comparison of programming languages 37

Standard
ML

while condition do (

instructions)
N/A

Array.app (fn item =>

instructions) array

app (fn item =>

instructions) list

Haskell
(GHC) N/A

Control.Monad.forM_

[0..N-1] (\i -> do

instructions)

Control.Monad.forM_

list (\item -> do

instructions)

Eiffel from

setup

until

condition

loop

instructions

end

CoffeeScript while condition

expression

N/A

for i in

[first..last]

expression

for item in set

expression

expression while

condition

while condition then

expression

until condition

expression

expression until

condition

for i in

[first..last] then

expression

for item in set then

expression

until condition then

expression

expression for i in

[first..last]

expression for item in

set

COBOL PERFORM procedure-1

«THROUGH procedure-2»

««WITH» TEST BEFORE»

UNTIL condition
[c]

PERFORM procedure-1

«THROUGH

procedure-2» «WITH»

TEST AFTER UNTIL

condition[c]

PERFORM procedure-1

«THROUGH

procedure-2» VARYING

i FROM first BY

increment UNTIL i >

last[d]

N/A
PERFORM ««WITH» TEST

BEFORE» UNTIL

condition

expression

END-PERFORM

PERFORM «WITH» TEST

AFTER UNTIL

condition

expression

END-PERFORM

PERFORM VARYING i

FROM first BY

increment UNTIL i >

last

expression

END-PERFORM[d]

^a "step n" is used to change the loop interval. If "step" is omitted, then the loop interval is 1.
^b This implements the universal quantifier ("for all" or "∀") as well as the existential quantifier ("there exists" or
"∃").
^c THRU may be used instead of THROUGH.
^d «IS» GREATER «THAN» may be used instead of >.

Comparison of programming languages 38

Exceptions
Further information: Exception handling syntax

throw handler assertion

Ada raise exception_name «with

string_expression»
begin

statements

exception

when exception_list
1
 => statements;

when exception_list
2
 => statements;

...

«when others => statements;»

end[b]

pragma Assert («Check =>»

boolean_expression

««Message =>»

string_expression»)

[function | procedure |

entry] with

Pre =>

boolean_expression

Post =>

boolean_expression

any_type with

Type_Invariant =>

boolean_expression

C (C99) longjmp(state, exception); switch (setjmp(state)) { case 0:

instructions break; case exception:

instructions ... }

assert(condition);

C++ throw exception; try { instructions } catch «(exception)» {

instructions } ...

C# try { instructions } catch «(exception)» {

instructions } ... «finally { instructions

}»

Debug.Assert(condition);

Java try { instructions } catch (exception) {

instructions } ... «finally { instructions

}»

assert condition;

JavaScript try { instructions } catch (exception) {

instructions } «finally { instructions }»

?

D try { instructions } catch (exception) {

instructions } ... «finally { instructions

}»

assert(condition);

PHP try { instructions } catch (exception) {

instructions } «finally { instructions }»

assert(condition);

S-Lang try { instructions } catch «exception» {

instructions } ... «finally { instructions

}»

?

Windows
PowerShell

trap «[exception]» { instructions } ...

instructions or try { instructions } catch

«[exception]» { instructions } ...

«finally { instructions }»

[Debug]::Assert(condition)

Objective-C @throw exception; @try { instructions } @catch (exception) {

instructions } ... «@finally {

instructions }»

NSAssert(condition,

description);

Perl die exception; eval { instructions }; if ($@) {

instructions }

?

Perl 6 try { instructions CATCH { when exception

{ instructions } ...}}

?

http://en.wikipedia.org/w/index.php?title=Exception_handling
http://en.wikipedia.org/w/index.php?title=Exception_handling_syntax
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Longjmp
http://en.wikipedia.org/w/index.php?title=Setjmp

Comparison of programming languages 39

Ruby raise exception begin

instructions

rescue exception

instructions

...

«else

instructions»

«ensure

instructions»

end

Smalltalk exception raise instructionBlock on: exception do:

handlerBlock

assert: conditionBlock

Common
Lisp

(error "exception") or

(error

(make-conditiontypearguments))

(handler-case(progn instructions)(exception
instructions)...) or
(handler-bind

(condition (lambdainstructions«invoke-restart
restart args»))...)[a]

(assert condition) or

(assert condition

«(place)

«error»»)

or

(check-type var type)

Scheme
(R6RS)

(raise exception) (guard (con (conditioninstructions) ...)

instructions)

?

ISLISP (error "error-string"

objects) or

(signal-condition

condition continuable)

(with-handlerhandler form*) ?

Pascal raise Exception.Create() try Except on E: exception do begin

instructions end; end;

?

Comparison of programming languages 40

Visual
Basic

Err.Raise ERRORNUMBER With New Try: On Error Resume Next

OneInstruction

.Catch: On Error GoTo 0: Select Case

.Number

Case ERRORNUMBER

instructions

End Select: End With

'*** Try class ***

Private mstrDescription As String

Private mlngNumber As Long

Public Sub Catch()

mstrDescription = Err.Description

mlngNumber = Err.Number

End Sub

Public Property Get Number() As Long

Number = mlngNumber

End Property

Public Property Get Description() As String

Description = mstrDescription

End Property

[12]

Debug.Assert condition

Visual
Basic .NET

Throw exception Try

instructions

Catch «exception» «When condition»

instructions

...

«Finally

instructions»

End Try

Debug.Assert(condition)

Xojo Raise exception Try

instructions

Catch «exception»

instructions

...

«Finally

instructions»

End Try

N/A

Comparison of programming languages 41

Python raise exception try:

Tab ↹ instructions
except «exception»:

Tab ↹ instructions
...

«else:

Tab ↹ instructions»
«finally:

Tab ↹ instructions»

assert condition

Fortran N/A

Forth code THROW xt CATCH (code or 0) N/A

OCaml raise exception try expression with pattern -> expression

...

assert condition

F# try expression with pattern -> expression

...

or

try expression finally expression

Standard
ML

raise exception «arg» expression handle pattern => expression

...

Haskell
(GHC)

throw exception

or

throwError expression

catch tryExpression catchExpression

or

catchError tryExpression catchExpression

assert condition

expression

COBOL RAISE «EXCEPTION»

exception

USE «AFTER» EXCEPTION OBJECT class-name.

or

USE «AFTER» EO class-name. or

USE «AFTER» EXCEPTION CONDITION

exception-name «FILE file-name». or

USE «AFTER» EC exception-name «FILE

file-name».

N/A

^a Common Lisp allows with-simple-restart, restart-case and restart-bind to define restarts
for use with invoke-restart. Unhandled conditions may cause the implementation to show a restarts menu to
the user before unwinding the stack.
^b Uncaught exceptions are propagated to the innermost dynamically enclosing execution. Exceptions are not
propagated across tasks (unless these tasks are currently synchronised in a rendezvous).

Other control flow statements

exit block(break) continue label branch
(goto)

return value from
generator

Ada exit «loop_name» «when

condition»
N/A

label: goto

label
N/A

ALGOL 68 value exit; ... do statements; skip

exit; label:

statements od

label: ... go to

label;

...

goto

label;

...

label;

...

yield(value)

(Callback)[13]

http://en.wikipedia.org/w/index.php?title=Label_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Goto
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Callback_%28computer_science%29

Comparison of programming languages 42

C (C99) break; continue; label: goto

label;

N/A
Objective-C

C++ (STL)

D

C# yield return

value;

Java break «label»; continue «label»;
N/A

JavaScript yield value«;»

PHP break «levels»; continue «levels»; goto

label;

yield «key =>»

value;

Perl last «label»; next «label»;

Perl 6

Go break «label» continue «label» goto

label

Bash shell break «levels» continue «levels» N/A N/A N/A

Common Lisp (return) or

(return-from block) or

(loop-finish)

(tagbody tag

...

tag

...)

(go tag)

Scheme

ISLISP (return-from block) (tagbody tag

...

tag

...)

(go tag)

Pascal(ISO) N/A label:[a] goto

label;

N/A

Pascal(FPC) break; continue;

Visual Basic Exit block N/A label: GoTo

label
Visual Basic
.NET

Continue block

Xojo

Python break continue N/A yield value

RPG IV LEAVE; ITER;

S-Lang break; continue;

Fortran EXIT CYCLE label[b] GOTO

label
N/A

Ruby break next

Windows
PowerShell

break «label» continue

OCaml

N/A

F#

Standard ML

Haskell
(GHC)

Comparison of programming languages 43

COBOL EXIT PERFORM or

EXIT PARAGRAPH or

EXIT SECTION or EXIT.

EXIT PERFORM CYCLE label

«SECTION».

GO TO

label N/A

Ya break «from where»; f.e.
break for switch;

continue «to where»;

f.e.
continue for switch;

:label goto

:label; N/A

^a Pascal has declaration blocks. See Comparison of programming languages (basic instructions)#Functions.
^b label must be a number between 1 and 99999.

Functions
See reflection for calling and declaring functions by strings.

calling a function basic/void function value-returning function required main function

Ada foo «(parameters)» procedure foo
«(parameters)» is begin

statements end foo

function foo
«(parameters)» return

type is begin statements

end foo

N/A

ALGOL 68 foo«(parameters)»; proc foo =
«(parameters)» void: (

instructions);

proc foo =
«(parameters)» rettype:

(instructions ...;

retvalue);

N/A

http://en.wikipedia.org/w/index.php?title=Comparison_of_programming_languages_%28basic_instructions%29%23Functions
http://en.wikipedia.org/w/index.php?title=Subroutine
http://en.wikipedia.org/w/index.php?title=Reflection_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Main_function
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=ALGOL_68
http://en.wikipedia.org/w/index.php?title=Void_type

Comparison of programming languages 44

C (C99) foo(«parameters») void foo(«parameters») {

instructions }

type foo(«parameters») {

instructions ... return

value; }

«global

declarations»

int main(«int

argc, char

*argv[]») {

instructions }

Objective-C

C++ (STL)

C# static void

Main(«string[]

args») {

instructions } or

static int

Main(«string[]

args») {

instructions }

Java public static

void

main(String[]

args) {

instructions } or

public static

void

main(String...

args) {

instructions }

D int

main(«char[][]

args») {

instructions} or

int

main(«string[]

args») {

instructions} or

void

main(«char[][]

args») {

instructions} or

void

main(«string[]

args») {

instructions}

JavaScript function

foo(«parameters») {

instructions } or

var foo = function

(«parameters»)

{instructions } or

var foo = new Function

(«"parameter", ...

,"last parameter"»

"instructions");

function

foo(«parameters») {

instructions ... return

value; }

N/A

Go func foo(«parameters») {

instructions }

func foo(«parameters»)

type { instructions ...

return value }

func main() {

instructions }

http://en.wikipedia.org/w/index.php?title=Void_type
http://en.wikipedia.org/w/index.php?title=Variadic_function

Comparison of programming languages 45

Common
Lisp

(foo «parameters») (defun foo

(«parameters»)

instructions)

or

(setf (symbol-function

'symbol)

lambda)

(defun foo

(«parameters»)

...

value)

N/A

Scheme (define (foo parameters)

instructions) or

(define foo (lambda

(parameters)

instructions))

(define (foo parameters)

instructions...

return_value) or

(define foo (lambda

(parameters)

instructions...

return_value))

ISLISP (defun foo

(«parameters»)

instructions)

(defun foo

(«parameters»)

...

value)

Pascal foo«(parameters)» procedure

foo«(parameters)»;

«forward;»[a]

«label

label

declarations»

«const

constant

declarations»

«type

type declarations»

«var

variable

declarations»

«local function

declarations»

begin

instructions

end;

function

foo«(parameters)»: type;

«forward;»[a]

«label

label

declarations»

«const

constant

declarations»

«type

type declarations»

«var

variable

declarations»

«local function

declarations»

begin

instructions;

foo := value

end;

program name;

«label

label

declarations»

«const

constant

declarations»

«type

type

declarations»

«var

variable

declarations»

«function

declarations»

begin

instructions

end.

http://en.wikipedia.org/w/index.php?title=Defun
http://en.wikipedia.org/w/index.php?title=Defun
http://en.wikipedia.org/w/index.php?title=Anonymous_function
http://en.wikipedia.org/w/index.php?title=Anonymous_function
http://en.wikipedia.org/w/index.php?title=Defun
http://en.wikipedia.org/w/index.php?title=Defun

Comparison of programming languages 46

Visual Basic Foo(«parameters») Sub Foo(«parameters»)

instructions End Sub
Function

Foo(«parameters») As

type

instructions

Foo = value

End Function

Sub Main()

instructions

End Sub

Visual Basic
.NET

Function

Foo(«parameters») As

type

instructions

Return value

End Function

Sub Main(«ByVal

CmdArgs() As

String») instructions
End Sub

or

Function

Main(«ByVal

CmdArgs() As

String») As

Integer

instructionsEnd
Function

Xojo

Python foo(«parameters») def foo(«parameters»):

Tab ↹ instructions
def foo(«parameters»):

Tab ↹ instructions
Tab ↹ return value

N/A

S-Lang foo(«parameters»

«;qualifiers»)

define foo

(«parameters») {

instructions }

define foo

(«parameters») {

instructions ... return

value; }

public define

slsh_main () {

instructions }

Fortran foo («arguments»)

CALL sub_foo

(«arguments»)[c]

SUBROUTINE sub_foo

(«arguments») instructions
END SUBROUTINE[c]

type FUNCTION foo

(«arguments») instructions ...
foo = value END FUNCTION[c]

PROGRAM main

instructions END
PROGRAM

Forth «parameters» FOO : FOO « stack effect

comment: (before --) »
instructions ;

: FOO « stack effect

comment: (before --
after) » instructions ;

N/A

PHP foo(«parameters») function

foo(«parameters») {

instructions }

function

foo(«parameters») {

instructions ... return

value; }

N/A

Perl foo(«parameters») or

&foo«(parameters)»

sub foo { «my

(parameters) =

@_;»instructions }

sub foo { «my

(parameters) =

@_;»instructions...

«return»value; }

Perl 6 foo(«parameters») or

&foo«(parameters)»

«multi »sub

foo(parameters) {

instructions }

«our «type» »«multi »sub

foo(parameters) {

instructions...

«return»value; }

Ruby foo«(parameters)» def foo«(parameters)»

instructions

end

def foo«(parameters)»

instructions

«return» value

end

Scala def foo«(parameters)»«:

Unit =» { instructions }

def foo«(parameters)»«:

type» = { instructions

... «return» value }

def main(args:

Array[String]) {

instructions }

Comparison of programming languages 47

Windows
PowerShell

foo «parameters» function foo {

instructions };

or

function foo {

«param(parameters)»

instructions }

function foo

«(parameters)» {

instructions … return
value }; or

function foo {

«param(parameters)»

instructions … return
value }

N/A

Bash shell foo «parameters» function foo {

instructions

}

or

foo () {

instructions

}

function foo {

instructions

return «exit_code»

}

or

foo () {

instructions

return «exit_code»

}

•• parameters

• $n ($1, $2, $3, ...)
• $@ (all parameters)
• $# (the number of parameters)
• $0 (this function name)

OCaml foo parameters let «rec» foo parameters

= instructions

let «rec» foo parameters

= instructions...

return_value
F# [<EntryPoint>]

let main args =

instructions

Standard
ML

fun foo parameters = (

instructions)

fun foo parameters = (

instructions...

return_value)

Haskell foo parameters = do

Tab ↹ instructions
foo parameters =

return_value

or

foo parameters = do

Tab ↹ instructions
Tab ↹ return value

«main :: IO ()»

main = do

instructions

Eiffel foo («parameters») foo («parameters»)

require

preconditions

do

instructions

ensure

postconditions

end

foo («parameters»): type

require

preconditions

do

instructions

Result :=

value

ensure

postconditions

end

[b]

CoffeeScript foo() foo = -> foo = -> value

N/Afoo parameters foo = () -> foo = (parameters) ->

value

Comparison of programming languages 48

COBOL CALL "foo" «USING
parameters»

«exception-handling»

«END-CALL»[d]

«IDENTIFICATION

DIVISION.»

PROGRAM-ID. foo.

«other divisions...»

PROCEDURE DIVISION

«USING parameters».

instructions.

«IDENTIFICATION

DIVISION.»

PROGRAM-ID/FUNCTION-ID.

foo.

«other divisions...»

DATA DIVISION.

«other sections...»

LINKAGE SECTION.

«parameter

definitions...»

variable-to-return

definition

«other sections...»

PROCEDURE DIVISION

«USING parameters»

RETURNING

variable-to-return.

instructions.

N/A

«FUNCTION»

foo«(«parameters»)»

N/A

^a Pascal requires "forward;" for forward declarations.
^b Eiffel allows the specification of an application's root class and feature.
^c In Fortran, function/subroutine parameters are called arguments (since PARAMETER is a language keyword); the
CALL keyword is required for subroutines.
^d Instead of using "foo", a string variable may be used instead containing the same value.

Type conversions
Where string is a signed decimal number:

string to integer string to long integer string to floating point integer to string floating point to string

Ada Integer'Value

(string_expression)

Long_Integer'Value

(string_expression)

Float'Value (string_expression) Integer'Image

(integer_expression)

Float'Image (float_expression)

ALGOL 68 with

general, and then

specific formats

With prior declarations and association of: string buf := "12345678.9012e34 "; file proxy; associate(proxy, buf);

get(proxy, ivar); get(proxy, livar); get(proxy, rvar); put(proxy, ival); put(proxy, rval);

getf(proxy, (g, ivar));

orv

getf(proxy, ($dddd$, ivar));

getf(proxy, (g, livar));

or

getf(proxy, ($8d$, livar));

getf(proxy, (g, rvar));

or

getf(proxy, ($8d.4dE2d$, rvar));

putf(proxy, (g, ival));

or

putf(proxy, ($4d$, ival));

putf(proxy, ($g(width, places, exp)$, rval));

or

putf(proxy, ($8d.4dE2d$, rval));

etc.

C (C99) integer = atoi(string); long = atol(string); float = atof(string); sprintf(string, "%i", integer); sprintf(string, "%f", float);

Objective-C integer = [string intValue]; long = [string

longLongValue];

float = [string doubleValue]; string = [NSString

stringWithFormat<wbr/>:@"%i",

integer];

string = [NSString

stringWithFormat<wbr/>:@"%f", float];

C++ (STL) «std::»istringstream(string) >> number; «std::»ostringstream o; o << number; string = o.str();

C++11 integer = «std::»stoi(string); long = «std::»stol(string); float = «std::»stof(string);

double = «std::»stod(string);

string = «std::»to_string(number);

C# integer =

int.Parse<wbr/>(string);

long =

long.Parse<wbr/>(string);

float =

float.Parse<wbr/>(string); or

double =

double.Parse<wbr/>(string);

string = number<wbr/>.ToString();

http://en.wikipedia.org/w/index.php?title=Forward_declaration
http://en.wikipedia.org/w/index.php?title=Type_conversion
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=ALGOL_68
http://en.wikipedia.org/w/index.php?title=Atoi
http://en.wikipedia.org/w/index.php?title=Atol_%28programming%29
http://en.wikipedia.org/w/index.php?title=Atof
http://en.wikipedia.org/w/index.php?title=Sprintf
http://en.wikipedia.org/w/index.php?title=Sprintf

Comparison of programming languages 49

D integer =

std.conv.to!int<wbr/>(string)

long =

std.conv.to!long<wbr/>(string)

float =

std.conv.to!float<wbr/>(string)

or

double =

std.conv.to!double<wbr/>(string)

string = std.conv.to!string<wbr/>(number)

Java integer =

Integer.parseInt<wbr/>(string);

long =

Long.parseLong<wbr/>(string);

float =

Float.parseFloat<wbr/>(string);

or

double =

Double.parseDouble<wbr/>(string);

string =

Integer.toString<wbr/>(integer);

or

string =

String.valueOf<wbr/>(integer);

string = Float.toString<wbr/>(float); or

string = Double.toString<wbr/>(double);

JavaScript[a]
integer = parseInt(string); float = parseFloat(string); or

float = new Number (string) or

float = Number (string) or

float = +string

string = number.toString (); or

string = new String (number); or

string = String (number); or

string = number+"";

Go integer, error =

strconv.Atoi(string) or

integer, error =

strconv.ParseInt<wbr/>(string,

10, 0)

long, error =

strconv.ParseInt<wbr/>(string,

10, 64)

float, error =

strconv.ParseFloat<wbr/>(string,

64)

string = strconv.Itoa(integer)

or

string =

strconv.FormatInt<wbr/>(integer,

10) or

string = fmt.Sprint(integer)

string = strconv.FormatFloat<wbr/>(float) or

string = fmt.Sprint<wbr/>(float)

Common Lisp (setf integer (parse-integer string)) (setf float (read-from-string

string))

(setf string (princ-to-string number))

Scheme (define number (string->number string)) (define string (number->string number))

ISLISP (setf integer (convert string <integer>)) (setf float (convert string

<float>))

(setf string (convert number <string>))

Pascal integer := StrToInt(string); float := StrToFloat(string); string := IntToStr(integer); string := FloatToStr(float);

Visual Basic integer = CInt(string) long = CLng(string) float = CSng(string) or

double = CDbl(string)

string = CStr(number)

Visual Basic

.NET

Xojo integer = Val(string) long = Val(string) double = Val(string) or

double = CDbl(string)

string = CStr(number) or

string = Str(number)

Python integer = int(string) long = long(string) float = float(string) string = str(number)

S-Lang integer = atoi(string); long = atol(string); float = atof(string); string = string(number);

Fortran READ(string,format) number WRITE(string,format) number

PHP integer = intval(string); or

integer = (int)string;

float = floatval(string); or

float = (float)string;

string = "number"; or

string = strval(number); or

string = (string)number;

Perl[b] number = 0 + string; string = "number";

Perl 6 number = +string; string = ~number;

Ruby integer = string.to_i or

integer = Integer(string)

float = string.to_f or

float = Float(string)

string = number.to_s

Scala integer = string.toInt long = string.toLong float = string.toFloat or

double = string.toDouble

string = number.toString

Windows

PowerShell

integer = [int]string long = [long]string float = [float]string string = [string]number; or

string = "number"; or

string = (number).ToString()

OCaml let integer =

int_<wbr/>of_string string

let float =

float_<wbr/>of_string string

let string =

string_<wbr/>of_int integer

let string = string_<wbr/>of_float float

http://en.wikipedia.org/w/index.php?title=Atoi
http://en.wikipedia.org/w/index.php?title=Atol_%28programming%29
http://en.wikipedia.org/w/index.php?title=Atof

Comparison of programming languages 50

F# let integer = int string let integer = int64 string let float = float string let string = string number

Standard ML val integer =

Int<wbr/>.fromString string

val float =

Real<wbr/>.fromString string

val string = Int<wbr/>.toString

integer

val string = Real<wbr/>.toString float

Haskell (GHC) number = read string string = show number

COBOL
MOVE «FUNCTION» NUMVAL(string)

[c] TO number
MOVE number TO numeric-edited

^a JavaScript only uses floating point numbers so there are some technicalities.
^b Perl doesn't have separate types. Strings and numbers are interchangeable.
^c NUMVAL-C or NUMVAL-F may be used instead of NUMVAL.

Standard stream I/O

read from write to

stdin stdout stderr

Ada Get (x) Put (x) Put (Standard_Error, x)

ALGOL 68 readf(($format$, x)); or

getf(stand in, ($format$, x));

printf(($format$, x)); or

putf(stand out, ($format$, x));
putf(stand error, ($format$, x));[a]

C (C99)
scanf(format, &x); or

fscanf(stdin, format, &x); [b]
printf(format, x); or

fprintf(stdout, format, x); [c]
fprintf(stderr, format, x);[d]

Objective-C data = [[NSFileHandle

fileHandleWithStandardInput]

readDataToEndOfFile];

[[NSFileHandle

fileHandleWithStandardOutput]

writeData:data];

[[NSFileHandle

fileHandleWithStandardError]

writeData:data];

C++ «std::»cin >> x; or
«std::»getline(«std::»cin, str);

«std::»cout << x; «std::»cerr << x; or
«std::»clog << x;

C# x = Console.Read(); or

x = Console.ReadLine();

Console.Write(«format, »x); or

Console.WriteLine(«format, »x);

Console.Error<wbr/>.Write(«format,

»x); or

Console.Error<wbr/>.WriteLine(«format,

»x);

D x = std.stdio.readln() std.stdio.write(x) or

std.stdio.writeln(x) or

std.stdio.writef(format, x) or

std.stdio.writefln(format, x)

stderr.write(x) or

stderr.writeln(x) or

std.stdio<wbr/>.writef(stderr,

format, x) or

std.stdio<wbr/>.writefln(stderr,

format, x)

Java x = System.in.read(); or

x = new Scanner(System.in)<wbr/>.nextInt(); or

x = new Scanner(System.in)<wbr/>.nextLine();

System.out.print(x); or

System.out.printf(format, x); or

System.out.println(x);

System.err.print(x); or

System.err.printf(format, x); or

System.err.println(x);

Go fmt.Scan(&x) or

fmt.Scanf(format, &x) or

x =

bufio.NewReader(os.Stdin)<wbr/>.ReadString('\n')

fmt.Println(x) or

fmt.Printf(format, x)

fmt.Fprintln(os.Stderr, x) or

fmt.Fprintf(os.Stderr, format, x)

JavaScript
Web Browser
implementation

document.write(x)

JavaScript
Active Server
Pages

Response.Write(x)

http://en.wikipedia.org/w/index.php?title=Standard_streams
http://en.wikipedia.org/w/index.php?title=Stdin
http://en.wikipedia.org/w/index.php?title=Stdout
http://en.wikipedia.org/w/index.php?title=Stderr
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=ALGOL_68
http://en.wikipedia.org/w/index.php?title=Printf
http://en.wikipedia.org/w/index.php?title=Scanf
http://en.wikipedia.org/w/index.php?title=Fscanf
http://en.wikipedia.org/w/index.php?title=Printf
http://en.wikipedia.org/w/index.php?title=Fprintf
http://en.wikipedia.org/w/index.php?title=Fprintf
http://en.wikipedia.org/w/index.php?title=Iostream
http://en.wikipedia.org/w/index.php?title=Iostream
http://en.wikipedia.org/w/index.php?title=Iostream
http://en.wikipedia.org/w/index.php?title=Iostream
http://en.wikipedia.org/w/index.php?title=Printf
http://en.wikipedia.org/w/index.php?title=Printf
http://en.wikipedia.org/w/index.php?title=Scanf
http://en.wikipedia.org/w/index.php?title=Printf
http://en.wikipedia.org/w/index.php?title=Fprintf
http://en.wikipedia.org/w/index.php?title=Client-side_JavaScript
http://en.wikipedia.org/w/index.php?title=Client-side_JavaScript
http://en.wikipedia.org/w/index.php?title=Active_Server_Pages
http://en.wikipedia.org/w/index.php?title=Active_Server_Pages

Comparison of programming languages 51

JavaScript
Windows
Script Host

x = WScript.StdIn.Read(chars) or

x = WScript.StdIn.ReadLine()

WScript.Echo(x) or

WScript.StdOut.Write(x) or

WScript.StdOut.WriteLine(x)

WScript.StdErr.Write(x) or

WScript.StdErr.WriteLine(x)

Common Lisp (setf x (read-line)) (princ x) or

(format t format x)

(princ x *error-output*) or

(format *error-output* format x)

Scheme
(R6RS)

(define x (read-line)) (display x) or

(format #t format x)

(display x (current-error-port)) or

(format (current-error-port) format

x)

ISLISP (setf x (read-line)) (format (standard-output) format

x)

(format (error-output) format x)

Pascal read(x); or

readln(x);

write(x); or

writeln(x);
N/A

Visual Basic Input« prompt,»x Print x or

? x

Visual Basic
.NET

x = Console.Read() or

x = Console.ReadLine()

Console.Write(«format, »x) or

Console.WriteLine(«format, »x)

Console.Error<wbr/>.Write(«format,

»x) or

Console.Error<wbr/>.WriteLine(«format,

»x)

Xojo x = StandardInputStream.Read() or

x = StandardInputStreame.ReadLine()

StandardOutputStream.Write(x) or

StandardOutputStream.WriteLine(x)

StdErr.Write(x) or

StdErr.WriteLine(x)

Python 2.x x = raw_input(«prompt») print x or

sys.stdout.write(x)

print >> sys.stderr, x or

sys.stderr.write(x)

Python 3.x x = input(«prompt») print(x«, end=""») print(x«, end=""», file=sys.stderr)

S-Lang fgets (&x, stdin) fputs (x, stdout) fputs (x, stderr)

Fortran
READ(*,format) variable names or

READ(INPUT_UNIT,format) variable names[e]
WRITE(*,format) expressions or

WRITE(OUTPUT_UNIT,format)

expressions[e]

WRITE(ERROR_UNIT,format)

expressions[e]

Forth buffer length ACCEPT (# chars read)

KEY (char)

buffer length TYPE

char EMIT
N/A

PHP $x = fgets(STDIN); or

$x = fscanf(STDIN, format);

print x; or

echox; or

printf(format, x);

fprintf(STDERR, format, x);

Perl $x = <>; or

$x = <STDIN>;

print x; or

printfformat, x;

print STDERR x; or

printf STDERR format, x;

Perl 6 $x = $*IN.get; x.print or

x.say

x.note or

$*ERR.print(x) or

$*ERR.say(x)

Ruby x = gets puts x or

printf(format, x)

$stderr.puts(x) or

$stderr.printf(format, x)

Windows
PowerShell

$x = Read-Host«« -Prompt» text»; or

$x = [Console]::Read(); or

$x = [Console]::ReadLine()

x; or

Write-Output x; or

echo x

Write-Error x

OCaml let x = read_int () or

let str = read_line () or

Scanf.scanf format (fun x ... -> ...)

print_int x or

print_endline str or

Printf.printf format x ...

prerr_int x or

prerr_endline str or

Printf.eprintf format x ...

F# let x = System.Console<wbr/>.ReadLine() printf format x ... or

printfn format x ...

eprintf format x ... or

eprintfn format x ...

Standard ML val str = TextIO.inputLIne TextIO.stdIn print str TextIO.output (TextIO.stdErr, str)

http://en.wikipedia.org/w/index.php?title=Windows_Script_Host
http://en.wikipedia.org/w/index.php?title=Windows_Script_Host
http://en.wikipedia.org/w/index.php?title=Fgets
http://en.wikipedia.org/w/index.php?title=Fputs
http://en.wikipedia.org/w/index.php?title=Fputs
http://en.wikipedia.org/w/index.php?title=Fgets
http://en.wikipedia.org/w/index.php?title=Fscanf
http://en.wikipedia.org/w/index.php?title=Echo_%28command%29
http://en.wikipedia.org/w/index.php?title=Printf
http://en.wikipedia.org/w/index.php?title=Fprintf
http://en.wikipedia.org/w/index.php?title=Printf
http://en.wikipedia.org/w/index.php?title=Printf
http://en.wikipedia.org/w/index.php?title=Printf
http://en.wikipedia.org/w/index.php?title=Printf
http://en.wikipedia.org/w/index.php?title=Scanf
http://en.wikipedia.org/w/index.php?title=Printf
http://en.wikipedia.org/w/index.php?title=Fprintf
http://en.wikipedia.org/w/index.php?title=Printf
http://en.wikipedia.org/w/index.php?title=Printf
http://en.wikipedia.org/w/index.php?title=Fprintf
http://en.wikipedia.org/w/index.php?title=Fprintf

Comparison of programming languages 52

Haskell (GHC) x <- readLn or

str <- getLine

print x or

putStrLn str

hPrint stderr x or

hPutStrLn stderr str

COBOL ACCEPT x DISPLAY x

^a Algol 68 additionally as the "unformatted" transput routines: read, write, get and put.
^b gets(x) and fgets(x, length, stdin) read unformatted text from stdin. Use of gets is not
recommended.
^c puts(x) and fputs(x, stdout) write unformatted text to stdout.
^d fputs(x, stderr) writes unformatted text to stderr
^e INPUT_UNIT, OUTPUT_UNIT, ERROR_UNIT are defined in the ISO_FORTRAN_ENV module.[14]

Reading command-line arguments

Argument values Argument counts Program name / Script name

Ada Argument (n) Argument_Count Command_Name

C (C99) argv[n] argc first argument

Objective-C

C++

C# args[n] args.Length Assembly.GetEntryAssembly()<wbr/>.Location;

Java args.length

D first argument

JavaScript
Windows
Script Host
implementation

WScript.Arguments(n) WScript.Arguments.length WScript.ScriptName or

WScript.ScriptFullName

Go os.Args[n] len(os.Args) first argument

Common Lisp ? ? ?

Scheme
(R6RS)

(list-ref (command-line) n) (length (command-line)) first argument

ISLISP N/A N/A N/A

Pascal ParamStr(n) ParamCount first argument

Visual Basic Command[a] N/A App.Path

Visual Basic
.NET

CmdArgs(n) CmdArgs.Length [Assembly].GetEntryAssembly().Location

Xojo System.CommandLine (string parsing) Application.ExecutableFile.Name

Python sys.argv[n] len(sys.argv) first argument

S-Lang __argv[n] __argc first argument

Fortran DO i = 1,argc CALL
GET_COMMAND_ARGUMENT
(i,argv(i)) ENDDO

argc =

COMMAND_ARGUMENT_COUNT ()

CALL GET_COMMAND_ARGUMENT (0,progname)

PHP $argv[n] $argc first argument

Bash shell $n ($1, $2, $3, ...)

$@ (all arguments)

$# $0

Perl $ARGV[n] scalar(@ARGV) $0

http://en.wikipedia.org/w/index.php?title=Transput
http://en.wikipedia.org/w/index.php?title=Gets%28%29
http://en.wikipedia.org/w/index.php?title=Fgets
http://en.wikipedia.org/w/index.php?title=Puts_%28C%29
http://en.wikipedia.org/w/index.php?title=Fputs
http://en.wikipedia.org/w/index.php?title=Command-line_argument
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Windows_Script_Host
http://en.wikipedia.org/w/index.php?title=Windows_Script_Host

Comparison of programming languages 53

Perl 6 @*ARGS[n] @*ARGS.elems $PROGRAM_NAME

Ruby ARGV[n] ARGV.size $0

Windows
PowerShell

$args[n] $args.Length $MyInvocation.MyCommand<wbr/>.Name

OCaml Sys.argv.(n) Array.length Sys.argv first argument

F# args.[n] args.Length Assembly.GetEntryAssembly()<wbr/>.Location

Standard ML List.nth

(CommandLine<wbr/>.arguments

(), n)

length

(CommandLine<wbr/>.arguments

())

CommandLine.name ()

Haskell (GHC) do { args <-

System.getArgs; return args

!! n }

do { args <-
System.getArgs; return
length args }

System.getProgName

COBOL [b] N/A

• ^a The command-line arguments in Visual Basic are not separated. A split function Split(string) is required for
separating them.

• ^b The COBOL standard does not include any way to access command-line arguments but common
compiler-extensions for accessing them include defining parameters for the main program or using ACCEPT
statements.

Execution of commands

Shell command Execute program Replace current program with new

executed program

Ada Not part of the language standard. Commonly done by compiler provided packages or by interfacing to C or Posix.[15]

C system("command"); execl(path, args); or

execv(path, arglist);
C++

Objective-C [NSTask

launchedTaskWithLaunchPath:(NSString *)path

arguments:(NSArray *)arguments];

C# System.Diagnostics<wbr/>.Process.Start(path,

argstring);
F#

Go exec.Run(path, argv, envv, dir,

exec.DevNull, exec.DevNull, exec.DevNull)

os.Exec(path, argv, envv)

Visual Basic Interaction.Shell(command «, WindowStyle»

«, isWaitOnReturn»)

Visual Basic
.NET

Microsoft.VisualBasic<wbr/>.Interaction.Shell(command

«, WindowStyle» «, isWaitOnReturn»)

System.Diagnostics<wbr/>.Process.Start(path,

argstring)

Xojo Shell.Execute(command «, Parameters») FolderItem.Launch(parameters, activate) N/A

D std.process.system("command"); std.process.execv(path,

arglist);

Java Runtime.exec(command); or

new ProcessBuilder(command).start();

http://en.wikipedia.org/w/index.php?title=Exec_%28operating_system%29
http://en.wikipedia.org/w/index.php?title=Exec_%28operating_system%29
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=System_%28C_standard_library%29
http://en.wikipedia.org/w/index.php?title=Exec_%28operating_system%29
http://en.wikipedia.org/w/index.php?title=Exec_%28operating_system%29

Comparison of programming languages 54

JavaScript
Windows
Script Host
implementation

WScript.CreateObject ("WScript.Shell").Run(command

«, WindowStyle» «, isWaitOnReturn»);

WshShell.Exec(command)

Common Lisp (shell command)

Scheme (system command)

ISLISP N/A N/A N/A

Pascal system(command);

OCaml Sys.command command, Unix.open_process_full command

env (stdout, stdin, stderr),...

Unix.create_process prog args new_stdin

new_stdout new_stderr, ...

Unix.execv prog args or

Unix.execve prog args env

Standard ML OS.Process.system command Unix.execute (path, args) Posix.Process.exec (path,

args)

Haskell (GHC) System.system command System.Process<wbr/>.runProcess pathargs

...

Posix.Process<wbr/>.executeFile

path True args ...

Perl system(command) or

$output = `command` or

$output = qx(command)

exec(path, args)

Ruby system(command) or

output = `command`

exec(path, args)

PHP system(command) or

$output = `command` or

exec(command) or

passthru(command)

Python os.system(command) or

subprocess.Popen(command)

os.execv(path, args)

S-Lang system(command)

Fortran
CALL SYSTEM (command, status) or

status = SYSTEM (command)[a]

Windows
PowerShell

[Diagnostics.Process]::Start(command) «Invoke-Item »program arg1 arg2 …

Bash shell output=`command` or output=$(command) program arg1 arg2 …

^a Compiler-dependent extension.[16]

References
[1] http:/ / en. wikipedia. org/ w/ index. php?title=Template:Programming_language_comparisons& action=edit
[2] Ada Reference Manual - Language and Standard Libraries; ISO/IEC 8652:201x (E), http:/ / www. ada-auth. org/ standards/ 12rm/ RM-Final.

pdf
[3] http:/ / www. lispworks. com/ documentation/ HyperSpec/ Front/ index. htm
[4] http:/ / www. islisp. info/ specification. html
[5] http:/ / fortranwiki. org/ fortran/ show/ selected_int_kind
[6] 8.5 The Number Type (http:/ / www. mozilla. org/ js/ language/ E262-3. pdf)
[7] http:/ / fortranwiki. org/ fortran/ show/ selected_real_kind
[8] http:/ / www. gnu. org/ software/ libc/ manual/ html_node/ Complex-Numbers. html#Complex-Numbers
[9] http:/ / rosettacode. org/ wiki/ Enumerations#ALGOL_68
[10] https:/ / developer. mozilla. org/ en-US/ docs/ JavaScript/ Reference/ Statements/ for_each. . . in
[11] https:/ / developer. mozilla. org/ en-US/ docs/ JavaScript/ Reference/ Statements/ for. . . of
[12] https:/ / sites. google. com/ site/ truetryforvisualbasic/
[13] example (http:/ / rosettacode. org/ wiki/ Prime_decomposition#ALGOL_68)
[14] http:/ / fortranwiki. org/ fortran/ show/ iso_fortran_env

http://en.wikipedia.org/w/index.php?title=Windows_Script_Host
http://en.wikipedia.org/w/index.php?title=Windows_Script_Host
http://en.wikipedia.org/w/index.php?title=Template:Programming_language_comparisons&action=edit
http://www.ada-auth.org/standards/12rm/RM-Final.pdf
http://www.ada-auth.org/standards/12rm/RM-Final.pdf
http://www.lispworks.com/documentation/HyperSpec/Front/index.htm
http://www.islisp.info/specification.html
http://fortranwiki.org/fortran/show/selected_int_kind
http://www.mozilla.org/js/language/E262-3.pdf
http://fortranwiki.org/fortran/show/selected_real_kind
http://www.gnu.org/software/libc/manual/html_node/Complex-Numbers.html#Complex-Numbers
http://rosettacode.org/wiki/Enumerations#ALGOL_68
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Statements/for_each...in
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Statements/for...of
https://sites.google.com/site/truetryforvisualbasic/
http://rosettacode.org/wiki/Prime_decomposition#ALGOL_68
http://fortranwiki.org/fortran/show/iso_fortran_env

Comparison of programming languages 55

[15] http:/ / rosettacode. org/ wiki/ Execute_a_system_command#Ada
[16] http:/ / gcc. gnu. org/ onlinedocs/ gfortran/ SYSTEM. html#SYSTEM

Computer program
"Computer program code" and "Software code" redirect here. For their source form, see source code. For the
machine-executable code, see machine code. For the TV programme, see The Computer Programme.

A computer program written in an object-oriented
style.

A computer program, or just a program, is a sequence of
instructions, written to perform a specified task with a computer. A
computer requires programs to function, typically executing the
program's instructions in a central processor. The program has an
executable form that the computer can use directly to execute the
instructions. The same program in its human-readable source code
form, from which executable programs are derived (e.g., compiled),
enables a programmer to study and develop its algorithms. A collection
of computer programs and related data is referred to as the software.

Computer source code is typically written by computer programmers.
Source code is written in a programming language that usually follows
one of two main paradigms: imperative or declarative programming.
Source code may be converted into an executable file (sometimes
called an executable program or a binary) by a compiler and later
executed by a central processing unit. Alternatively, computer programs may be executed with the aid of an
interpreter, or may be embedded directly into hardware.

Computer programs may be ranked along functional lines: system software and application software. Two or more
computer programs may run simultaneously on one computer from the perspective of the user, this process being
known as multitasking.

Programming
Main article: Computer programming

#include <stdio.h>
int main(void) {
 printf("Hello world!\n");
 return 0;
}

Source code of a Hello World program written in the C programming language

public class HelloWorld {
 public static void main(String[] args){
 System.out.println("Hello World!");
 }
}

Source code of a Hello World program written in the Java programming language

http://rosettacode.org/wiki/Execute_a_system_command#Ada
http://gcc.gnu.org/onlinedocs/gfortran/SYSTEM.html#SYSTEM
http://en.wikipedia.org/w/index.php?title=Source_code
http://en.wikipedia.org/w/index.php?title=Machine_code
http://en.wikipedia.org/w/index.php?title=The_Computer_Programme
http://en.wikipedia.org/w/index.php?title=File%3AObject-Oriented-Programming-Methods-And-Classes-with-Inheritance.png
http://en.wikipedia.org/w/index.php?title=Instruction_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Computer
http://en.wikipedia.org/w/index.php?title=Execution_%28computing%29
http://en.wikipedia.org/w/index.php?title=Central_processing_unit
http://en.wikipedia.org/w/index.php?title=Execution_%28computing%29
http://en.wikipedia.org/w/index.php?title=Executable
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=Algorithm%23Formalization
http://en.wikipedia.org/w/index.php?title=Data
http://en.wikipedia.org/w/index.php?title=Software
http://en.wikipedia.org/w/index.php?title=Computer_programmer
http://en.wikipedia.org/w/index.php?title=Programming_paradigm
http://en.wikipedia.org/w/index.php?title=Imperative_programming
http://en.wikipedia.org/w/index.php?title=Declarative_language
http://en.wikipedia.org/w/index.php?title=Executable_file
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=Central_processing_unit
http://en.wikipedia.org/w/index.php?title=Interpreter_%28computing%29
http://en.wikipedia.org/w/index.php?title=Firmware
http://en.wikipedia.org/w/index.php?title=Computer_hardware
http://en.wikipedia.org/w/index.php?title=System_software
http://en.wikipedia.org/w/index.php?title=Application_software
http://en.wikipedia.org/w/index.php?title=Computer_multitasking
http://en.wikipedia.org/w/index.php?title=Hello_World_program
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Hello_World_program
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29

Computer program 56

using System;

 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 }
 }

Source code of a Hello World program written in the C# programming language

Computer programming is the iterative process of writing or editing source code. Editing source code involves
testing, analyzing, refining, and sometimes coordinating with other programmers on a jointly developed program. A
person who practices this skill is referred to as a computer programmer, software developer, and sometimes coder.
The sometimes lengthy process of computer programming is usually referred to as software development. The term
software engineering is becoming popular as the process is seen as an engineering discipline.

Paradigms
Computer programs can be categorized by the programming language paradigm used to produce them. Two of the
main paradigms are imperative and declarative.
Programs written using an imperative language specify an algorithm using declarations, expressions, and statements.
A declaration couples a variable name to a datatype. For example: var x: integer; . An expression yields a
value. For example: 2 + 2 yields 4. Finally, a statement might assign an expression to a variable or use the value
of a variable to alter the program's control flow. For example: x := 2 + 2; if x = 4 then

do_something();. One criticism of imperative languages is the side effect of an assignment statement on a class
of variables called non-local variables.
Programs written using a declarative language specify the properties that have to be met by the output. They do not
specify details expressed in terms of the control flow of the executing machine but of the mathematical relations
between the declared objects and their properties. Two broad categories of declarative languages are functional
languages and logical languages. The principle behind functional languages (like Haskell) is to not allow side
effects, which makes it easier to reason about programs like mathematical functions. The principle behind logical
languages (like Prolog) is to define the problem to be solved — the goal — and leave the detailed solution to the
Prolog system itself. The goal is defined by providing a list of subgoals. Then each subgoal is defined by further
providing a list of its subgoals, etc. If a path of subgoals fails to find a solution, then that subgoal is backtracked and
another path is systematically attempted.
The form in which a program is created may be textual or visual. In a visual language program, elements are
graphically manipulated rather than textually specified.

Compiling or interpreting
A computer program in the form of a human-readable, computer programming language is called source code.
Source code may be converted into an executable image by a compiler or executed immediately with the aid of an
interpreter.
Either compiled or interpreted programs might be executed in a batch process without human interaction, but
interpreted programs allow a user to type commands in an interactive session. In this case the programs are the
separate commands, whose execution occurs sequentially, and thus together. When a language is used to give
commands to a software application (such as a Unix shell or other command-line interface) it is called a scripting
language.

http://en.wikipedia.org/w/index.php?title=Hello_World_program
http://en.wikipedia.org/w/index.php?title=C%23_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Software_development
http://en.wikipedia.org/w/index.php?title=Software_engineering
http://en.wikipedia.org/w/index.php?title=Engineering
http://en.wikipedia.org/w/index.php?title=Programming_paradigm
http://en.wikipedia.org/w/index.php?title=Imperative_programming
http://en.wikipedia.org/w/index.php?title=Declarative_language
http://en.wikipedia.org/w/index.php?title=Algorithm
http://en.wikipedia.org/w/index.php?title=Variable_%28programming%29
http://en.wikipedia.org/w/index.php?title=Datatype
http://en.wikipedia.org/w/index.php?title=Control_flow
http://en.wikipedia.org/w/index.php?title=Functional_language
http://en.wikipedia.org/w/index.php?title=Functional_language
http://en.wikipedia.org/w/index.php?title=Logical_language
http://en.wikipedia.org/w/index.php?title=Haskell_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Side_effect_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Side_effect_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Prolog
http://en.wikipedia.org/w/index.php?title=Backtracking
http://en.wikipedia.org/w/index.php?title=Visual_programming_language
http://en.wikipedia.org/w/index.php?title=Human-readable
http://en.wikipedia.org/w/index.php?title=Executable_file
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=Interpreter_%28computing%29
http://en.wikipedia.org/w/index.php?title=Execution_%28computing%29
http://en.wikipedia.org/w/index.php?title=Batch_processing
http://en.wikipedia.org/w/index.php?title=Command_%28computing%29
http://en.wikipedia.org/w/index.php?title=Session_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Unix_shell
http://en.wikipedia.org/w/index.php?title=Command-line_interface

Computer program 57

Compilers are used to translate source code from a programming language into either object code or machine code.
Object code needs further processing to become machine code, and machine code is the central processing unit's
native code, ready for execution. Compiled computer programs are commonly referred to as executables, binary
images, or simply as binaries — a reference to the binary file format used to store the executable code.
Interpreted computer programs — in a batch or interactive session — are either decoded and then immediately
executed or are decoded into some efficient intermediate representation for future execution. BASIC, Perl, and
Python are examples of immediately executed computer programs. Alternatively, Java computer programs are
compiled ahead of time and stored as a machine independent code called bytecode. Bytecode is then executed on
request by an interpreter called a virtual machine.
The main disadvantage of interpreters is that computer programs run slower than when compiled. Interpreting code
is slower than running the compiled version because the interpreter must decode each statement each time it is
loaded and then perform the desired action. However, software development may be faster using an interpreter
because testing is immediate when the compiling step is omitted. Another disadvantage of interpreters is that at least
one must be present on the computer during computer program execution. By contrast, compiled computer programs
need no compiler present during execution.
No properties of a programming language require it to be exclusively compiled or exclusively interpreted. The
categorization usually reflects the most popular method of language execution. For example, BASIC is thought of as
an interpreted language and C a compiled language, despite the existence of BASIC compilers and C interpreters.
Some systems use just-in-time compilation (JIT) whereby sections of the source are compiled 'on the fly' and stored
for subsequent executions.

Self-modifying programs
A computer program in execution is normally treated as being different from the data the program operates on.
However, in some cases this distinction is blurred when a computer program modifies itself. The modified computer
program is subsequently executed as part of the same program. Self-modifying code is possible for programs written
in machine code, assembly language, Lisp, C, COBOL, PL/1, Prolog and JavaScript (the eval feature) among others.

Execution and storage
Typically, computer programs are stored in non-volatile memory until requested either directly or indirectly to be
executed by the computer user. Upon such a request, the program is loaded into random access memory, by a
computer program called an operating system, where it can be accessed directly by the central processor. The central
processor then executes ("runs") the program, instruction by instruction, until termination. A program in execution is
called a process. Termination is either by normal self-termination or by error — software or hardware error.

http://en.wikipedia.org/w/index.php?title=Object_file
http://en.wikipedia.org/w/index.php?title=Central_processing_unit
http://en.wikipedia.org/w/index.php?title=Microcode
http://en.wikipedia.org/w/index.php?title=Binary_file
http://en.wikipedia.org/w/index.php?title=Binary_numeral_system
http://en.wikipedia.org/w/index.php?title=File_format
http://en.wikipedia.org/w/index.php?title=BASIC
http://en.wikipedia.org/w/index.php?title=Perl
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Bytecode
http://en.wikipedia.org/w/index.php?title=Virtual_machine
http://en.wikipedia.org/w/index.php?title=Parsing
http://en.wikipedia.org/w/index.php?title=Statement_%28programming%29
http://en.wikipedia.org/w/index.php?title=Just-in-time_compilation
http://en.wikipedia.org/w/index.php?title=Execution_%28computers%29
http://en.wikipedia.org/w/index.php?title=Data_%28computing%29
http://en.wikipedia.org/w/index.php?title=Self-modifying_code
http://en.wikipedia.org/w/index.php?title=Lisp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=COBOL
http://en.wikipedia.org/w/index.php?title=PL/1
http://en.wikipedia.org/w/index.php?title=Prolog
http://en.wikipedia.org/w/index.php?title=JavaScript
http://en.wikipedia.org/w/index.php?title=Non-volatile_memory
http://en.wikipedia.org/w/index.php?title=Execution_%28computers%29
http://en.wikipedia.org/w/index.php?title=Random_access_memory
http://en.wikipedia.org/w/index.php?title=Operating_system
http://en.wikipedia.org/w/index.php?title=Process_%28computing%29

Computer program 58

Embedded programs

The microcontroller on the right of this USB flash drive is
controlled with embedded firmware.

Some computer programs are embedded into hardware. A
stored-program computer requires an initial computer
program stored in its read-only memory to boot. The boot
process is to identify and initialize all aspects of the system,
from processor registers to device controllers to memory
contents. Following the initialization process, this initial
computer program loads the operating system and sets the
program counter to begin normal operations. Independent of
the host computer, a hardware device might have embedded
firmware to control its operation. Firmware is used when
the computer program is rarely or never expected to change,
or when the program must not be lost when the power is off.

Manual programming

Switches for manual input on a Data General Nova 3

Computer programs historically were manually input to the
central processor via switches. An instruction was
represented by a configuration of on/off settings. After
setting the configuration, an execute button was pressed.
This process was then repeated. Computer programs also
historically were manually input via paper tape or punched
cards. After the medium was loaded, the starting address
was set via switches and the execute button pressed.

Automatic program generation

Generative programming is a style of computer
programming that creates source code through generic classes, prototypes, templates, aspects, and code generators to
improve programmer productivity. Source code is generated with programming tools such as a template processor or
an integrated development environment. The simplest form of source code generator is a macro processor, such as
the C preprocessor, which replaces patterns in source code according to relatively simple rules.

Software engines output source code or markup code that simultaneously become the input to another computer
process. Application servers are software engines that deliver applications to client computers. For example, a Wiki
is an application server that lets users build dynamic content assembled from articles. Wikis generate HTML, CSS,
Java, and JavaScript which are then interpreted by a web browser.

Simultaneous execution
See also: Process (computing) and Multiprocessing
Many operating systems support multitasking which enables many computer programs to appear to run
simultaneously on one computer. Operating systems may run multiple programs through process scheduling — a
software mechanism to switch the CPU among processes often so users can interact with each program while it runs.
Within hardware, modern day multiprocessor computers or computers with multicore processors may run multiple
programs.

http://en.wikipedia.org/w/index.php?title=Microcontroller
http://en.wikipedia.org/w/index.php?title=USB_flash_drive
http://en.wikipedia.org/w/index.php?title=Firmware
http://en.wikipedia.org/w/index.php?title=File%3AUSB_flash_drive.JPG
http://en.wikipedia.org/w/index.php?title=Stored-program_computer
http://en.wikipedia.org/w/index.php?title=Read-only_memory
http://en.wikipedia.org/w/index.php?title=Booting
http://en.wikipedia.org/w/index.php?title=Processor_register
http://en.wikipedia.org/w/index.php?title=Device_driver
http://en.wikipedia.org/w/index.php?title=Volatile_memory
http://en.wikipedia.org/w/index.php?title=Operating_system
http://en.wikipedia.org/w/index.php?title=Program_counter
http://en.wikipedia.org/w/index.php?title=Peripheral
http://en.wikipedia.org/w/index.php?title=Firmware
http://en.wikipedia.org/w/index.php?title=Data_General_Nova
http://en.wikipedia.org/w/index.php?title=File%3ADg-nova3.jpg
http://en.wikipedia.org/w/index.php?title=Paper_tape
http://en.wikipedia.org/w/index.php?title=Punched_cards
http://en.wikipedia.org/w/index.php?title=Punched_cards
http://en.wikipedia.org/w/index.php?title=Generative_programming
http://en.wikipedia.org/w/index.php?title=Generic_programming
http://en.wikipedia.org/w/index.php?title=Class_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Prototype-based_programming
http://en.wikipedia.org/w/index.php?title=Template_%28programming%29
http://en.wikipedia.org/w/index.php?title=Aspect_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Code_generation_%28compiler%29
http://en.wikipedia.org/w/index.php?title=Programming_tool
http://en.wikipedia.org/w/index.php?title=Template_processor
http://en.wikipedia.org/w/index.php?title=Integrated_development_environment
http://en.wikipedia.org/w/index.php?title=Macro_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=C_preprocessor
http://en.wikipedia.org/w/index.php?title=Software_engine
http://en.wikipedia.org/w/index.php?title=Markup_language
http://en.wikipedia.org/w/index.php?title=Process_%28computing%29
http://en.wikipedia.org/w/index.php?title=Process_%28computing%29
http://en.wikipedia.org/w/index.php?title=Application_server
http://en.wikipedia.org/w/index.php?title=Client_computer
http://en.wikipedia.org/w/index.php?title=Wiki_software
http://en.wikipedia.org/w/index.php?title=Dynamic_web_page
http://en.wikipedia.org/w/index.php?title=Article_%28publishing%29
http://en.wikipedia.org/w/index.php?title=HTML
http://en.wikipedia.org/w/index.php?title=CSS
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=JavaScript
http://en.wikipedia.org/w/index.php?title=Interpreter_%28computing%29
http://en.wikipedia.org/w/index.php?title=Web_browser
http://en.wikipedia.org/w/index.php?title=Process_%28computing%29
http://en.wikipedia.org/w/index.php?title=Multiprocessing
http://en.wikipedia.org/w/index.php?title=Computer_multitasking
http://en.wikipedia.org/w/index.php?title=Process_scheduling
http://en.wikipedia.org/w/index.php?title=Context_switch
http://en.wikipedia.org/w/index.php?title=Time-sharing

Computer program 59

One computer program can calculate simultaneously more than one operation using threads or separate processes.
Multithreading processors are optimized to execute multiple threads efficiently.

Functional categories
Computer programs may be categorized along functional lines. The main functional categories are system software
and application software. System software includes the operating system which couples computer hardware with
application software. The purpose of the operating system is to provide an environment in which application
software executes in a convenient and efficient manner. In addition to the operating system, system software
includes utility programs that help manage and tune the computer. If a computer program is not system software then
it is application software. Application software includes middleware, which couples the system software with the
user interface. Application software also includes utility programs that help users solve application problems, like the
need for sorting.
Sometimes development environments for software development are seen as a functional category on its own,
especially in the context of human-computer interaction and programming language design.Wikipedia:Please clarify
Development environments gather system software (such as compilers and system's batch processing scripting
languages) and application software (such as IDEs) for the specific purpose of helping programmers create new
programs.

References

Further reading
• Knuth, Donald E. (1997). The Art of Computer Programming, Volume 1, 3rd Edition. Boston: Addison-Wesley.

ISBN 0-201-89683-4.
• Knuth, Donald E. (1997). The Art of Computer Programming, Volume 2, 3rd Edition. Boston: Addison-Wesley.

ISBN 0-201-89684-2.
• Knuth, Donald E. (1997). The Art of Computer Programming, Volume 3, 3rd Edition. Boston: Addison-Wesley.

ISBN 0-201-89685-0.

External links
• Definition of "Program" (http:/ / www. webopedia. com/ TERM/ P/ program. html) at Webopedia
• Definition of "Computer Program" (http:/ / dictionary. reference. com/ browse/ computer program) at

dictionary.com

http://en.wikipedia.org/w/index.php?title=Thread_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Process_%28computing%29
http://en.wikipedia.org/w/index.php?title=Multithreading_%28computer_architecture%29
http://en.wikipedia.org/w/index.php?title=System_software
http://en.wikipedia.org/w/index.php?title=Application_software
http://en.wikipedia.org/w/index.php?title=Operating_system
http://en.wikipedia.org/w/index.php?title=Computer_hardware
http://en.wikipedia.org/w/index.php?title=Utility_software
http://en.wikipedia.org/w/index.php?title=Middleware
http://en.wikipedia.org/w/index.php?title=User_interface
http://en.wikipedia.org/w/index.php?title=Software_development
http://en.wikipedia.org/w/index.php?title=Human-computer_interaction
http://en.wikipedia.org/w/index.php?title=Programming_language_design
http://en.wikipedia.org/wiki/Please_clarify
http://en.wikipedia.org/w/index.php?title=Batch_processing
http://en.wikipedia.org/w/index.php?title=Integrated_development_environment
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/0-201-89683-4
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/0-201-89684-2
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/0-201-89685-0
http://www.webopedia.com/TERM/P/program.html
http://dictionary.reference.com/browse/computer%20program

Programming language 60

Programming language

An example of source code written in the Java programming language, which will print
the message "Hello World!" to the standard output when it is compiled and then run by

the Java Virtual Machine.

A programming language is an
artificial language designed to
communicate instructions to a
machine, particularly a computer.
Programming languages can be used to
create programs that control the
behavior of a machine and/or to
express algorithms.

The earliest programming languages
preceded the invention of the
computer, and were used to direct the
behavior of machines such as Jacquard
looms and player pianos.[1] Thousands
of different programming languages have been created, mainly in the computer field, and many more still are being
created every year. Many programming languages require computation to be specified in an imperative form (i.e., as
a sequence of operations to perform), while other languages utilize other forms of program specification such as the
declarative form (i.e. the desired result is specified, not how to achieve it).

The description of a programming language is usually split into the two components of syntax (form) and semantics
(meaning). Some languages are defined by a specification document (for example, the C programming language is
specified by an ISO Standard), while other languages (such as Perl) have a dominant implementation that is treated
as a reference.

Definitions
A programming language is a notation for writing programs, which are specifications of a computation or algorithm.
Some, but not all, authors restrict the term "programming language" to those languages that can express all possible
algorithms.[2] Traits often considered important for what constitutes a programming language include:
Function and target

A computer programming language is a language used to write computer programs, which involve a computer
performing some kind of computation[3] or algorithm and possibly control external devices such as printers,
disk drives, robots, and so on. For example, PostScript programs are frequently created by another program to
control a computer printer or display. More generally, a programming language may describe computation on
some, possibly abstract, machine. It is generally accepted that a complete specification for a programming
language includes a description, possibly idealized, of a machine or processor for that language.[4] In most
practical contexts, a programming language involves a computer; consequently, programming languages are
usually defined and studied this way. Programming languages differ from natural languages in that natural
languages are only used for interaction between people, while programming languages also allow humans to
communicate instructions to machines.

Abstractions
Programming languages usually contain abstractions for defining and manipulating data structures or
controlling the flow of execution. The practical necessity that a programming language support adequate
abstractions is expressed by the abstraction principle;[5] this principle is sometimes formulated as
recommendation to the programmer to make proper use of such abstractions.

http://en.wikipedia.org/w/index.php?title=Java_programming_language
http://en.wikipedia.org/w/index.php?title=Standard_output
http://en.wikipedia.org/w/index.php?title=Compiled
http://en.wikipedia.org/w/index.php?title=JVM
http://en.wikipedia.org/w/index.php?title=File%3AClasses_and_Methods.png
http://en.wikipedia.org/w/index.php?title=Formal_language
http://en.wikipedia.org/w/index.php?title=Machine_instruction
http://en.wikipedia.org/w/index.php?title=Machine
http://en.wikipedia.org/w/index.php?title=Computer
http://en.wikipedia.org/w/index.php?title=Program_%28machine%29
http://en.wikipedia.org/w/index.php?title=Algorithm
http://en.wikipedia.org/w/index.php?title=History_of_computing_hardware
http://en.wikipedia.org/w/index.php?title=History_of_computing_hardware
http://en.wikipedia.org/w/index.php?title=Jacquard_loom
http://en.wikipedia.org/w/index.php?title=Jacquard_loom
http://en.wikipedia.org/w/index.php?title=Player_piano
http://en.wikipedia.org/w/index.php?title=Imperative_programming
http://en.wikipedia.org/w/index.php?title=Declarative_programming
http://en.wikipedia.org/w/index.php?title=Syntax_%28programming_languages%29
http://en.wikipedia.org/w/index.php?title=Semantics
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=International_Organization_for_Standardization
http://en.wikipedia.org/w/index.php?title=Perl
http://en.wikipedia.org/w/index.php?title=Programming_language_implementation
http://en.wikipedia.org/w/index.php?title=Reference_implementation
http://en.wikipedia.org/w/index.php?title=Algorithm
http://en.wikipedia.org/w/index.php?title=Formal_language
http://en.wikipedia.org/w/index.php?title=Computer
http://en.wikipedia.org/w/index.php?title=Algorithm
http://en.wikipedia.org/w/index.php?title=Printer_%28computing%29
http://en.wikipedia.org/w/index.php?title=Disk_drive
http://en.wikipedia.org/w/index.php?title=Robot
http://en.wikipedia.org/w/index.php?title=PostScript
http://en.wikipedia.org/w/index.php?title=Natural_language
http://en.wikipedia.org/w/index.php?title=Abstraction_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Data_structure
http://en.wikipedia.org/w/index.php?title=Control_flow
http://en.wikipedia.org/w/index.php?title=Abstraction_principle_%28programming%29

Programming language 61

Expressive power
The theory of computation classifies languages by the computations they are capable of expressing. All Turing
complete languages can implement the same set of algorithms. ANSI/ISO SQL-92 and Charity are examples
of languages that are not Turing complete, yet often called programming languages.[6]

Markup languages like XML, HTML or troff, which define structured data, are not usually considered programming
languages.[7] Programming languages may, however, share the syntax with markup languages if a computational
semantics is defined. XSLT, for example, is a Turing complete XML dialect. Moreover, LaTeX, which is mostly
used for structuring documents, also contains a Turing complete subset.[8]

The term computer language is sometimes used interchangeably with programming language.[9] However, the usage
of both terms varies among authors, including the exact scope of each. One usage describes programming languages
as a subset of computer languages.[10] In this vein, languages used in computing that have a different goal than
expressing computer programs are generically designated computer languages. For instance, markup languages are
sometimes referred to as computer languages to emphasize that they are not meant to be used for programming.[11]

Another usage regards programming languages as theoretical constructs for programming abstract machines, and
computer languages as the subset thereof that runs on physical computers, which have finite hardware resources.[12]

John C. Reynolds emphasizes that formal specification languages are just as much programming languages as are the
languages intended for execution. He also argues that textual and even graphical input formats that affect the
behavior of a computer are programming languages, despite the fact they are commonly not Turing-complete, and
remarks that ignorance of programming language concepts is the reason for many flaws in input formats.[13]

History
Main articles: History of programming languages and Programming language generations

Early developments
The first programming languages designed to communicate instructions to a computer were written in the 1950s. An
early high-level programming language to be designed for a computer was Plankalkül, developed for the German Z3
by Konrad Zuse between 1943 and 1945. However, it was not implemented until 1998 and 2000.[14]

John Mauchly's Short Code, proposed in 1949, was one of the first high-level languages ever developed for an
electronic computer.[15] Unlike machine code, Short Code statements represented mathematical expressions in
understandable form. However, the program had to be translated into machine code every time it ran, making the
process much slower than running the equivalent machine code.
At the University of Manchester, Alick Glennie developed Autocode in the early 1950s. A programming language, it
used a compiler to automatically convert the language into machine code. The first code and compiler was developed
in 1952 for the Mark 1 computer at the University of Manchester and is considered to be the first compiled
high-level programming language.
The second autocode was developed for the Mark 1 by R. A. Brooker in 1954 and was called the "Mark 1
Autocode". Brooker also developed an autocode for the Ferranti Mercury in the 1950s in conjunction with the
University of Manchester. The version for the EDSAC 2 was devised by D. F. Hartley of University of Cambridge
Mathematical Laboratory in 1961. Known as EDSAC 2 Autocode, it was a straight development from Mercury
Autocode adapted for local circumstances, and was noted for its object code optimisation and source-language
diagnostics which were advanced for the time. A contemporary but separate thread of development, Atlas Autocode
was developed for the University of Manchester Atlas 1 machine.
Another early programming language was devised by Grace Hopper in the US, called FLOW-MATIC. It was
developed for the UNIVAC I at Remington Rand during the period from 1955 until 1959. Hopper found that
business data processing customers were uncomfortable with mathematical notation, and in early 1955, she and her

http://en.wikipedia.org/w/index.php?title=Theory_of_computation
http://en.wikipedia.org/w/index.php?title=Turing_completeness
http://en.wikipedia.org/w/index.php?title=Turing_completeness
http://en.wikipedia.org/w/index.php?title=Algorithm
http://en.wikipedia.org/w/index.php?title=SQL-92
http://en.wikipedia.org/w/index.php?title=Charity_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Markup_languages
http://en.wikipedia.org/w/index.php?title=XML
http://en.wikipedia.org/w/index.php?title=HTML
http://en.wikipedia.org/w/index.php?title=Troff
http://en.wikipedia.org/w/index.php?title=Structured_data
http://en.wikipedia.org/w/index.php?title=XSLT
http://en.wikipedia.org/w/index.php?title=Turing_completeness
http://en.wikipedia.org/w/index.php?title=LaTeX
http://en.wikipedia.org/w/index.php?title=John_C._Reynolds
http://en.wikipedia.org/w/index.php?title=Formal_specification
http://en.wikipedia.org/w/index.php?title=Programming_language_generations
http://en.wikipedia.org/w/index.php?title=High-level_programming_language
http://en.wikipedia.org/w/index.php?title=Plankalk%C3%BCl
http://en.wikipedia.org/w/index.php?title=Z3_%28computer%29
http://en.wikipedia.org/w/index.php?title=Konrad_Zuse
http://en.wikipedia.org/w/index.php?title=John_Mauchly
http://en.wikipedia.org/w/index.php?title=Short_Code_%28computer_language%29
http://en.wikipedia.org/w/index.php?title=Electronic_computer
http://en.wikipedia.org/w/index.php?title=University_of_Manchester
http://en.wikipedia.org/w/index.php?title=Alick_Glennie
http://en.wikipedia.org/w/index.php?title=Autocode
http://en.wikipedia.org/w/index.php?title=High-level_programming_language
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=Manchester_Mark_1
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=Tony_Brooker
http://en.wikipedia.org/w/index.php?title=Ferranti_Mercury
http://en.wikipedia.org/w/index.php?title=EDSAC
http://en.wikipedia.org/w/index.php?title=D._F._Hartley
http://en.wikipedia.org/w/index.php?title=University_of_Cambridge_Mathematical_Laboratory
http://en.wikipedia.org/w/index.php?title=University_of_Cambridge_Mathematical_Laboratory
http://en.wikipedia.org/w/index.php?title=Atlas_Autocode
http://en.wikipedia.org/w/index.php?title=Atlas_Computer_%28Manchester%29
http://en.wikipedia.org/w/index.php?title=Grace_Hopper
http://en.wikipedia.org/w/index.php?title=FLOW-MATIC
http://en.wikipedia.org/w/index.php?title=UNIVAC_I
http://en.wikipedia.org/w/index.php?title=Remington_Rand

Programming language 62

team wrote a specification for an English programming language and implemented a prototype.[16] The
FLOW-MATIC compiler became publicly available in early 1958 and was substantially complete in 1959.[17]

Flow-Matic was a major influence in the design of COBOL, since only it and its direct descendent AIMACO were in
actual use at the time.[18] The language Fortran was developed at IBM in the mid '50s, and became the first widely
used high-level general purpose programming language.

Refinement
The period from the 1960s to the late 1970s brought the development of the major language paradigms now in use,
though many aspects were refinements of ideas in the very first Third-generation programming languages:
• APL introduced array programming and influenced functional programming.[19]

• PL/I, originally called NPL, was designed in the early 1960s to incorporate the best ideas from FORTRAN and
COBOL with block structures taken from ALGOL.

• In the 1960s, Simula was the first language designed to support object-oriented programming; in the mid-1970s,
Smalltalk followed with the first "purely" object-oriented language.

• C was developed between 1969 and 1973 as a system programming language, and remains popular.[20]

• Prolog, designed in 1972, was the first logic programming language.
• In 1978, ML built a polymorphic type system on top of Lisp, pioneering statically typed functional programming

languages.
Each of these languages spawned an entire family of descendants, and most modern languages count at least one of
them in their ancestry.
The 1960s and 1970s also saw considerable debate over the merits of structured programming, and whether
programming languages should be designed to support it. Edsger Dijkstra, in a famous 1968 letter published in the
Communications of the ACM, argued that GOTO statements should be eliminated from all "higher level"
programming languages.
The 1960s and 1970s also saw expansion of techniques that reduced the footprint of a program as well as improved
productivity of the programmer and user. The card deck for an early 4GL was a lot smaller for the same functionality
expressed in a 3GL deck.

http://en.wikipedia.org/w/index.php?title=English_language
http://en.wikipedia.org/w/index.php?title=COBOL
http://en.wikipedia.org/w/index.php?title=AIMACO
http://en.wikipedia.org/w/index.php?title=Fortran
http://en.wikipedia.org/w/index.php?title=Third-generation_programming_language
http://en.wikipedia.org/w/index.php?title=APL_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Array_programming
http://en.wikipedia.org/w/index.php?title=Functional_programming
http://en.wikipedia.org/w/index.php?title=PL/I
http://en.wikipedia.org/w/index.php?title=Simula
http://en.wikipedia.org/w/index.php?title=Object-oriented_programming
http://en.wikipedia.org/w/index.php?title=Smalltalk
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=System_programming
http://en.wikipedia.org/w/index.php?title=Prolog
http://en.wikipedia.org/w/index.php?title=Logic_programming
http://en.wikipedia.org/w/index.php?title=ML_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Functional_programming
http://en.wikipedia.org/w/index.php?title=Structured_programming
http://en.wikipedia.org/w/index.php?title=Edsger_W._Dijkstra
http://en.wikipedia.org/w/index.php?title=Communications_of_the_ACM
http://en.wikipedia.org/w/index.php?title=Goto
http://en.wikipedia.org/w/index.php?title=Computer_programming_in_the_punch_card_era
http://en.wikipedia.org/w/index.php?title=Fourth-generation_programming_language
http://en.wikipedia.org/w/index.php?title=Third-generation_programming_language

Programming language 63

Consolidation and growth

A selection of textbooks that teach programming, in languages
both popular and obscure. These are only a few of the thousands

of programming languages and dialects that have been designed in
history.

The 1980s were years of relative consolidation. C++
combined object-oriented and systems programming. The
United States government standardized Ada, a systems
programming language derived from Pascal and intended
for use by defense contractors. In Japan and elsewhere,
vast sums were spent investigating so-called "fifth
generation" languages that incorporated logic
programming constructs.[21] The functional languages
community moved to standardize ML and Lisp. Rather
than inventing new paradigms, all of these movements
elaborated upon the ideas invented in the previous
decade.

One important trend in language design for programming
large-scale systems during the 1980s was an increased
focus on the use of modules, or large-scale organizational
units of code. Modula-2, Ada, and ML all developed
notable module systems in the 1980s, although other
languages, such as PL/I, already had extensive support for
modular programming. Module systems were often
wedded to generic programming constructs.

The rapid growth of the Internet in the mid-1990s created
opportunities for new languages. Perl, originally a Unix
scripting tool first released in 1987, became common in
dynamic websites. Java came to be used for server-side programming, and bytecode virtual machines became
popular again in commercial settings with their promise of "Write once, run anywhere" (UCSD Pascal had been
popular for a time in the early 1980s). These developments were not fundamentally novel, rather they were
refinements to existing languages and paradigms, and largely based on the C family of programming languages.

Programming language evolution continues, in both industry and research. Current directions include security and
reliability verification, new kinds of modularity (mixins, delegates, aspects), and database integration such as
Microsoft's LINQ.
The 4GLs are examples of languages which are domain-specific, such as SQL, which manipulates and returns sets of
data rather than the scalar values which are canonical to most programming languages. Perl, for example, with its
"here document" can hold multiple 4GL programs, as well as multiple JavaScript programs, in part of its own perl
code and use variable interpolation in the "here document" to support multi-language programming.[22]

http://en.wikipedia.org/w/index.php?title=File%3ABangalore_India_Tech_books_for_sale_IMG_5261.jpg
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Pascal_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Fifth-generation_programming_language
http://en.wikipedia.org/w/index.php?title=Fifth-generation_programming_language
http://en.wikipedia.org/w/index.php?title=ML_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Modula-2
http://en.wikipedia.org/w/index.php?title=PL/I
http://en.wikipedia.org/w/index.php?title=Generic_programming
http://en.wikipedia.org/w/index.php?title=Internet
http://en.wikipedia.org/w/index.php?title=Perl
http://en.wikipedia.org/w/index.php?title=Website
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Write_once%2C_run_anywhere
http://en.wikipedia.org/w/index.php?title=UCSD_Pascal
http://en.wikipedia.org/w/index.php?title=Mixin
http://en.wikipedia.org/w/index.php?title=Delegation_%28programming%29
http://en.wikipedia.org/w/index.php?title=Aspect-oriented_programming
http://en.wikipedia.org/w/index.php?title=Language_Integrated_Query
http://en.wikipedia.org/w/index.php?title=Fourth-generation_programming_language
http://en.wikipedia.org/w/index.php?title=Domain-specific_language
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=Set_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Perl
http://en.wikipedia.org/w/index.php?title=Here_document
http://en.wikipedia.org/w/index.php?title=Variable_interpolation

Programming language 64

Elements
All programming languages have some primitive building blocks for the description of data and the processes or
transformations applied to them (like the addition of two numbers or the selection of an item from a collection).
These primitives are defined by syntactic and semantic rules which describe their structure and meaning
respectively.

Syntax

Parse tree of Python code with inset tokenization

Syntax highlighting is often used to aid programmers in recognizing elements of
source code. The language above is Python.

Main article: Syntax (programming
languages)

A programming language's surface
form is known as its syntax. Most
programming languages are purely
textual; they use sequences of text
including words, numbers, and
punctuation, much like written natural
languages. On the other hand, there are
some programming languages which
are more graphical in nature, using
visual relationships between symbols
to specify a program.

The syntax of a language describes the
possible combinations of symbols that
form a syntactically correct program.
The meaning given to a combination of
symbols is handled by semantics
(either formal or hard-coded in a
reference implementation). Since most
languages are textual, this article
discusses textual syntax.

Programming language syntax is
usually defined using a combination of
regular expressions (for lexical
structure) and Backus–Naur Form (for
grammatical structure). Below is a
simple grammar, based on Lisp:

expression ::= atom | list

atom ::= number | symbol

number ::= [+-]?['0'-'9']+

symbol ::= ['A'-'Z''a'-'z'].*

http://en.wikipedia.org/w/index.php?title=Parse_tree
http://en.wikipedia.org/w/index.php?title=File%3APython_add5_parse.png
http://en.wikipedia.org/w/index.php?title=Syntax_highlighting
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=File%3APython_add5_syntax.svg
http://en.wikipedia.org/w/index.php?title=Syntax_%28programming_languages%29
http://en.wikipedia.org/w/index.php?title=Syntax_%28programming_languages%29
http://en.wikipedia.org/w/index.php?title=Syntax_%28programming_languages%29
http://en.wikipedia.org/w/index.php?title=Visual_programming_language
http://en.wikipedia.org/w/index.php?title=Formal_semantics_of_programming_languages
http://en.wikipedia.org/w/index.php?title=Reference_implementation_%28computing%29
http://en.wikipedia.org/w/index.php?title=Regular_expression
http://en.wikipedia.org/w/index.php?title=Lexical_analysis
http://en.wikipedia.org/w/index.php?title=Backus%E2%80%93Naur_Form
http://en.wikipedia.org/w/index.php?title=Context-free_grammar
http://en.wikipedia.org/w/index.php?title=Lisp_%28programming_language%29

Programming language 65

list ::= '(' expression* ')'

This grammar specifies the following:
• an expression is either an atom or a list;
• an atom is either a number or a symbol;
• a number is an unbroken sequence of one or more decimal digits, optionally preceded by a plus or minus sign;
• a symbol is a letter followed by zero or more of any characters (excluding whitespace); and
• a list is a matched pair of parentheses, with zero or more expressions inside it.
The following are examples of well-formed token sequences in this grammar: 12345, () and (a b c232
(1)).
Not all syntactically correct programs are semantically correct. Many syntactically correct programs are nonetheless
ill-formed, per the language's rules; and may (depending on the language specification and the soundness of the
implementation) result in an error on translation or execution. In some cases, such programs may exhibit undefined
behavior. Even when a program is well-defined within a language, it may still have a meaning that is not intended by
the person who wrote it.
Using natural language as an example, it may not be possible to assign a meaning to a grammatically correct
sentence or the sentence may be false:
• "Colorless green ideas sleep furiously." is grammatically well-formed but has no generally accepted meaning.
•• "John is a married bachelor." is grammatically well-formed but expresses a meaning that cannot be true.
The following C language fragment is syntactically correct, but performs operations that are not semantically defined
(the operation *p >> 4 has no meaning for a value having a complex type and p->im is not defined because the
value of p is the null pointer):

complex *p = NULL;

complex abs_p = sqrt(*p >> 4 + p->im);

If the type declaration on the first line were omitted, the program would trigger an error on compilation, as the
variable "p" would not be defined. But the program would still be syntactically correct, since type declarations
provide only semantic information.
The grammar needed to specify a programming language can be classified by its position in the Chomsky hierarchy.
The syntax of most programming languages can be specified using a Type-2 grammar, i.e., they are context-free
grammars.[23] Some languages, including Perl and Lisp, contain constructs that allow execution during the parsing
phase. Languages that have constructs that allow the programmer to alter the behavior of the parser make syntax
analysis an undecidable problem, and generally blur the distinction between parsing and execution.[24] In contrast to
Lisp's macro system and Perl's BEGIN blocks, which may contain general computations, C macros are merely string
replacements, and do not require code execution.[25]

Semantics
The term Semantics refers to the meaning of languages, as opposed to their form (syntax).

Static semantics

The static semantics defines restrictions on the structure of valid texts that are hard or impossible to express in
standard syntactic formalisms. For compiled languages, static semantics essentially include those semantic rules that
can be checked at compile time. Examples include checking that every identifier is declared before it is used (in
languages that require such declarations) or that the labels on the arms of a case statement are distinct.[26] Many
important restrictions of this type, like checking that identifiers are used in the appropriate context (e.g. not adding
an integer to a function name), or that subroutine calls have the appropriate number and type of arguments, can be

http://en.wikipedia.org/w/index.php?title=Undefined_behavior
http://en.wikipedia.org/w/index.php?title=Undefined_behavior
http://en.wikipedia.org/w/index.php?title=Natural_language
http://en.wikipedia.org/w/index.php?title=Colorless_green_ideas_sleep_furiously
http://en.wikipedia.org/w/index.php?title=Pointer_%28computer_programming%29
http://en.wikipedia.org/w/index.php?title=Type_declaration
http://en.wikipedia.org/w/index.php?title=Chomsky_hierarchy
http://en.wikipedia.org/w/index.php?title=Context-free_grammar
http://en.wikipedia.org/w/index.php?title=Context-free_grammar
http://en.wikipedia.org/w/index.php?title=Undecidable_problem
http://en.wikipedia.org/w/index.php?title=Lisp_macro
http://en.wikipedia.org/w/index.php?title=Semantics%23Computer_science
http://en.wikipedia.org/w/index.php?title=Identifier
http://en.wikipedia.org/w/index.php?title=Case_statement
http://en.wikipedia.org/w/index.php?title=Subroutine

Programming language 66

enforced by defining them as rules in a logic called a type system. Other forms of static analyses like data flow
analysis may also be part of static semantics. Newer programming languages like Java and C# have definite
assignment analysis, a form of data flow analysis, as part of their static semantics.

Dynamic semantics

Main article: Semantics of programming languages
Once data has been specified, the machine must be instructed to perform operations on the data. For example, the
semantics may define the strategy by which expressions are evaluated to values, or the manner in which control
structures conditionally execute statements. The dynamic semantics (also known as execution semantics) of a
language defines how and when the various constructs of a language should produce a program behavior. There are
many ways of defining execution semantics. Natural language is often used to specify the execution semantics of
languages commonly used in practice. A significant amount of academic research went into formal semantics of
programming languages, which allow execution semantics to be specified in a formal manner. Results from this field
of research have seen limited application to programming language design and implementation outside academia.

Type system

Main articles: Data type, Type system and Type safety
A type system defines how a programming language classifies values and expressions into types, how it can
manipulate those types and how they interact. The goal of a type system is to verify and usually enforce a certain
level of correctness in programs written in that language by detecting certain incorrect operations. Any decidable
type system involves a trade-off: while it rejects many incorrect programs, it can also prohibit some correct, albeit
unusual programs. In order to bypass this downside, a number of languages have type loopholes, usually unchecked
casts that may be used by the programmer to explicitly allow a normally disallowed operation between different
types. In most typed languages, the type system is used only to type check programs, but a number of languages,
usually functional ones, infer types, relieving the programmer from the need to write type annotations. The formal
design and study of type systems is known as type theory.

Typed versus untyped languages

A language is typed if the specification of every operation defines types of data to which the operation is applicable,
with the implication that it is not applicable to other types. For example, the data represented by "this text
between the quotes" is a string. In most programming languages, dividing a number by a string has no
meaning; most modern programming languages will therefore reject any program attempting to perform such an
operation. In some languages the meaningless operation will be detected when the program is compiled ("static" type
checking), and rejected by the compiler; while in others, it will be detected when the program is run ("dynamic" type
checking), resulting in a run-time exception.
A special case of typed languages are the single-type languages. These are often scripting or markup languages, such
as REXX or SGML, and have only one data type—most commonly character strings which are used for both
symbolic and numeric data.
In contrast, an untyped language, such as most assembly languages, allows any operation to be performed on any
data, which are generally considered to be sequences of bits of various lengths. High-level languages which are
untyped include BCPL, Tcl, and some varieties of Forth.
In practice, while few languages are considered typed from the point of view of type theory (verifying or rejecting
all operations), most modern languages offer a degree of typing. Many production languages provide means to
bypass or subvert the type system, trading type-safety for finer control over the program's execution (see casting).

http://en.wikipedia.org/w/index.php?title=Logic
http://en.wikipedia.org/w/index.php?title=Static_code_analysis
http://en.wikipedia.org/w/index.php?title=Data_flow_analysis
http://en.wikipedia.org/w/index.php?title=Data_flow_analysis
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Definite_assignment_analysis
http://en.wikipedia.org/w/index.php?title=Definite_assignment_analysis
http://en.wikipedia.org/w/index.php?title=Semantics_of_programming_languages
http://en.wikipedia.org/w/index.php?title=Evaluation_strategy
http://en.wikipedia.org/w/index.php?title=Control_flow
http://en.wikipedia.org/w/index.php?title=Control_flow
http://en.wikipedia.org/w/index.php?title=Statement_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Formal_semantics_of_programming_languages
http://en.wikipedia.org/w/index.php?title=Formal_semantics_of_programming_languages
http://en.wikipedia.org/w/index.php?title=Data_type
http://en.wikipedia.org/w/index.php?title=Type_safety
http://en.wikipedia.org/w/index.php?title=Decidability_%28logic%29
http://en.wikipedia.org/w/index.php?title=Type_conversion%23Explicit_type_conversion
http://en.wikipedia.org/w/index.php?title=Type_checking
http://en.wikipedia.org/w/index.php?title=Type_inference
http://en.wikipedia.org/w/index.php?title=Type_theory
http://en.wikipedia.org/w/index.php?title=String_literal
http://en.wikipedia.org/w/index.php?title=Exception_handling
http://en.wikipedia.org/w/index.php?title=REXX
http://en.wikipedia.org/w/index.php?title=Standard_Generalized_Markup_Language
http://en.wikipedia.org/w/index.php?title=BCPL
http://en.wikipedia.org/w/index.php?title=Tcl
http://en.wikipedia.org/w/index.php?title=Forth_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Type_theory
http://en.wikipedia.org/w/index.php?title=Type_conversion%23Explicit_type_conversion

Programming language 67

Static versus dynamic typing

In static typing, all expressions have their types determined prior to when the program is executed, typically at
compile-time. For example, 1 and (2+2) are integer expressions; they cannot be passed to a function that expects a
string, or stored in a variable that is defined to hold dates.
Statically typed languages can be either manifestly typed or type-inferred. In the first case, the programmer must
explicitly write types at certain textual positions (for example, at variable declarations). In the second case, the
compiler infers the types of expressions and declarations based on context. Most mainstream statically typed
languages, such as C++, C# and Java, are manifestly typed. Complete type inference has traditionally been
associated with less mainstream languages, such as Haskell and ML. However, many manifestly typed languages
support partial type inference; for example, Java and C# both infer types in certain limited cases.[27]

Dynamic typing, also called latent typing, determines the type-safety of operations at run time; in other words, types
are associated with run-time values rather than textual expressions. As with type-inferred languages, dynamically
typed languages do not require the programmer to write explicit type annotations on expressions. Among other
things, this may permit a single variable to refer to values of different types at different points in the program
execution. However, type errors cannot be automatically detected until a piece of code is actually executed,
potentially making debugging more difficult. Lisp, Perl, Python, JavaScript, and Ruby are dynamically typed.

Weak and strong typing

Weak typing allows a value of one type to be treated as another, for example treating a string as a number. This can
occasionally be useful, but it can also allow some kinds of program faults to go undetected at compile time and even
at run time.
Strong typing prevents the above. An attempt to perform an operation on the wrong type of value raises an error.
Strongly typed languages are often termed type-safe or safe.
An alternative definition for "weakly typed" refers to languages, such as Perl and JavaScript, which permit a large
number of implicit type conversions. In JavaScript, for example, the expression 2 * x implicitly converts x to a
number, and this conversion succeeds even if x is null, undefined, an Array, or a string of letters. Such
implicit conversions are often useful, but they can mask programming errors. Strong and static are now generally
considered orthogonal concepts, but usage in the literature differs. Some use the term strongly typed to mean
strongly, statically typed, or, even more confusingly, to mean simply statically typed. Thus C has been called both
strongly typed and weakly, statically typed.
It may seem odd to some professional programmers that C could be "weakly, statically typed". However, notice that
the use of the generic pointer, the void* pointer, does allow for casting of pointers to other pointers without needing
to do an explicit cast. This is extremely similar to somehow casting an array of bytes to any kind of datatype in C
without using an explicit cast, such as (int) or (char).

Standard library and run-time system
Main article: Standard library
Most programming languages have an associated core library (sometimes known as the 'standard library', especially
if it is included as part of the published language standard), which is conventionally made available by all
implementations of the language. Core libraries typically include definitions for commonly used algorithms, data
structures, and mechanisms for input and output.
A language's core library is often treated as part of the language by its users, although the designers may have treated
it as a separate entity. Many language specifications define a core that must be made available in all
implementations, and in the case of standardized languages this core library may be required. The line between a
language and its core library therefore differs from language to language. Indeed, some languages are designed so

http://en.wikipedia.org/w/index.php?title=Manifest_typing
http://en.wikipedia.org/w/index.php?title=Type_inference
http://en.wikipedia.org/w/index.php?title=Declaration_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Haskell_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=ML_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Software_bug
http://en.wikipedia.org/w/index.php?title=Debugging
http://en.wikipedia.org/w/index.php?title=Lisp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Perl
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=JavaScript
http://en.wikipedia.org/w/index.php?title=Ruby_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=String_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Compile_time
http://en.wikipedia.org/w/index.php?title=Run_time_%28program_lifecycle_phase%29
http://en.wikipedia.org/w/index.php?title=Type_safety
http://en.wikipedia.org/w/index.php?title=Perl
http://en.wikipedia.org/w/index.php?title=JavaScript
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Standard_library
http://en.wikipedia.org/w/index.php?title=Library_%28computing%29

Programming language 68

that the meanings of certain syntactic constructs cannot even be described without referring to the core library. For
example, in Java, a string literal is defined as an instance of the java.lang.String class; similarly, in
Smalltalk, an anonymous function expression (a "block") constructs an instance of the library's BlockContext
class. Conversely, Scheme contains multiple coherent subsets that suffice to construct the rest of the language as
library macros, and so the language designers do not even bother to say which portions of the language must be
implemented as language constructs, and which must be implemented as parts of a library.

Design and implementation
Programming languages share properties with natural languages related to their purpose as vehicles for
communication, having a syntactic form separate from its semantics, and showing language families of related
languages branching one from another.[28] But as artificial constructs, they also differ in fundamental ways from
languages that have evolved through usage. A significant difference is that a programming language can be fully
described and studied in its entirety, since it has a precise and finite definition. By contrast, natural languages have
changing meanings given by their users in different communities. While constructed languages are also artificial
languages designed from the ground up with a specific purpose, they lack the precise and complete semantic
definition that a programming language has.
Many programming languages have been designed from scratch, altered to meet new needs, and combined with
other languages. Many have eventually fallen into disuse. Although there have been attempts to design one
"universal" programming language that serves all purposes, all of them have failed to be generally accepted as filling
this role.[29] The need for diverse programming languages arises from the diversity of contexts in which languages
are used:
• Programs range from tiny scripts written by individual hobbyists to huge systems written by hundreds of

programmers.
•• Programmers range in expertise from novices who need simplicity above all else, to experts who may be

comfortable with considerable complexity.
• Programs must balance speed, size, and simplicity on systems ranging from microcontrollers to supercomputers.
•• Programs may be written once and not change for generations, or they may undergo continual modification.
•• Finally, programmers may simply differ in their tastes: they may be accustomed to discussing problems and

expressing them in a particular language.
One common trend in the development of programming languages has been to add more ability to solve problems
using a higher level of abstraction. The earliest programming languages were tied very closely to the underlying
hardware of the computer. As new programming languages have developed, features have been added that let
programmers express ideas that are more remote from simple translation into underlying hardware instructions.
Because programmers are less tied to the complexity of the computer, their programs can do more computing with
less effort from the programmer. This lets them write more functionality per time unit.[30]

Natural language programming has been proposed as a way to eliminate the need for a specialized language for
programming. However, this goal remains distantWikipedia:Manual of Style/Dates and numbers#Precise language
and its benefits are open to debate. Edsger W. Dijkstra took the position that the use of a formal language is essential
to prevent the introduction of meaningless constructs, and dismissed natural language programming as "foolish".[31]

Alan Perlis was similarly dismissive of the idea. Hybrid approaches have been taken in Structured English and SQL.
A language's designers and users must construct a number of artifacts that govern and enable the practice of
programming. The most important of these artifacts are the language specification and implementation.

http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Smalltalk
http://en.wikipedia.org/w/index.php?title=Anonymous_function
http://en.wikipedia.org/w/index.php?title=Scheme_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Constructed_languages
http://en.wikipedia.org/w/index.php?title=Microcontroller
http://en.wikipedia.org/w/index.php?title=Supercomputer
http://en.wikipedia.org/w/index.php?title=Abstraction_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Natural_language_programming
http://en.wikipedia.org/wiki/Manual_of_Style/Dates_and_numbers#Precise_language
http://en.wikipedia.org/w/index.php?title=Edsger_W._Dijkstra
http://en.wikipedia.org/w/index.php?title=Natural_language_programming
http://en.wikipedia.org/w/index.php?title=Alan_Perlis
http://en.wikipedia.org/w/index.php?title=Structured_English
http://en.wikipedia.org/w/index.php?title=SQL

Programming language 69

Specification
Main article: Programming language specification
The specification of a programming language is intended to provide a definition that the language users and the
implementors can use to determine whether the behavior of a program is correct, given its source code.
A programming language specification can take several forms, including the following:
• An explicit definition of the syntax, static semantics, and execution semantics of the language. While syntax is

commonly specified using a formal grammar, semantic definitions may be written in natural language (e.g., as in
the C language), or a formal semantics (e.g., as in Standard ML and Scheme specifications).

• A description of the behavior of a translator for the language (e.g., the C++ and Fortran specifications). The
syntax and semantics of the language have to be inferred from this description, which may be written in natural or
a formal language.

• A reference or model implementation, sometimes written in the language being specified (e.g., Prolog or ANSI
REXX[32]). The syntax and semantics of the language are explicit in the behavior of the reference
implementation.

Implementation
Main article: Programming language implementation
An implementation of a programming language provides a way to execute that program on one or more
configurations of hardware and software. There are, broadly, two approaches to programming language
implementation: compilation and interpretation. It is generally possible to implement a language using either
technique.
The output of a compiler may be executed by hardware or a program called an interpreter. In some implementations
that make use of the interpreter approach there is no distinct boundary between compiling and interpreting. For
instance, some implementations of BASIC compile and then execute the source a line at a time.
Programs that are executed directly on the hardware usually run several orders of magnitude faster than those that are
interpreted in software.Wikipedia:Citation needed
One technique for improving the performance of interpreted programs is just-in-time compilation. Here the virtual
machine, just before execution, translates the blocks of bytecode which are going to be used to machine code, for
direct execution on the hardware.

Usage
Thousands of different programming languages have been created, mainly in the computing field. Programming
languages differ from most other forms of human expression in that they require a greater degree of precision and
completeness.
When using a natural language to communicate with other people, human authors and speakers can be ambiguous
and make small errors, and still expect their intent to be understood. However, figuratively speaking, computers "do
exactly what they are told to do", and cannot "understand" what code the programmer intended to write. The
combination of the language definition, a program, and the program's inputs must fully specify the external behavior
that occurs when the program is executed, within the domain of control of that program. On the other hand, ideas
about an algorithm can be communicated to humans without the precision required for execution by using
pseudocode, which interleaves natural language with code written in a programming language.
A programming language provides a structured mechanism for defining pieces of data, and the operations or
transformations that may be carried out automatically on that data. A programmer uses the abstractions present in the
language to represent the concepts involved in a computation. These concepts are represented as a collection of the

http://en.wikipedia.org/w/index.php?title=Programming_language_specification
http://en.wikipedia.org/w/index.php?title=Programming_language_implementation
http://en.wikipedia.org/w/index.php?title=Natural_language
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Formal_semantics_of_programming_languages
http://en.wikipedia.org/w/index.php?title=Standard_ML
http://en.wikipedia.org/w/index.php?title=Scheme_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=Fortran
http://en.wikipedia.org/w/index.php?title=Reference_implementation
http://en.wikipedia.org/w/index.php?title=Meta-circular_evaluator
http://en.wikipedia.org/w/index.php?title=Prolog
http://en.wikipedia.org/w/index.php?title=REXX
http://en.wikipedia.org/w/index.php?title=REXX
http://en.wikipedia.org/w/index.php?title=Programming_language_implementation
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=Interpreter_%28computing%29
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=BASIC
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Just-in-time_compilation
http://en.wikipedia.org/w/index.php?title=Virtual_machine
http://en.wikipedia.org/w/index.php?title=Virtual_machine
http://en.wikipedia.org/w/index.php?title=Bytecode
http://en.wikipedia.org/w/index.php?title=Pseudocode
http://en.wikipedia.org/w/index.php?title=Abstraction_%28computer_science%29

Programming language 70

simplest elements available (called primitives). Programming is the process by which programmers combine these
primitives to compose new programs, or adapt existing ones to new uses or a changing environment.
Programs for a computer might be executed in a batch process without human interaction, or a user might type
commands in an interactive session of an interpreter. In this case the "commands" are simply programs, whose
execution is chained together. When a language is used to give commands to a software application (such as a Unix
shell or other command-line interface) it is called a scripting language.Wikipedia:Citation needed

Measuring language usage
Main article: Measuring programming language popularity
It is difficult to determine which programming languages are most widely used, and what usage means varies by
context. One language may occupy the greater number of programmer hours, a different one have more lines of
code, and a third utilize the most CPU time. Some languages are very popular for particular kinds of applications.
For example, COBOL is still strong in the corporate data center, often on large mainframes; Fortran in scientific and
engineering applications; and C in embedded applications and operating systems. Other languages are regularly used
to write many different kinds of applications.
Various methods of measuring language popularity, each subject to a different bias over what is measured, have been
proposed:
•• counting the number of job advertisements that mention the language
•• the number of books sold that teach or describe the language
• estimates of the number of existing lines of code written in the language – which may underestimate languages

not often found in public searches[33]

•• counts of language references (i.e., to the name of the language) found using a web search engine.
Combining and averaging information from various internet sites, langpop.com claims that in 2013 the ten most
popular programming languages are (in descending order by overall popularity): C, Java, PHP, JavaScript, C++,
Python, Shell, Ruby, Objective-C and C#.

Taxonomies
For more details on this topic, see Categorical list of programming languages.
There is no overarching classification scheme for programming languages. A given programming language does not
usually have a single ancestor language. Languages commonly arise by combining the elements of several
predecessor languages with new ideas in circulation at the time. Ideas that originate in one language will diffuse
throughout a family of related languages, and then leap suddenly across familial gaps to appear in an entirely
different family.
The task is further complicated by the fact that languages can be classified along multiple axes. For example, Java is
both an object-oriented language (because it encourages object-oriented organization) and a concurrent language
(because it contains built-in constructs for running multiple threads in parallel). Python is an object-oriented
scripting language.
In broad strokes, programming languages divide into programming paradigms and a classification by intended
domain of use, with general-purpose programming languages distinguished from domain-specific programming
languages. Traditionally, programming languages have been regarded as describing computation in terms of
imperative sentences, i.e. issuing commands. These are generally called imperative programming languages. A great
deal of research in programming languages has been aimed at blurring the distinction between a program as a set of
instructions and a program as an assertion about the desired answer, which is the main feature of declarative
programming.[34] More refined paradigms include procedural programming, object-oriented programming,
functional programming, and logic programming; some languages are hybrids of paradigms or multi-paradigmatic.

http://en.wikipedia.org/w/index.php?title=Computer_Programming
http://en.wikipedia.org/w/index.php?title=Execution_%28computing%29
http://en.wikipedia.org/w/index.php?title=Batch_processing
http://en.wikipedia.org/w/index.php?title=Command_%28computing%29
http://en.wikipedia.org/w/index.php?title=Session_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Interpreter_%28computing%29
http://en.wikipedia.org/w/index.php?title=Unix_shell
http://en.wikipedia.org/w/index.php?title=Unix_shell
http://en.wikipedia.org/w/index.php?title=Command-line_interface
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Measuring_programming_language_popularity
http://en.wikipedia.org/w/index.php?title=COBOL
http://en.wikipedia.org/w/index.php?title=Mainframe_computer
http://en.wikipedia.org/w/index.php?title=Fortran
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=PHP
http://en.wikipedia.org/w/index.php?title=JavaScript
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Shell_script
http://en.wikipedia.org/w/index.php?title=Ruby_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Objective-C
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Categorical_list_of_programming_languages
http://en.wikipedia.org/w/index.php?title=Thread_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Programming_paradigm
http://en.wikipedia.org/w/index.php?title=General-purpose_programming_language
http://en.wikipedia.org/w/index.php?title=Domain-specific_programming_language
http://en.wikipedia.org/w/index.php?title=Domain-specific_programming_language
http://en.wikipedia.org/w/index.php?title=Imperative_programming
http://en.wikipedia.org/w/index.php?title=Declarative_programming
http://en.wikipedia.org/w/index.php?title=Declarative_programming
http://en.wikipedia.org/w/index.php?title=Procedural_programming
http://en.wikipedia.org/w/index.php?title=Object-oriented_programming
http://en.wikipedia.org/w/index.php?title=Functional_programming
http://en.wikipedia.org/w/index.php?title=Logic_programming

Programming language 71

An assembly language is not so much a paradigm as a direct model of an underlying machine architecture. By
purpose, programming languages might be considered general purpose, system programming languages, scripting
languages, domain-specific languages, or concurrent/distributed languages (or a combination of these). Some general
purpose languages were designed largely with educational goals.
A programming language may also be classified by factors unrelated to programming paradigm. For instance, most
programming languages use English language keywords, while a minority do not. Other languages may be classified
as being deliberately esoteric or not.

References
[1] Ettinger, James (2004) Jacquard's Web, Oxford University Press
[2] In mathematical terms, this means the programming language is Turing-complete
[3] , The scope of SIGPLAN is the theory, design, implementation, description, and application of computer programming languages - languages

that permit the specification of a variety of different computations, thereby providing the user with significant control (immediate or delayed)
over the computer's operation.

[4][4] R. Narasimahan, Programming Languages and Computers: A Unified Metatheory, pp. 189--247 in Franz Alt, Morris Rubinoff (eds.)
Advances in computers, Volume 8, Academic Press, 1994, ISBN 012012108, p.193 : "a complete specification of a programming language
must, by definition, include a specification of a processor--idealized, if you will--for that language." [the source cites many references to
support this statement]

[5] David A. Schmidt, The structure of typed programming languages, MIT Press, 1994, ISBN 0-262-19349-3, p. 32
[6] , Charity is a categorical programming language..., All Charity computations terminate.
[7] XML in 10 points (http:/ / www. w3. org/ XML/ 1999/ XML-in-10-points. html) W3C, 1999, XML is not a programming language.
[8] http:/ / tobi. oetiker. ch/ lshort/ lshort. pdf
[9][9] Robert A. Edmunds, The Prentice-Hall standard glossary of computer terminology, Prentice-Hall, 1985, p. 91
[10] Pascal Lando, Anne Lapujade, Gilles Kassel, and Frédéric Fürst, Towards a General Ontology of Computer Programs (http:/ / www.

loa-cnr. it/ ICSOFT2007_final. pdf), ICSOFT 2007 (http:/ / dblp. uni-trier. de/ db/ conf/ icsoft/ icsoft2007-1. html), pp. 163-170
[11] S.K. Bajpai, Introduction To Computers And C Programming, New Age International, 2007, ISBN 81-224-1379-X, p. 346
[12][12] R. Narasimahan, Programming Languages and Computers: A Unified Metatheory, pp. 189--247 in Franz Alt, Morris Rubinoff (eds.)

Advances in computers, Volume 8, Academic Press, 1994, ISBN 012012108, p.215: "[...] the model [...] for computer languages differs from
that [...] for programming languages in only two respects. In a computer language, there are only finitely many names--or registers--which can
assume only finitely many values--or states--and these states are not further distinguished in terms of any other attributes. [author's footnote:]
This may sound like a truism but its implications are far reaching. For example, it would imply that any model for programming languages, by
fixing certain of its parameters or features, should be reducible in a natural way to a model for computer languages."

[13] John C. Reynolds, Some thoughts on teaching programming and programming languages, SIGPLAN Notices, Volume 43, Issue 11,
November 2008, p.109

[14] Rojas, Raúl, et al. (2000). "Plankalkül: The First High-Level Programming Language and its Implementation". Institut für Informatik, Freie
Universität Berlin, Technical Report B-3/2000. (full text) (http:/ / www. zib. de/ zuse/ Inhalt/ Programme/ Plankalkuel/ Plankalkuel-Report/
Plankalkuel-Report. htm)

[15][15] Sebesta, W.S Concepts of Programming languages. 2006;M6 14:18 pp.44. ISBN 0-321-33025-0
[16][16] Hopper (1978) p. 16.
[17][17] Sammet (1969) p. 316
[18][18] Sammet (1978) p. 204.
[19] Richard L. Wexelblat: History of Programming Languages, Academic Press, 1981, chapter XIV.
[20][20] . This comparison analyzes trends in number of projects hosted by a popular community programming repository. During most years of the

comparison, C leads by a considerable margin; in 2006, Java overtakes C, but the combination of C/C++ still leads considerably.
[21] Tetsuro Fujise, Takashi Chikayama, Kazuaki Rokusawa, Akihiko Nakase (December 1994). "KLIC: A Portable Implementation of KL1"

Proc. of FGCS '94, ICOT Tokyo, December 1994. http:/ / www. icot. or. jp/ ARCHIVE/ HomePage-E. html KLIC is a portable
implementation of a concurrent logic programming language KL1.

[22] Wall, Programming Perl ISBN 0-596-00027-8 p. 66
[23] Section 2.2: Pushdown Automata, pp.101–114.
[24] Jeffrey Kegler, " Perl and Undecidability (http:/ / www. jeffreykegler. com/ Home/ perl-and-undecidability)", The Perl Review. Papers 2 and

3 prove, using respectively Rice's theorem and direct reduction to the halting problem, that the parsing of Perl programs is in general
undecidable.

[25] Marty Hall, 1995, Lecture Notes: Macros (http:/ / www. apl. jhu. edu/ ~hall/ Lisp-Notes/ Macros. html), PostScript version (http:/ / www.
apl. jhu. edu/ ~hall/ Lisp-Notes/ Macros. ps)

[26] Michael Lee Scott, Programming language pragmatics, Edition 2, Morgan Kaufmann, 2006, ISBN 0-12-633951-1, p. 18–19

http://en.wikipedia.org/w/index.php?title=System_programming_language
http://en.wikipedia.org/w/index.php?title=English_language
http://en.wikipedia.org/w/index.php?title=Non-English-based_programming_languages
http://en.wikipedia.org/w/index.php?title=Esoteric_programming_language
http://en.wikipedia.org/w/index.php?title=Turing_completeness
http://www.w3.org/XML/1999/XML-in-10-points.html
http://en.wikipedia.org/w/index.php?title=W3C
http://tobi.oetiker.ch/lshort/lshort.pdf
http://www.loa-cnr.it/ICSOFT2007_final.pdf
http://www.loa-cnr.it/ICSOFT2007_final.pdf
http://dblp.uni-trier.de/db/conf/icsoft/icsoft2007-1.html
http://en.wikipedia.org/w/index.php?title=SIGPLAN
http://en.wikipedia.org/w/index.php?title=Ra%C3%BAl_Rojas
http://www.zib.de/zuse/Inhalt/Programme/Plankalkuel/Plankalkuel-Report/Plankalkuel-Report.htm
http://www.zib.de/zuse/Inhalt/Programme/Plankalkuel/Plankalkuel-Report/Plankalkuel-Report.htm
http://www.icot.or.jp/ARCHIVE/HomePage-E.html
http://en.wikipedia.org/w/index.php?title=KL1
http://www.jeffreykegler.com/Home/perl-and-undecidability
http://en.wikipedia.org/w/index.php?title=Rice%27s_theorem
http://en.wikipedia.org/w/index.php?title=Halting_problem
http://www.apl.jhu.edu/~hall/Lisp-Notes/Macros.html
http://en.wikipedia.org/w/index.php?title=PostScript
http://www.apl.jhu.edu/~hall/Lisp-Notes/Macros.ps
http://www.apl.jhu.edu/~hall/Lisp-Notes/Macros.ps

Programming language 72

[27] Specifically, instantiations of generic types are inferred for certain expression forms. Type inference in Generic Java—the research language
that provided the basis for Java 1.5's bounded parametric polymorphism extensions—is discussed in two informal manuscripts from the Types
mailing list: Generic Java type inference is unsound (http:/ / www. seas. upenn. edu/ ~sweirich/ types/ archive/ 1999-2003/ msg00849. html)
(Alan Jeffrey, 17 December 2001) and Sound Generic Java type inference (http:/ / www. seas. upenn. edu/ ~sweirich/ types/ archive/
1999-2003/ msg00921. html) (Martin Odersky, 15 January 2002). C#'s type system is similar to Java's, and uses a similar partial type
inference scheme.

[28] Steven R. Fischer, A history of language, Reaktion Books, 2003, ISBN 1-86189-080-X, p. 205
[29] IBM in first publishing PL/I, for example, rather ambitiously titled its manual The universal programming language PL/I (IBM Library;

1966). The title reflected IBM's goals for unlimited subsetting capability: PL/I is designed in such a way that one can isolate subsets from it
satisfying the requirements of particular applications. (). Ada and UNCOL had similar early goals.

[30] Frederick P. Brooks, Jr.: The Mythical Man-Month, Addison-Wesley, 1982, pp. 93-94
[31] Dijkstra, Edsger W. On the foolishness of "natural language programming." (http:/ / www. cs. utexas. edu/ users/ EWD/ transcriptions/

EWD06xx/ EWD667. html) EWD667.
[32] ANSI — Programming Language Rexx, X3-274.1996
[33][33] Bieman, J.M.; Murdock, V., Finding code on the World Wide Web: a preliminary investigation, Proceedings First IEEE International

Workshop on Source Code Analysis and Manipulation, 2001
[34] Carl A. Gunter, Semantics of Programming Languages: Structures and Techniques, MIT Press, 1992, ISBN 0-262-57095-5, p. 1

Further reading
See also: History of programming languages: Further reading|History of programming languages § Further
reading|History of programming languages: Further reading
• Abelson, Harold; Sussman, Gerald Jay (1996). Structure and Interpretation of Computer Programs (http:/ /

mitpress. mit. edu/ sicp/ full-text/ book/ book-Z-H-4. html) (2nd ed.). MIT Press.
• Raphael Finkel: Advanced Programming Language Design (http:/ / www. nondot. org/ sabre/ Mirrored/

AdvProgLangDesign/), Addison Wesley 1995.
• Daniel P. Friedman, Mitchell Wand, Christopher T. Haynes: Essentials of Programming Languages, The MIT

Press 2001.
•• Maurizio Gabbrielli and Simone Martini: "Programming Languages: Principles and Paradigms", Springer, 2010.
• David Gelernter, Suresh Jagannathan: Programming Linguistics, The MIT Press 1990.
• Ellis Horowitz (ed.): Programming Languages, a Grand Tour (3rd ed.), 1987.
• Ellis Horowitz: Fundamentals of Programming Languages, 1989.
• Shriram Krishnamurthi: Programming Languages: Application and Interpretation, online publication (http:/ /

www. cs. brown. edu/ ~sk/ Publications/ Books/ ProgLangs/).
• Bruce J. MacLennan: Principles of Programming Languages: Design, Evaluation, and Implementation, Oxford

University Press 1999.
• John C. Mitchell: Concepts in Programming Languages, Cambridge University Press 2002.
• Benjamin C. Pierce: Types and Programming Languages, The MIT Press 2002.
• Terrence W. Pratt and Marvin V. Zelkowitz: Programming Languages: Design and Implementation (4th ed.),

Prentice Hall 2000.
• Peter H. Salus. Handbook of Programming Languages (4 vols.). Macmillan 1998.
• Ravi Sethi: Programming Languages: Concepts and Constructs, 2nd ed., Addison-Wesley 1996.
• Michael L. Scott: Programming Language Pragmatics, Morgan Kaufmann Publishers 2005.
• Robert W. Sebesta: Concepts of Programming Languages, 9th ed., Addison Wesley 2009.
• Franklyn Turbak and David Gifford with Mark Sheldon: Design Concepts in Programming Languages, The MIT

Press 2009.
• Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming, The MIT Press

2004.
• David A. Watt. Programming Language Concepts and Paradigms. Prentice Hall 1990.
• David A. Watt and Muffy Thomas. Programming Language Syntax and Semantics. Prentice Hall 1991.
• David A. Watt. Programming Language Processors. Prentice Hall 1993.

http://en.wikipedia.org/w/index.php?title=Generic_programming
http://en.wikipedia.org/w/index.php?title=Polymorphism_in_object-oriented_programming
http://www.seas.upenn.edu/~sweirich/types/archive/1999-2003/msg00849.html
http://en.wikipedia.org/w/index.php?title=Alan_Jeffrey
http://www.seas.upenn.edu/~sweirich/types/archive/1999-2003/msg00921.html
http://www.seas.upenn.edu/~sweirich/types/archive/1999-2003/msg00921.html
http://en.wikipedia.org/w/index.php?title=Martin_Odersky
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=UNCOL
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD667.html
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD667.html
http://en.wikipedia.org/w/index.php?title=American_National_Standards_Institute
http://en.wikipedia.org/w/index.php?title=History_of_programming_languages%23Further_reading
http://en.wikipedia.org/w/index.php?title=History_of_programming_languages%23Further_reading
http://en.wikipedia.org/w/index.php?title=Harold_Abelson
http://en.wikipedia.org/w/index.php?title=Gerald_Jay_Sussman
http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html
http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html
http://en.wikipedia.org/w/index.php?title=Raphael_Finkel
http://www.nondot.org/sabre/Mirrored/AdvProgLangDesign/
http://www.nondot.org/sabre/Mirrored/AdvProgLangDesign/
http://en.wikipedia.org/w/index.php?title=Daniel_P._Friedman
http://en.wikipedia.org/w/index.php?title=Mitchell_Wand
http://en.wikipedia.org/w/index.php?title=Christopher_T._Haynes
http://en.wikipedia.org/w/index.php?title=Essentials_of_Programming_Languages
http://en.wikipedia.org/w/index.php?title=David_Gelernter
http://en.wikipedia.org/w/index.php?title=Suresh_Jagannathan
http://en.wikipedia.org/w/index.php?title=The_MIT_Press
http://en.wikipedia.org/w/index.php?title=Ellis_Horowitz
http://en.wikipedia.org/w/index.php?title=Shriram_Krishnamurthi
http://en.wikipedia.org/w/index.php?title=Programming_Languages:_Application_and_Interpretation
http://www.cs.brown.edu/~sk/Publications/Books/ProgLangs/
http://www.cs.brown.edu/~sk/Publications/Books/ProgLangs/
http://en.wikipedia.org/w/index.php?title=Bruce_J._MacLennan
http://en.wikipedia.org/w/index.php?title=Oxford_University_Press
http://en.wikipedia.org/w/index.php?title=Oxford_University_Press
http://en.wikipedia.org/w/index.php?title=John_C._Mitchell
http://en.wikipedia.org/w/index.php?title=Cambridge_University_Press
http://en.wikipedia.org/w/index.php?title=Benjamin_C._Pierce
http://en.wikipedia.org/w/index.php?title=Types_and_Programming_Languages
http://en.wikipedia.org/w/index.php?title=Terrence_W._Pratt
http://en.wikipedia.org/w/index.php?title=Marvin_V._Zelkowitz
http://en.wikipedia.org/w/index.php?title=Peter_H._Salus
http://en.wikipedia.org/w/index.php?title=Ravi_Sethi
http://en.wikipedia.org/w/index.php?title=Addison-Wesley
http://en.wikipedia.org/w/index.php?title=Michael_L._Scott
http://en.wikipedia.org/w/index.php?title=Morgan_Kaufmann_Publishers
http://en.wikipedia.org/w/index.php?title=Robert_W._Sebesta
http://en.wikipedia.org/w/index.php?title=Franklyn_Turbak
http://en.wikipedia.org/w/index.php?title=David_Gifford
http://en.wikipedia.org/w/index.php?title=Mark_Sheldon
http://en.wikipedia.org/w/index.php?title=Peter_Van_Roy
http://en.wikipedia.org/w/index.php?title=Seif_Haridi
http://en.wikipedia.org/w/index.php?title=Concepts%2C_Techniques%2C_and_Models_of_Computer_Programming
http://en.wikipedia.org/w/index.php?title=David_A._Watt
http://en.wikipedia.org/w/index.php?title=Muffy_Thomas

Programming language 73

• David A. Watt. Programming Language Design Concepts. John Wiley & Sons 2004.

External links
• 99 Bottles of Beer (http:/ / www. 99-bottles-of-beer. net/) A collection of implementations in many languages.
• Computer Programming Languages (http:/ / www. dmoz. org/ Computers/ Programming/ Languages) at DMOZ

Abstraction
In computer science, abstraction is the process of separating ideas from specific instances of those ideas at work.
Computational structures are defined by their meanings (semantics), while hiding away the details of how they work.
Abstraction tries to factor out details from a common pattern so that programmers can work close to the level of
human thought, leaving out details which matter in practice, but are immaterial to the problem being solved. For
example, a system can have several abstraction layers whereby different meanings and amounts of detail are exposed
to the programmer; low-level abstraction layers expose details of the computer hardware where the program runs,
while high-level layers deal with the business logic of the program.
Abstraction captures only those details about an object that are relevant to the current perspective; in both computing
and in mathematics, numbers are concepts in programming languages. Numbers can be represented in myriad ways
in hardware and software, but, irrespective of how this is done, numerical operations will obey identical rules.
Abstraction can apply to control or to data: Control abstraction is the abstraction of actions while data abstraction
is that of data structures.
• Control abstraction involves the use of subprograms and related concepts control flows
• Data abstraction allows handling data bits in meaningful ways. For example, it is the basic motivation behind

datatype.
One can regard the notion of an object (from object-oriented programming) as an attempt to combine abstractions of
data and code.
The same abstract definition can be used as a common interface for a family of objects with different
implementations and behaviors but which share the same meaning. The inheritance mechanism in object-oriented
programming can be used to define an abstract class as the common interface.
The recommendation that programmers use abstractions whenever suitable in order to avoid duplication (usually of
code) is known as the abstraction principle. The requirement that a programming language provide suitable
abstractions is also called the abstraction principle.

Rationale
Computing mostly operates independently of the concrete world: The hardware implements a model of computation
that is interchangeable with others. The software is structured in architectures to enable humans to create the
enormous systems by concentration on a few issues at a time. These architectures are made of specific choices of
abstractions. Greenspun's Tenth Rule is an aphorism on how such an architecture is both inevitable and complex.
A central form of abstraction in computing is language abstraction: new artificial languages are developed to express
specific aspects of a system. Modeling languages help in planning. Computer languages can be processed with a
computer. An example of this abstraction process is the generational development of programming languages from
the machine language to the assembly language and the high-level language. Each stage can be used as a stepping
stone for the next stage. The language abstraction continues for example in scripting languages and domain-specific
programming languages.

http://www.99-bottles-of-beer.net/
http://www.dmoz.org/Computers/Programming/Languages
http://en.wikipedia.org/w/index.php?title=DMOZ
http://en.wikipedia.org/w/index.php?title=Computer_science
http://en.wikipedia.org/w/index.php?title=Computational_structures
http://en.wikipedia.org/w/index.php?title=Semantics%23Computer_science
http://en.wikipedia.org/w/index.php?title=Abstraction_layer
http://en.wikipedia.org/w/index.php?title=High_and_low_level
http://en.wikipedia.org/w/index.php?title=Computer_hardware
http://en.wikipedia.org/w/index.php?title=Execution_%28computing%29
http://en.wikipedia.org/w/index.php?title=Business_logic
http://en.wikipedia.org/w/index.php?title=Data_structures
http://en.wikipedia.org/w/index.php?title=Subprogram
http://en.wikipedia.org/w/index.php?title=Control_flow
http://en.wikipedia.org/w/index.php?title=Datatype
http://en.wikipedia.org/w/index.php?title=Object_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Object-oriented_programming
http://en.wikipedia.org/w/index.php?title=Interface_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Inheritance_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Class_%28computer_science%29%23Abstract
http://en.wikipedia.org/w/index.php?title=Code_duplication
http://en.wikipedia.org/w/index.php?title=Code_duplication
http://en.wikipedia.org/w/index.php?title=Abstraction_principle_%28programming%29
http://en.wikipedia.org/w/index.php?title=Model_of_computation
http://en.wikipedia.org/w/index.php?title=Software_architecture
http://en.wikipedia.org/w/index.php?title=Greenspun%27s_Tenth_Rule
http://en.wikipedia.org/w/index.php?title=Aphorism
http://en.wikipedia.org/w/index.php?title=Modeling_languages
http://en.wikipedia.org/w/index.php?title=Computer_language
http://en.wikipedia.org/w/index.php?title=First-generation_programming_language
http://en.wikipedia.org/w/index.php?title=Second-generation_programming_language
http://en.wikipedia.org/w/index.php?title=Third-generation_programming_language
http://en.wikipedia.org/w/index.php?title=Domain-specific_programming_language
http://en.wikipedia.org/w/index.php?title=Domain-specific_programming_language

Abstraction 74

Within a programming language, some features let the programmer create new abstractions. These include the
subroutine, the module, and the software component. Some other abstractions such as software design patterns and
architectural styles remain invisible to a programming language and operate only in the design of a system.
Some abstractions try to limit the breadth of concepts a programmer needs by completely hiding the abstractions that
in turn are built on. The software engineer and writer Joel Spolsky has criticised these efforts by claiming that all
abstractions are leaky — that they can never completely hide the details below Wikipedia:Citation needed; however
this does not negate the usefulness of abstraction. Some abstractions are designed to interoperate with others, for
example a programming language may contain a foreign function interface for making calls to the lower-level
language. Data abstraction is the separation between the specification of data object and its implementation.

Language features

Programming languages
Main article: Programming language
Different programming languages provide different types of abstraction, depending on the intended applications for
the language. For example:
• In object-oriented programming languages such as C++, Object Pascal, or Java, the concept of abstraction has

itself become a declarative statement - using the keywords virtual (in C++) or abstract and
interface (in Java). After such a declaration, it is the responsibility of the programmer to implement a class to
instantiate the object of the declaration.

• Functional programming languages commonly exhibit abstractions related to functions, such as lambda
abstractions (making a term into a function of some variable), higher-order functions (parameters are functions),
bracket abstraction (making a term into a function of a variable).

• Modern Lisps such as Clojure, Scheme and Common Lisp support macro systems to allow syntactic abstraction.
This allows a Lisp programmer to eliminate boilerplate code, abstract away tedious function call sequences,
implement new control flow structures, implement or even build Domain Specific Languages (DSLs), which
allow domain-specific concepts to be expressed in some optimised way. All of these, when used correctly,
improve both the programmer's efficiency and the clarity of the code by making the intended purpose more
explicit. A consequence of syntactic abstraction is also that any Lisp dialect and in fact almost any programming
language can, in principle, be implemented in any modern Lisp with significantly reduced (but still non-trivial in
some cases) effort when compared to "more traditional" programming languages such as Python, C or Java.

Specification methods
Main article: Formal specification
Analysts have developed various methods to formally specify software systems. Some known methods include:
•• Abstract-model based method (VDM, Z);
•• Algebraic techniques (Larch, CLEAR, OBJ, ACT ONE, CASL);
•• Process-based techniques (LOTOS, SDL, Estelle);
•• Trace-based techniques (SPECIAL, TAM);
•• Knowledge-based techniques (Refine, Gist).

http://en.wikipedia.org/w/index.php?title=Subroutine
http://en.wikipedia.org/w/index.php?title=Module_%28programming%29
http://en.wikipedia.org/w/index.php?title=Software_component
http://en.wikipedia.org/w/index.php?title=Software_design_pattern
http://en.wikipedia.org/w/index.php?title=Software_architecture%23Architecture_examples
http://en.wikipedia.org/w/index.php?title=Joel_Spolsky
http://en.wikipedia.org/w/index.php?title=Leaky_abstraction
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Foreign_function_interface
http://en.wikipedia.org/w/index.php?title=Object-oriented_programming_language
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=Object_Pascal
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Keyword_%28computer_programming%29
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Class_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Object_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Functional_programming_language
http://en.wikipedia.org/w/index.php?title=Lambda_abstraction
http://en.wikipedia.org/w/index.php?title=Lambda_abstraction
http://en.wikipedia.org/w/index.php?title=Higher-order_function
http://en.wikipedia.org/w/index.php?title=Bracket_abstraction
http://en.wikipedia.org/w/index.php?title=Clojure
http://en.wikipedia.org/w/index.php?title=Scheme_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Common_Lisp
http://en.wikipedia.org/w/index.php?title=Macro_%28computer_science%29%23Syntactic_macros
http://en.wikipedia.org/w/index.php?title=Boilerplate_code
http://en.wikipedia.org/w/index.php?title=Control_flow
http://en.wikipedia.org/w/index.php?title=Domain-specific_language
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Formal_specification

Abstraction 75

Specification languages
Main article: Specification language
Specification languages generally rely on abstractions of one kind or another, since specifications are typically
defined earlier in a project, (and at a more abstract level) than an eventual implementation. The UML specification
language, for example, allows the definition of abstract classes, which remain abstract during the architecture and
specification phase of the project.

Control abstraction
Main article: Control flow
Programming languages offer control abstraction as one of the main purposes of their use. Computer machines
understand operations at the very low level such as moving some bits from one location of the memory to another
location and producing the sum of two sequences of bits. Programming languages allow this to be done in the higher
level. For example, consider this statement written in a Pascal-like fashion:

a := (1 + 2) * 5

To a human, this seems a fairly simple and obvious calculation ("one plus two is three, times five is fifteen").
However, the low-level steps necessary to carry out this evaluation, and return the value "15", and then assign that
value to the variable "a", are actually quite subtle and complex. The values need to be converted to binary
representation (often a much more complicated task than one would think) and the calculations decomposed (by the
compiler or interpreter) into assembly instructions (again, which are much less intuitive to the programmer:
operations such as shifting a binary register left, or adding the binary complement of the contents of one register to
another, are simply not how humans think about the abstract arithmetical operations of addition or multiplication).
Finally, assigning the resulting value of "15" to the variable labeled "a", so that "a" can be used later, involves
additional 'behind-the-scenes' steps of looking up a variable's label and the resultant location in physical or virtual
memory, storing the binary representation of "15" to that memory location, etc.
Without control abstraction, a programmer would need to specify all the register/binary-level steps each time she
simply wanted to add or multiply a couple of numbers and assign the result to a variable. Such duplication of effort
has two serious negative consequences:
1.1. it forces the programmer to constantly repeat fairly common tasks every time a similar operation is needed
2.2. it forces the programmer to program for the particular hardware and instruction set

Structured programming
Main article: Structured programming
Structured programming involves the splitting of complex program tasks into smaller pieces with clear flow-control
and interfaces between components, with reduction of the complexity potential for side-effects.
In a simple program, this may aim to ensure that loops have single or obvious exit points and (where possible) to
have single exit points from functions and procedures.
In a larger system, it may involve breaking down complex tasks into many different modules. Consider a system
which handles payroll on ships and at shore offices:
•• The uppermost level may feature a menu of typical end-user operations.
•• Within that could be standalone executables or libraries for tasks such as signing on and off employees or printing

checks.
•• Within each of those standalone components there could be many different source files, each containing the

program code to handle a part of the problem, with only selected interfaces available to other parts of the
program. A sign on program could have source files for each data entry screen and the database interface (which

http://en.wikipedia.org/w/index.php?title=Specification_language
http://en.wikipedia.org/w/index.php?title=Unified_Modeling_Language
http://en.wikipedia.org/w/index.php?title=Control_flow
http://en.wikipedia.org/w/index.php?title=Pascal_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Structured_programming

Abstraction 76

may itself be a standalone third party library or a statically linked set of library routines).
•• Either the database or the payroll application also has to initiate the process of exchanging data with between ship

and shore, and that data transfer task will often contain many other components.
These layers produce the effect of isolating the implementation details of one component and its assorted internal
methods from the others. Object-oriented programming embraced and extended this concept.

Data abstraction
Main article: Abstract data type
Data abstraction enforces a clear separation between the abstract properties of a data type and the concrete details of
its implementation. The abstract properties are those that are visible to client code that makes use of the data
type—the interface to the data type—while the concrete implementation is kept entirely private, and indeed can
change, for example to incorporate efficiency improvements over time. The idea is that such changes are not
supposed to have any impact on client code, since they involve no difference in the abstract behaviour.
For example, one could define an abstract data type called lookup table which uniquely associates keys with values,
and in which values may be retrieved by specifying their corresponding keys. Such a lookup table may be
implemented in various ways: as a hash table, a binary search tree, or even a simple linear list of (key:value) pairs.
As far as client code is concerned, the abstract properties of the type are the same in each case.
Of course, this all relies on getting the details of the interface right in the first place, since any changes there can
have major impacts on client code. As one way to look at this: the interface forms a contract on agreed behaviour
between the data type and client code; anything not spelled out in the contract is subject to change without notice.
Languages that implement data abstraction include Ada and Modula-2. Object-oriented languages are commonly
claimedWikipedia:Manual of Style/Words to watch#Unsupported attributions to offer data abstraction; however,
their inheritance concept tends to put information in the interface that more properly belongs in the implementation;
thus, changes to such information ends up impacting client code, leading directly to the Fragile binary interface
problem.

Abstraction in object oriented programming
Main article: Object (computer science)
In object-oriented programming theory, abstraction involves the facility to define objects that represent abstract
"actors" that can perform work, report on and change their state, and "communicate" with other objects in the
system. The term encapsulation refers to the hiding of state details, but extending the concept of data type from
earlier programming languages to associate behavior most strongly with the data, and standardizing the way that
different data types interact, is the beginning of abstraction. When abstraction proceeds into the operations defined,
enabling objects of different types to be substituted, it is called polymorphism. When it proceeds in the opposite
direction, inside the types or classes, structuring them to simplify a complex set of relationships, it is called
delegation or inheritance.
Various object-oriented programming languages offer similar facilities for abstraction, all to support a general
strategy of polymorphism in object-oriented programming, which includes the substitution of one type for another in
the same or similar role. Although not as generally supported, a configuration or image or package may predetermine
a great many of these bindings at compile-time, link-time, or loadtime. This would leave only a minimum of such
bindings to change at run-time.
Common Lisp Object System or Self, for example, feature less of a class-instance distinction and more use of
delegation for polymorphism. Individual objects and functions are abstracted more flexibly to better fit with a shared
functional heritage from Lisp.

http://en.wikipedia.org/w/index.php?title=Abstract_data_type
http://en.wikipedia.org/w/index.php?title=Data_type
http://en.wikipedia.org/w/index.php?title=Abstract_data_type
http://en.wikipedia.org/w/index.php?title=Hash_table
http://en.wikipedia.org/w/index.php?title=Binary_search_tree
http://en.wikipedia.org/w/index.php?title=List_%28computing%29
http://en.wikipedia.org/w/index.php?title=Ada_programming_language
http://en.wikipedia.org/w/index.php?title=Modula-2
http://en.wikipedia.org/w/index.php?title=Object-oriented
http://en.wikipedia.org/wiki/Manual_of_Style/Words_to_watch#Unsupported_attributions
http://en.wikipedia.org/w/index.php?title=Inheritance_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Fragile_binary_interface_problem
http://en.wikipedia.org/w/index.php?title=Fragile_binary_interface_problem
http://en.wikipedia.org/w/index.php?title=Object_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Object-oriented_programming
http://en.wikipedia.org/w/index.php?title=Information_hiding
http://en.wikipedia.org/w/index.php?title=State_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Polymorphism_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Delegation_%28programming%29
http://en.wikipedia.org/w/index.php?title=Inheritance_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Polymorphism_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Type_in_object-oriented_programming
http://en.wikipedia.org/w/index.php?title=Configuration_in_object-oriented_programming
http://en.wikipedia.org/w/index.php?title=Name_binding
http://en.wikipedia.org/w/index.php?title=Compile-time
http://en.wikipedia.org/w/index.php?title=Link-time
http://en.wikipedia.org/w/index.php?title=Loadtime
http://en.wikipedia.org/w/index.php?title=Run_time_%28program_lifecycle_phase%29
http://en.wikipedia.org/w/index.php?title=Common_Lisp_Object_System
http://en.wikipedia.org/w/index.php?title=Self_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Polymorphism_in_object-oriented_programming
http://en.wikipedia.org/w/index.php?title=Lisp_programming_language

Abstraction 77

C++ exemplifies another extreme: it relies heavily on templates and overloading and other static bindings at
compile-time, which in turn has certain flexibility problems.
Although these examples offer alternate strategies for achieving the same abstraction, they do not fundamentally
alter the need to support abstract nouns in code - all programming relies on an ability to abstract verbs as functions,
nouns as data structures, and either as processes.
Consider for example a sample Java fragment to represent some common farm "animals" to a level of abstraction
suitable to model simple aspects of their hunger and feeding. It defines an Animal class to represent both the state
of the animal and its functions:

public class Animal extends LivingThing

{

 private Location loc;

 private double energyReserves;

 public boolean isHungry() {

 return energyReserves < 2.5;

 }

 public void eat(Food food) {

 // Consume food

 energyReserves += food.getCalories();

 }

 public void moveTo(Location location) {

 // Move to new location

 this.loc = location;

 }

}

With the above definition, one could create objects of type Animal and call their methods like this:

thePig = new Animal();

theCow = new Animal();

if (thePig.isHungry()) {

 thePig.eat(tableScraps);

}

if (theCow.isHungry()) {

 theCow.eat(grass);

}

theCow.moveTo(theBarn);

In the above example, the class Animal is an abstraction used in place of an actual animal, LivingThing is a
further abstraction (in this case a generalisation) of Animal.
If one requires a more differentiated hierarchy of animals — to differentiate, say, those who provide milk from those
who provide nothing except meat at the end of their lives — that is an intermediary level of abstraction, probably
DairyAnimal (cows, goats) who would eat foods suitable to giving good milk, and MeatAnimal (pigs, steers) who
would eat foods to give the best meat-quality.
Such an abstraction could remove the need for the application coder to specify the type of food, so s/he could
concentrate instead on the feeding schedule. The two classes could be related using inheritance or stand alone, and
the programmer could define varying degrees of polymorphism between the two types. These facilities tend to vary

http://en.wikipedia.org/w/index.php?title=Generic_programming
http://en.wikipedia.org/w/index.php?title=Method_overloading
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Inheritance_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Polymorphism_%28computer_science%29

Abstraction 78

drastically between languages, but in general each can achieve anything that is possible with any of the others. A
great many operation overloads, data type by data type, can have the same effect at compile-time as any degree of
inheritance or other means to achieve polymorphism. The class notation is simply a coder's convenience.

Object-oriented design
Main article: Object-oriented design
Decisions regarding what to abstract and what to keep under the control of the coder become the major concern of
object-oriented design and domain analysis—actually determining the relevant relationships in the real world is the
concern of object-oriented analysis or legacy analysis.
In general, to determine appropriate abstraction, one must make many small decisions about scope (domain
analysis), determine what other systems one must cooperate with (legacy analysis), then perform a detailed
object-oriented analysis which is expressed within project time and budget constraints as an object-oriented design.
In our simple example, the domain is the barnyard, the live pigs and cows and their eating habits are the legacy
constraints, the detailed analysis is that coders must have the flexibility to feed the animals what is available and thus
there is no reason to code the type of food into the class itself, and the design is a single simple Animal class of
which pigs and cows are instances with the same functions. A decision to differentiate DairyAnimal would change
the detailed analysis but the domain and legacy analysis would be unchanged—thus it is entirely under the control of
the programmer, and we refer to abstraction in object-oriented programming as distinct from abstraction in domain
or legacy analysis.

Considerations
When discussing formal semantics of programming languages, formal methods or abstract interpretation,
abstraction refers to the act of considering a less detailed, but safe, definition of the observed program behaviors.
For instance, one may observe only the final result of program executions instead of considering all the intermediate
steps of executions. Abstraction is defined to a concrete (more precise) model of execution.
Abstraction may be exact or faithful with respect to a property if one can answer a question about the property
equally well on the concrete or abstract model. For instance, if we wish to know what the result of the evaluation of a
mathematical expression involving only integers +, -, ×, is worth modulo n, we need only perform all operations
modulo n (a familiar form of this abstraction is casting out nines).
Abstractions, however, though not necessarily exact, should be sound. That is, it should be possible to get sound
answers from them—even though the abstraction may simply yield a result of undecidability. For instance, we may
abstract the students in a class by their minimal and maximal ages; if one asks whether a certain person belongs to
that class, one may simply compare that person's age with the minimal and maximal ages; if his age lies outside the
range, one may safely answer that the person does not belong to the class; if it does not, one may only answer "I
don't know".
The level of abstraction included in a programming language can influence its overall usability. The Cognitive
dimensions framework includes the concept of abstraction gradient in a formalism. This framework allows the
designer of a programming language to study the trade-offs between abstraction and other characteristics of the
design, and how changes in abstraction influence the language usability.
Abstractions can prove useful when dealing with computer programs, because non-trivial properties of computer
programs are essentially undecidable (see Rice's theorem). As a consequence, automatic methods for deriving
information on the behavior of computer programs either have to drop termination (on some occasions, they may
fail, crash or never yield out a result), soundness (they may provide false information), or precision (they may
answer "I don't know" to some questions).

http://en.wikipedia.org/w/index.php?title=Object-oriented_design
http://en.wikipedia.org/w/index.php?title=Domain_analysis
http://en.wikipedia.org/w/index.php?title=Object-oriented_analysis
http://en.wikipedia.org/w/index.php?title=Legacy_analysis
http://en.wikipedia.org/w/index.php?title=Formal_semantics_of_programming_languages
http://en.wikipedia.org/w/index.php?title=Formal_methods
http://en.wikipedia.org/w/index.php?title=Abstract_interpretation
http://en.wikipedia.org/w/index.php?title=Modular_arithmetic
http://en.wikipedia.org/w/index.php?title=Casting_out_nines
http://en.wikipedia.org/w/index.php?title=Undecidable_problem
http://en.wikipedia.org/w/index.php?title=Usability
http://en.wikipedia.org/w/index.php?title=Cognitive_dimensions
http://en.wikipedia.org/w/index.php?title=Cognitive_dimensions
http://en.wikipedia.org/w/index.php?title=Undecidable_problem
http://en.wikipedia.org/w/index.php?title=Rice%27s_theorem

Abstraction 79

Abstraction is the core concept of abstract interpretation. Model checking generally takes place on abstract versions
of the studied systems.

Levels of abstraction
Main article: Abstraction layer
Computer science commonly presents levels (or, less commonly, layers) of abstraction, wherein each level
represents a different model of the same information and processes, but uses a system of expression involving a
unique set of objects and compositions that apply only to a particular domain. [1] Each relatively abstract, "higher"
level builds on a relatively concrete, "lower" level, which tends to provide an increasingly "granular" representation.
For example, gates build on electronic circuits, binary on gates, machine language on binary, programming language
on machine language, applications and operating systems on programming languages. Each level is embodied, but
not determined, by the level beneath it, making it a language of description that is somewhat self-contained.

Database systems
Main article: Database management system
Since many users of database systems lack in-depth familiarity with computer data-structures, database developers
often hide complexity through the following levels:

Data abstraction levels of a database system

Physical level: The highest level of abstraction describes how a system
actually stores data. The physical level describes complex low-level
data structures in detail.

Logical level: The next higher level of abstraction describes what data
the database stores, and what relationships exist among those data. The
logical level thus describes an entire database in terms of a small
number of relatively simple structures. Although implementation of the
simple structures at the logical level may involve complex physical
level structures, the user of the logical level does not need to be aware
of this complexity. This referred to as Physical Data Independence.
Database administrators, who must decide what information to keep in a database, use the logical level of
abstraction.

View level: The highest level of abstraction describes only part of the entire database. Even though the logical level
uses simpler structures, complexity remains because of the variety of information stored in a large database. Many
users of a database system do not need all this information; instead, they need to access only a part of the database.
The view level of abstraction exists to simplify their interaction with the system. The system may provide many
views for the same database.

Layered architecture
Main article: Abstraction layer
The ability to provide a design of different levels of abstraction can
•• simplify the design considerably
•• enable different role players to effectively work at various levels of abstraction
•• support the portability of software artefacts (model-based ideally)
Systems design and business process design can both use this. Some design processes specifically generate designs
that contain various levels of abstraction.

http://en.wikipedia.org/w/index.php?title=Abstract_interpretation
http://en.wikipedia.org/w/index.php?title=Model_checking
http://en.wikipedia.org/w/index.php?title=Abstraction_layer
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=File%3AData_abstraction_levels.png
http://en.wikipedia.org/w/index.php?title=Physical_Data_Independence
http://en.wikipedia.org/w/index.php?title=Database_administrator
http://en.wikipedia.org/w/index.php?title=View_%28database%29
http://en.wikipedia.org/w/index.php?title=Abstraction_layer
http://en.wikipedia.org/w/index.php?title=Design
http://en.wikipedia.org/w/index.php?title=Systems_design
http://en.wikipedia.org/w/index.php?title=Business_process_modeling
http://en.wikipedia.org/w/index.php?title=Software_modeling

Abstraction 80

Layered architecture partitions the concerns of the application into stacked groups (layers). It is a technique used in
designing computer software, hardware, and communications in which system or network components are isolated in
layers so that changes can be made in one layer without affecting the others.

References
[1] Luciano Floridi, Levellism and the Method of Abstraction (http:/ / www. cs. ox. ac. uk/ activities/ ieg/ research_reports/ ieg_rr221104. pdf)

IEG – Research Report 22.11.04

This article is based on material taken from the Free On-line Dictionary of Computing prior to 1 November 2008 and
incorporated under the "relicensing" terms of the GFDL, version 1.3 or later.

Further reading
• Harold Abelson; Gerald Jay Sussman; Julie Sussman (25 July 1996). Structure and Interpretation of Computer

Programs (http:/ / mitpress. mit. edu/ sicp/ full-text/ book/ book-Z-H-10. html) (2 ed.). MIT Press.
ISBN 978-0-262-01153-2. Retrieved 22 June 2012.

• Lorenza Saitta; Jean-Daniel Zucker (2013). Abstraction in Artificial Intelligence and Complex Systems (http:/ /
link. springer. com/ book/ 10. 1007/ 978-1-4614-7052-6) (1 ed.). Springer-Verlag. ISBN 978-1-4614-7051-9.

• Spolsky, Joel (11 November 2002). "The Law of Leaky Abstractions" (http:/ / www. joelonsoftware. com/
articles/ LeakyAbstractions. html). Joel on Software.

• Abstraction/information hiding (http:/ / www. cs. cornell. edu/ courses/ cs211/ 2006sp/ Lectures/ L08-abstraction/
08_abstraction. html) - CS211 course, Cornell University.

• Gorodinski, Lev (31 May 2012). "Abstractions" (http:/ / gorodinski. com/ blog/ 2012/ 05/ 31/ abstractions/).

External links
• SimArch (https:/ / sites. google. com/ site/ simulationarchitecture/) example of layered architecture for distributed

simulation systems.

http://en.wikipedia.org/w/index.php?title=Luciano_Floridi
http://www.cs.ox.ac.uk/activities/ieg/research_reports/ieg_rr221104.pdf
http://en.wikipedia.org/w/index.php?title=Free_On-line_Dictionary_of_Computing
http://en.wikipedia.org/w/index.php?title=GNU_Free_Documentation_License
http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-10.html
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/978-0-262-01153-2
http://link.springer.com/book/10.1007%2F978-1-4614-7052-6
http://link.springer.com/book/10.1007%2F978-1-4614-7052-6
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/978-1-4614-7051-9
http://www.joelonsoftware.com/articles/LeakyAbstractions.html
http://www.joelonsoftware.com/articles/LeakyAbstractions.html
http://www.cs.cornell.edu/courses/cs211/2006sp/Lectures/L08-abstraction/08_abstraction.html
http://www.cs.cornell.edu/courses/cs211/2006sp/Lectures/L08-abstraction/08_abstraction.html
http://gorodinski.com/blog/2012/05/31/abstractions/
https://sites.google.com/site/simulationarchitecture/

Programmer 81

Programmer
This article is about people who write computer software. For other uses, see Programmer (disambiguation).
For someone who performs coding in the social sciences, see Coding (social sciences).
"Coder" redirects here. For other uses, see Encoder.

Student programmers at the Technische
Hochschule in Aachen, Germany in 1970

A programmer, computer programmer, developer, coder, or
software engineer is a person who writes computer software. The term
computer programmer can refer to a specialist in one area of computer
programming or to a generalist who writes code for many kinds of
software. One who practices or professes a formal approach to
programming may also be known as a programmer analyst. A
programmer's primary computer language (C, C++, C#, Java, Lisp,
Python, etc.) is often prefixed to the above titles, and those who work
in a web environment often prefix their titles with Web. The term
programmer can be used to refer to a software developer, Web
developer, mobile applications developer, embedded firmware
developer, software engineer, computer scientist, or software analyst.
However, members of these professions typicallyWikipedia:Citation
needed possess other software engineering skills, beyond
programming; for this reason, the term programmer, or code monkey, is sometimes considered an insulting or
derogatory oversimplification of these other professions. This has sparked much debate amongst developers,
analysts, computer scientists, programmers, and outsiders who continue to be puzzled at the subtle differences in the
definitions of these occupations.

Ada Lovelace, the first computer programmer.

British countess and mathematician Ada Lovelace is considered
the first computer programmer, as she was the first to write and
publish an algorithm intended for implementation on Charles
Babbage's analytical engine, in October 1842, intended for the
calculation of Bernoulli numbers.[1] Lovelace was also the first
person to comment on the potential for computers to be used for
purposes other than computing calculations. Because Babbage's
machine was never completed to a functioning standard in her
time, she never saw her algorithm run.

The first person to run a program on a functioning modern
electronically based computer was computer scientist Konrad
Zuse, in 1941.

The ENIAC programming team, consisting of Kay McNulty, Betty
Jennings, Betty Snyder, Marlyn Wescoff, Fran Bilas and Ruth
Lichterman were the first regularly working programmers.

International Programmers' Day is celebrated annually on 7
January. In 2009, the government of Russia decreed a professional
annual holiday known as Programmers' Day to be celebrated on 13
September (12 September in leap years). It had also been an
unofficial international holiday before that.

http://en.wikipedia.org/w/index.php?title=Programmer_%28disambiguation%29
http://en.wikipedia.org/w/index.php?title=Coding_%28social_sciences%29
http://en.wikipedia.org/w/index.php?title=Encoder
http://en.wikipedia.org/w/index.php?title=Technische_Hochschule
http://en.wikipedia.org/w/index.php?title=Technische_Hochschule
http://en.wikipedia.org/w/index.php?title=Aachen
http://en.wikipedia.org/w/index.php?title=File%3ABundesarchiv_B_145_Bild-F031434-0006%2C_Aachen%2C_Technische_Hochschule%2C_Rechenzentrum.jpg
http://en.wikipedia.org/w/index.php?title=Computer_software
http://en.wikipedia.org/w/index.php?title=Computer_language
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Lisp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Python_programming_language
http://en.wikipedia.org/w/index.php?title=World_Wide_Web
http://en.wikipedia.org/w/index.php?title=Software_developer
http://en.wikipedia.org/w/index.php?title=Web_developer
http://en.wikipedia.org/w/index.php?title=Web_developer
http://en.wikipedia.org/w/index.php?title=Firmware
http://en.wikipedia.org/w/index.php?title=Software_engineer
http://en.wikipedia.org/w/index.php?title=Computer_scientist
http://en.wikipedia.org/w/index.php?title=Software_analyst
http://en.wikipedia.org/w/index.php?title=Profession
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Software_engineering
http://en.wikipedia.org/w/index.php?title=Ada_Lovelace
http://en.wikipedia.org/w/index.php?title=File%3AAda_Lovelace_portrait.jpg
http://en.wikipedia.org/w/index.php?title=Ada_Lovelace
http://en.wikipedia.org/w/index.php?title=Algorithm
http://en.wikipedia.org/w/index.php?title=Charles_Babbage
http://en.wikipedia.org/w/index.php?title=Charles_Babbage
http://en.wikipedia.org/w/index.php?title=Analytical_engine
http://en.wikipedia.org/w/index.php?title=Bernoulli_number
http://en.wikipedia.org/w/index.php?title=Computer_scientist
http://en.wikipedia.org/w/index.php?title=Konrad_Zuse
http://en.wikipedia.org/w/index.php?title=Konrad_Zuse
http://en.wikipedia.org/w/index.php?title=ENIAC
http://en.wikipedia.org/w/index.php?title=Kathleen_Antonelli
http://en.wikipedia.org/w/index.php?title=Jean_Bartik
http://en.wikipedia.org/w/index.php?title=Jean_Bartik
http://en.wikipedia.org/w/index.php?title=Betty_Holberton
http://en.wikipedia.org/w/index.php?title=Marlyn_Meltzer
http://en.wikipedia.org/w/index.php?title=Frances_Spence
http://en.wikipedia.org/w/index.php?title=Ruth_Teitelbaum
http://en.wikipedia.org/w/index.php?title=Ruth_Teitelbaum
http://en.wikipedia.org/w/index.php?title=Government_of_Russia
http://en.wikipedia.org/w/index.php?title=Programmers%27_Day

Programmer 82

Nature of the work
Some of this section is from the Occupational Outlook Handbook [2], 2006–07 Edition, which is in the public
domain as a work of the United States Government.

Programmers in the Yandex headquarters.

Computer programmers write, test, debug, and
maintain the detailed instructions, called computer
programs, that computers must follow to perform
their functions. Programmers also conceive,
design, and test logical structures for solving
problems by computer. Many technical innovations
in programming — advanced computing
technologies and sophisticated new languages and
programming tools — have redefined the role of a
programmer and elevated much of the
programming work done today. Job titles and
descriptions may vary, depending on the
organization.

Programmers work in many settings, including corporate information technology ("IT") departments, big software
companies, and small service firms. Many professional programmers also work for consulting companies at client
sites as contractors. Licensing is not typically required to work as a programmer, although professional certifications
are commonly held by programmers. Programming is widely considered a profession (although
someWikipedia:Avoid weasel words authorities disagree on the grounds that only careers with legal licensing
requirements count as a profession).

Programmers' work varies widely depending on the type of business for which they are writing programs. For
example, the instructions involved in updating financial records are very different from those required to duplicate
conditions on an aircraft for pilots training in a flight simulator. Although simple programs can be written in a few
hours, programs that use complex mathematical formulas whose solutions can only be approximated or that draw
data from many existing systems may require more than a year of work. In most cases, several programmers work
together as a team under a senior programmer’s supervision.
Programmers write programs according to the specifications determined primarily by more senior programmers and
by systems analysts. After the design process is complete, it is the job of the programmer to convert that design into
a logical series of instructions that the computer can follow. The programmer codes these instructions in one of many
programming languages. Different programming languages are used depending on the purpose of the program.
COBOL, for example, is commonly used for business applications that typically run on mainframe and midrange
computers, whereas Fortran is used in science and engineering. C++ is widely used for both scientific and business
applications. Java, C#, VB and PHP are popular programming languages for Web and business applications.
Programmers generally know more than one programming language and, because many languages are similar, they
often can learn new languages relatively easily. In practice, programmers often are referred to by the language they
know, e.g. as Java programmers, or by the type of function they perform or environment in which they work: for
example, database programmers, mainframe programmers, or Web developers.
When making changes to the source code that programs are made up of, programmers need to make other
programmers aware of the task that the routine is to perform. They do this by inserting comments in the source code
so that others can understand the program more easily. To save work, programmers often use libraries of basic code
that can be modified or customized for a specific application. This approach yields more reliable and consistent
programs and increases programmers' productivity by eliminating some routine steps.

http://www.bls.gov/oco/ocos110.htm
http://en.wikipedia.org/w/index.php?title=Public_domain
http://en.wikipedia.org/w/index.php?title=Public_domain
http://en.wikipedia.org/w/index.php?title=Work_of_the_United_States_Government
http://en.wikipedia.org/w/index.php?title=Yandex
http://en.wikipedia.org/w/index.php?title=File%3A%D0%9E%D1%84%D0%B8%D1%81_%D0%AF%D0%BD%D0%B4%D0%B5%D0%BA%D1%81%D0%B0_%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%B0.jpg
http://en.wikipedia.org/w/index.php?title=Debug
http://en.wikipedia.org/w/index.php?title=Computer_programs
http://en.wikipedia.org/w/index.php?title=Computer_programs
http://en.wikipedia.org/w/index.php?title=Information_technology
http://en.wikipedia.org/w/index.php?title=Software_companies
http://en.wikipedia.org/w/index.php?title=Software_companies
http://en.wikipedia.org/w/index.php?title=Independent_contractor
http://en.wikipedia.org/w/index.php?title=License
http://en.wikipedia.org/w/index.php?title=Professional_certification
http://en.wikipedia.org/w/index.php?title=Profession
http://en.wikipedia.org/wiki/Avoid_weasel_words
http://en.wikipedia.org/w/index.php?title=Systems_analyst
http://en.wikipedia.org/w/index.php?title=COBOL
http://en.wikipedia.org/w/index.php?title=Mainframe_computer
http://en.wikipedia.org/w/index.php?title=Minicomputer
http://en.wikipedia.org/w/index.php?title=Fortran
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Visual_Basic
http://en.wikipedia.org/w/index.php?title=PHP
http://en.wikipedia.org/w/index.php?title=Database
http://en.wikipedia.org/w/index.php?title=Web_developer
http://en.wikipedia.org/w/index.php?title=Library_%28computing%29

Programmer 83

Testing and debugging
Programmers test a program by running it and looking for bugs (errors). As they are identified, the programmer
usually makes the appropriate corrections, then rechecks the program until an acceptably low level and severity of
bugs remain. This process is called testing and debugging. These are important parts of every programmer's job.
Programmers may continue to fix these problems throughout the life of a program. Updating, repairing, modifying,
and expanding existing programs is sometimes called maintenance programming. Programmers may contribute to
user guides and online help, or they may work with technical writers to do such work.

Application versus system programming
Computer programmers often are grouped into two broad types: application programmers and systems programmers.
Application programmers write programs to handle a specific job, such as a program to track inventory within an
organization. They also may revise existing packaged software or customize generic applications which are
frequently purchased from independent software vendors. Systems programmers, in contrast, write programs to
maintain and control computer systems software, such as operating systems and database management systems.
These workers make changes in the instructions that determine how the network, workstations, and CPU of the
system handle the various jobs they have been given and how they communicate with peripheral equipment such as
printers and disk drives.

Types of software
Programmers in software development companies may work directly with experts from various fields to create
software – either programs designed for specific clients or packaged software for general use – ranging from video
games to educational software to programs for desktop publishing and financial planning. Programming of packaged
software constitutes one of the most rapidly growing segments of the computer services industry. Some companies
or organizations – even small ones – have set up their own IT team to ensure the design and development of
in-house software to answer to very specific needs from their internal end-users, especially when existing software
are not suitable or too expensive. This is for example the case in research laboratories.Wikipedia:Citation needed
In some organizations, particularly small ones, workers commonly known as programmer analysts are responsible
for both the systems analysis and the actual programming work. The transition from a mainframe environment to one
that is based primarily on personal computers (PCs) has blurred the once rigid distinction between the programmer
and the user. Increasingly, adept end users are taking over many of the tasks previously performed by programmers.
For example, the growing use of packaged software, such as spreadsheet and database management software
packages, allows users to write simple programs to access data and perform calculations.Wikipedia:Citation needed
In addition, the rise of the Internet has made web development a huge part of the programming field. Currently more
software applications are web applications that can be used by anyone with a web browser. Examples of such
applications include the Google search service, the Hotmail e-mail service, and the Flickr photo-sharing
service.Wikipedia:Citation needed
Programming editors, also known as source code editors, are text editors that are specifically designed for
programmers or developers for writing the source code of an application or a program. Most of these editors include
features useful for programmers, which may include color syntax highlighting, auto indentation, auto-complete,
bracket matching, syntax check, and allows plug-ins. These features aid the users during coding, debugging and
testing.Wikipedia:Citation needed

http://en.wikipedia.org/w/index.php?title=Software_bug
http://en.wikipedia.org/w/index.php?title=Software_testing
http://en.wikipedia.org/w/index.php?title=Debugging
http://en.wikipedia.org/w/index.php?title=User_guide
http://en.wikipedia.org/w/index.php?title=Online_help
http://en.wikipedia.org/w/index.php?title=Technical_writer
http://en.wikipedia.org/w/index.php?title=Independent_software_vendor
http://en.wikipedia.org/w/index.php?title=Operating_system
http://en.wikipedia.org/w/index.php?title=Database_management_system
http://en.wikipedia.org/w/index.php?title=Central_processing_unit
http://en.wikipedia.org/w/index.php?title=Computer_printer
http://en.wikipedia.org/w/index.php?title=Data_storage_device
http://en.wikipedia.org/w/index.php?title=Video_game
http://en.wikipedia.org/w/index.php?title=Video_game
http://en.wikipedia.org/w/index.php?title=Desktop_publishing
http://en.wikipedia.org/w/index.php?title=Research_laboratories
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Personal_computers
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Web_development
http://en.wikipedia.org/w/index.php?title=Web_application
http://en.wikipedia.org/w/index.php?title=Web_browser
http://en.wikipedia.org/w/index.php?title=Google
http://en.wikipedia.org/w/index.php?title=Hotmail
http://en.wikipedia.org/w/index.php?title=Flickr
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Source_code_editor
http://en.wikipedia.org/w/index.php?title=Syntax_highlighting
http://en.wikipedia.org/w/index.php?title=Auto-complete
http://en.wikipedia.org/w/index.php?title=Syntax_checker
http://en.wikipedia.org/w/index.php?title=Plug-in_%28computing%29
http://en.wikipedia.org/w/index.php?title=Debugging
http://en.wikipedia.org/wiki/Citation_needed

Programmer 84

Globalization

Market changes in the UK
According to BBC, 17% of computer science students could not find work in their field 7 months after graduation in
2009 which was the highest rate of the university subjects surveyed while 0% of medical students were unemployed
in the same survey.[3] The UK category system does, however, class such degrees as information technology and
game design as 'computer science', industries in which jobs can be extremely difficult to find, somewhat inflating the
actual figure.[4]

Market changes in the US
Computer programming, offshore outsourcing, and Foreign Worker Visas became a controversial topic after the
crash of the dot com bubble left many programmers without work or with lower wages. Programming was even
mentioned in the 2004 US Presidential debate on the topic of offshore outsourcing.Wikipedia:Citation needed
Large companies claim there is a skills shortage with regard to programming talent. However, US programmers and
unions counter that large companies are exaggerating their case in order to obtain cheaper programmers from
developing countries and to avoid paying for training in very specific technologies.[5]

Enrolment in computer-related degrees in US has dropped recently due to lack of general interests in science and
mathematics and also out of an apparent fear that programming will be subject to the same pressures as
manufacturing and agriculture careers.Wikipedia:Citation needed This situation has resulted in confusion about
whether the US economy is entering a "post-information age" and the nature of US comparative advantages.
Technology and software jobs were supposed to be the replacement for factory and agriculture jobs lost to cheaper
foreign labor, but if those are subject to free trade losses, then the nature of the next generation of replacement
careers is not clear at this point.Wikipedia:Citation needed

References
[1] J. Fuegi and J. Francis, "Lovelace & Babbage and the creation of the 1843 'notes'." Annals of the History of Computing 25 #4

(October–December 2003): 19, 25. Digital Object Identifier (http:/ / dx. doi. org/ 10. 1109/ MAHC. 2003. 1253887)
[2] http:/ / www. bls. gov/ oco/ ocos110. htm
[3] "'One in 10' UK graduates unemployed" (http:/ / www. bbc. co. uk/ news/ 10477551) from the BBC
[4] (http:/ / www. plymouth. ac. uk/ pages/ view. asp?page=23727) ATAS classifications (University of Plymouth)
[5] (http:/ / heather. cs. ucdavis. edu/ MigLtrs. pdf) Migration Letters, Volume: 10, No: 2, pp. 211 – 228 ISSN: 1741-8984 & eISSN: 1741-8992

Further reading
• Weinberg, Gerald M., The Psychology of Computer Programming, New York: Van Nostrand Reinhold, 1971
• An experiential study of the nature of programming work: Lucas, Rob. "Dreaming in Code" (http:/ / www.

newleftreview. org/ ?view=2836) New Left Review 62, March–April 2010, pp. 125–132.

External links
• "The Future of IT Jobs in America" article (http:/ / www. ideosphere. com/ fx-bin/ Claim?claim=ITJOBS)
• How to be a programmer (http:/ / samizdat. mines. edu/ howto/ HowToBeAProgrammer. html) - An overview of

the challenges of being a programmer
• The US Department of Labor's description of " Computer Programmers (http:/ / www. bls. gov/ ooh/

computer-and-information-technology/ computer-programmers. htm)"

http://en.wikipedia.org/w/index.php?title=Information_technology
http://en.wikipedia.org/w/index.php?title=Game_design
http://en.wikipedia.org/w/index.php?title=Offshore_outsourcing
http://en.wikipedia.org/w/index.php?title=Foreign_Worker_Visa
http://en.wikipedia.org/w/index.php?title=Dot_com_bubble
http://en.wikipedia.org/w/index.php?title=Offshore_outsourcing
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Skills_shortage
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Quaternary_sector_of_the_economy
http://en.wikipedia.org/w/index.php?title=Comparative_advantage
http://en.wikipedia.org/wiki/Citation_needed
http://dx.doi.org/10.1109/MAHC.2003.1253887
http://www.bls.gov/oco/ocos110.htm
http://www.bbc.co.uk/news/10477551
http://en.wikipedia.org/w/index.php?title=BBC
http://www.plymouth.ac.uk/pages/view.asp?page=23727
http://heather.cs.ucdavis.edu/MigLtrs.pdf
http://en.wikipedia.org/w/index.php?title=Gerald_Weinberg
http://www.newleftreview.org/?view=2836
http://www.newleftreview.org/?view=2836
http://www.ideosphere.com/fx-bin/Claim?claim=ITJOBS
http://samizdat.mines.edu/howto/HowToBeAProgrammer.html
http://www.bls.gov/ooh/computer-and-information-technology/computer-programmers.htm
http://www.bls.gov/ooh/computer-and-information-technology/computer-programmers.htm

Language primitive 85

Language primitive
In computing, language primitives are the simplest elements available in a programming language. A primitive is
the smallest 'unit of processing' available to a programmer of a particular machine, or can be an atomic element of an
expression in a language.
Primitives are units with a meaning, i.e. a semantic value in the language. Thus they're different from tokens in a
parser, which are the minimal elements of syntax.

Machine level primitives
A machine instruction, usually generated by an assembler program, is often considered the smallest unit of
processing although this is not always the case. It typically performs what is perceived to be one single operation
such as copying a byte or string of bytes from one memory location to another or adding one processor register to
another.

Micro code primitives
Many of today's computers, however, actually embody an even lower unit of processing known as microcode which
interprets the "machine code" and it is then that the microcode instructions would be the genuine primitives. These
instructions would typically be available for modification only by the hardware vendors programmers.

High level language primitives
A high-level programming language (HLL) program is composed of discrete statements and primitive data types that
may also be perceived to perform a single operation or represent a single data item, but at a more abstract level than
those provided by the machine. Copying a data item from one location to another may actually involve many
machine instructions that, for instance,
• calculate the address of both operands in memory, based on their positions within a data structure,
• convert from one data type to another
before finally
•• performing the final store operation to the target destination.
Some HLL statements, particularly those involving loops, can generate thousands or even millions of primitives in a
low level language - which comprise the genuine instruction path length the processor has to execute at the lowest
level. This perception has been referred to as the "Abstraction penalty"

Interpreted language primitives
An interpreted language statement has similarities to the HLL primitives but with a further added 'layer'. Before the
statement can be executed in a manner very similar to a HLL statement, first, it has to be processed by an interpreter,
a process that may involve many primitives in the target machine language.

Fourth and Fifth-generation programming language primitives
4gls and 5gls do not have a simple one-to-many correspondence from high-to-low level primitives. There are some
elements of interpreted language primitives embodied in 4gl and 5gl specifications but the approach to the original
problem is less a procedural language construct and are more oriented toward problem solving and systems
engineering.

http://en.wikipedia.org/w/index.php?title=Atomic_operation
http://en.wikipedia.org/w/index.php?title=Expression_%28programming%29
http://en.wikipedia.org/w/index.php?title=Semantics_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Token_%28parser%29
http://en.wikipedia.org/w/index.php?title=Parser
http://en.wikipedia.org/w/index.php?title=Syntax_%28programming_languages%29
http://en.wikipedia.org/w/index.php?title=Machine_instruction
http://en.wikipedia.org/w/index.php?title=Assembler_program
http://en.wikipedia.org/w/index.php?title=Byte
http://en.wikipedia.org/w/index.php?title=String_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Computer_memory
http://en.wikipedia.org/w/index.php?title=Processor_register
http://en.wikipedia.org/w/index.php?title=Computer
http://en.wikipedia.org/w/index.php?title=Microcode
http://en.wikipedia.org/w/index.php?title=Computer_hardware
http://en.wikipedia.org/w/index.php?title=High-level_programming_language
http://en.wikipedia.org/w/index.php?title=Statement_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Primitive_data_type
http://en.wikipedia.org/w/index.php?title=Machine_instruction
http://en.wikipedia.org/w/index.php?title=Operand
http://en.wikipedia.org/w/index.php?title=Computer_memory
http://en.wikipedia.org/w/index.php?title=Data_structure
http://en.wikipedia.org/w/index.php?title=Data_type
http://en.wikipedia.org/w/index.php?title=High-level_programming_language
http://en.wikipedia.org/w/index.php?title=Control_flow%23Loops
http://en.wikipedia.org/w/index.php?title=Low-level_programming_language
http://en.wikipedia.org/w/index.php?title=Instruction_path_length
http://en.wikipedia.org/w/index.php?title=High-level_programming_language
http://en.wikipedia.org/w/index.php?title=High-level_programming_language
http://en.wikipedia.org/w/index.php?title=Interpreter
http://en.wikipedia.org/w/index.php?title=Fourth-generation_programming_language
http://en.wikipedia.org/w/index.php?title=Fifth-generation_programming_language
http://en.wikipedia.org/w/index.php?title=4GL
http://en.wikipedia.org/w/index.php?title=Fifth-generation_programming_language
http://en.wikipedia.org/w/index.php?title=Procedural_language
http://en.wikipedia.org/w/index.php?title=Problem_solving
http://en.wikipedia.org/w/index.php?title=Systems_engineering
http://en.wikipedia.org/w/index.php?title=Systems_engineering

Language primitive 86

References

Assembly language
See the terminology section below for information regarding inconsistent use of the terms assembly and
assembler.

Motorola MC6800 Assembly listing, showing
original assembly language and the assembled

form

An assembly language is a low-level programming language for a
computer, or other programmable device, in which there is a very
strong (generally one-to-one) correspondence between the language
and the architecture's machine code instructions. Each assembly
language is specific to a particular computer architecture, in contrast to
most high-level programming languages, which are generally portable
across multiple architectures, but require interpreting or compiling.

Assembly language is converted into executable machine code by a
utility program referred to as an assembler; the conversion process is
referred to as assembly, or assembling the code.

Assembly language uses a mnemonic to represent each low-level
machine instruction or operation. Typical operations require one or
more operands in order to form a complete instruction, and most
assemblers can therefore take labels, symbols and expressions as
operands to represent addresses and other constants, freeing the
programmer from tedious manual calculations. Macro assemblers
include a macroinstruction facility so that (parameterized) assembly
language text can be represented by a name, and that name can be used
to insert the expanded text into other code. Many assemblers offer
additional mechanisms to facilitate program development, to control
the assembly process, and to aid debugging.

Key concepts

Assembler
An assembler is a program which creates object code by translating combinations of mnemonics and syntax for
operations and addressing modes into their numerical equivalents. This representation typically includes an
operation code ("opcode") as well as other control bits.[1] The assembler also calculates constant expressions and
resolves symbolic names for memory locations and other entities.[2] The use of symbolic references is a key feature
of assemblers, saving tedious calculations and manual address updates after program modifications. Most assemblers
also include macro facilities for performing textual substitution—e.g., to generate common short sequences of
instructions as inline, instead of called subroutines.
Some assemblers may also be able to perform some simple types of instruction set-specific optimizations. One
concrete example of this may be the ubiquitous x86 assemblers from various vendors. Most of them are able to
perform jump-instruction replacements (long jumps replaced by short or relative jumps) in any number of passes, on
request. Others may even do simple rearagement or insertion of instructions, such as some assemblers for RISC
architectures that can help optimize a sensible instruction scheduling to exploit the CPU pipeline as efficiently as
possible.Wikipedia:Citation needed

http://en.wikipedia.org/w/index.php?title=File%3AMotorola_6800_Assembly_Language.png
http://en.wikipedia.org/w/index.php?title=Low-level_programming_language
http://en.wikipedia.org/w/index.php?title=Computer
http://en.wikipedia.org/w/index.php?title=One-to-one_correspondence
http://en.wikipedia.org/w/index.php?title=Computer_architecture
http://en.wikipedia.org/w/index.php?title=Instruction_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=High-level_programming_language
http://en.wikipedia.org/w/index.php?title=Porting
http://en.wikipedia.org/w/index.php?title=Interpreter_%28computing%29
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=Utility_program
http://en.wikipedia.org/w/index.php?title=Mnemonic
http://en.wikipedia.org/w/index.php?title=Opcode
http://en.wikipedia.org/w/index.php?title=Operand%23Computer_science
http://en.wikipedia.org/w/index.php?title=Macro_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Debugging
http://en.wikipedia.org/w/index.php?title=Object_code
http://en.wikipedia.org/w/index.php?title=Opcode
http://en.wikipedia.org/w/index.php?title=Identifier
http://en.wikipedia.org/w/index.php?title=Macro_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Inline_expansion
http://en.wikipedia.org/w/index.php?title=Subroutine
http://en.wikipedia.org/w/index.php?title=Instruction_set
http://en.wikipedia.org/w/index.php?title=Compiler_optimization
http://en.wikipedia.org/w/index.php?title=X86
http://en.wikipedia.org/w/index.php?title=RISC
http://en.wikipedia.org/w/index.php?title=Instruction_set_architecture
http://en.wikipedia.org/w/index.php?title=Instruction_scheduling
http://en.wikipedia.org/w/index.php?title=CPU_pipeline
http://en.wikipedia.org/wiki/Citation_needed

Assembly language 87

Like early programming languages such as Fortran, Algol, Cobol and Lisp, assemblers have been available since the
1950s and the first generations of text based computer interfaces. However, assemblers came first as they are far
simpler to write than compilers for high-level languages. This is because each mnemonic along with the addressing
modes and operands of an instruction translates rather directly into the numeric representations of that particular
instruction, without much context or analysis. There have also been several classes of translators and semi automatic
code generators with properties similar to both assembly and high level languages, with speedcode as perhaps one of
the better known examples.

Number of passes

There are two types of assemblers based on how many passes through the source are needed to produce the
executable program.
• One-pass assemblers go through the source code once. Any symbol used before it is defined will require "errata"

at the end of the object code (or, at least, no earlier than the point where the symbol is defined) telling the linker
or the loader to "go back" and overwrite a placeholder which had been left where the as yet undefined symbol was
used.

•• Multi-pass assemblers create a table with all symbols and their values in the first passes, then use the table in later
passes to generate code.

In both cases, the assembler must be able to determine the size of each instruction on the initial passes in order to
calculate the addresses of subsequent symbols. This means that if the size of an operation referring to an operand
defined later depends on the type or distance of the operand, the assembler will make a pessimistic estimate when
first encountering the operation, and if necessary pad it with one or more "no-operation" instructions in a later pass
or the errata. In an assembler with peephole optimization, addresses may be recalculated between passes to allow
replacing pessimistic code with code tailored to the exact distance from the target.
The original reason for the use of one-pass assemblers was speed of assembly— often a second pass would require
rewinding and rereading a tape or rereading a deck of cards. With modern computers this has ceased to be an issue.
The advantage of the multi-pass assembler is that the absence of errata makes the linking process (or the program
load if the assembler directly produces executable code) faster.

High-level assemblers

More sophisticated high-level assemblers provide language abstractions such as:
•• Advanced control structures
•• High-level procedure/function declarations and invocations
•• High-level abstract data types, including structures/records, unions, classes, and sets
• Sophisticated macro processing (although available on ordinary assemblers since the late 1950s for IBM 700

series and since the 1960s for IBM/360, amongst other machines)
• Object-oriented programming features such as classes, objects, abstraction, polymorphism, and inheritance[3]

See Language design below for more details.

http://en.wikipedia.org/w/index.php?title=Fortran
http://en.wikipedia.org/w/index.php?title=ALGOL
http://en.wikipedia.org/w/index.php?title=Cobol
http://en.wikipedia.org/w/index.php?title=Lisp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Computer_interface
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=High-level_language
http://en.wikipedia.org/w/index.php?title=Speedcode
http://en.wikipedia.org/w/index.php?title=Erratum
http://en.wikipedia.org/w/index.php?title=Linker_%28computing%29
http://en.wikipedia.org/w/index.php?title=NOP
http://en.wikipedia.org/w/index.php?title=Peephole_optimization
http://en.wikipedia.org/w/index.php?title=Magnetic_tape_data_storage
http://en.wikipedia.org/w/index.php?title=Punch_cards
http://en.wikipedia.org/w/index.php?title=Linker_%28computing%29
http://en.wikipedia.org/w/index.php?title=Loader_%28computing%29
http://en.wikipedia.org/w/index.php?title=Loader_%28computing%29
http://en.wikipedia.org/w/index.php?title=High-level_assembler
http://en.wikipedia.org/w/index.php?title=IBM_700/7000_series
http://en.wikipedia.org/w/index.php?title=IBM_700/7000_series
http://en.wikipedia.org/w/index.php?title=IBM/360
http://en.wikipedia.org/w/index.php?title=Object-oriented_programming
http://en.wikipedia.org/w/index.php?title=Class_%28computer_programming%29
http://en.wikipedia.org/w/index.php?title=Object_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Abstraction_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Type_polymorphism
http://en.wikipedia.org/w/index.php?title=Inheritance_%28object-oriented_programming%29

Assembly language 88

Assembly language
A program written in assembly language consists of a series of (mnemonic) processor instructions and
meta-statements (known variously as directives, pseudo-instructions and pseudo-ops), comments and data. Assembly
language instructions usually consist of an opcode mnemonic followed by a list of data, arguments or parameters.
These are translated by an assembler into machine language instructions that can be loaded into memory and
executed.
For example, the instruction below tells an x86/IA-32 processor to move an immediate 8-bit value into a register.
The binary code for this instruction is 10110 followed by a 3-bit identifier for which register to use. The identifier for
the AL register is 000, so the following machine code loads the AL register with the data 01100001.

10110000 01100001

This binary computer code can be made more human-readable by expressing it in hexadecimal as follows.

B0 61

Here, B0 means 'Move a copy of the following value into AL', and 61 is a hexadecimal representation of the value
01100001, which is 97 in decimal. Intel assembly language provides the mnemonic MOV (an abbreviation of move)
for instructions such as this, so the machine code above can be written as follows in assembly language, complete
with an explanatory comment if required, after the semicolon. This is much easier to read and to remember.

MOV AL, 61h ; Load AL with 97 decimal (61 hex)

In some assembly languages the same mnemonic such as MOV may be used for a family of related instructions for
loading, copying and moving data, whether these are immediate values, values in registers, or memory locations
pointed to by values in registers. Other assemblers may use separate opcodes such as L for "move memory to
register", ST for "move register to memory", LR for "move register to register", MVI for "move immediate operand
to memory", etc.
The Intel opcode 10110000 (B0) copies an 8-bit value into the AL register, while 10110001 (B1) moves it into CL
and 10110010 (B2) does so into DL. Assembly language examples for these follow.

MOV AL, 1h ; Load AL with immediate value 1

MOV CL, 2h ; Load CL with immediate value 2

MOV DL, 3h ; Load DL with immediate value 3

The syntax of MOV can also be more complex as the following examples show.

MOV EAX, [EBX] ; Move the 4 bytes in memory at the address contained in EBX into EAX

MOV [ESI+EAX], CL ; Move the contents of CL into the byte at address ESI+EAX

In each case, the MOV mnemonic is translated directly into an opcode in the ranges 88-8E, A0-A3, B0-B8, C6 or C7
by an assembler, and the programmer does not have to know or remember which.
Transforming assembly language into machine code is the job of an assembler, and the reverse can at least partially
be achieved by a disassembler. Unlike high-level languages, there is usually a one-to-one correspondence between
simple assembly statements and machine language instructions. However, in some cases, an assembler may provide
pseudoinstructions (essentially macros) which expand into several machine language instructions to provide
commonly needed functionality. For example, for a machine that lacks a "branch if greater or equal" instruction, an
assembler may provide a pseudoinstruction that expands to the machine's "set if less than" and "branch if zero (on
the result of the set instruction)". Most full-featured assemblers also provide a rich macro language (discussed
below) which is used by vendors and programmers to generate more complex code and data sequences.

http://en.wikipedia.org/w/index.php?title=Assembly_language_assembler
http://en.wikipedia.org/w/index.php?title=Machine_language
http://en.wikipedia.org/w/index.php?title=X86
http://en.wikipedia.org/w/index.php?title=IA-32
http://en.wikipedia.org/w/index.php?title=Constant_%28programming%29
http://en.wikipedia.org/w/index.php?title=Processor_register
http://en.wikipedia.org/w/index.php?title=Hexadecimal
http://en.wikipedia.org/w/index.php?title=Decimal
http://en.wikipedia.org/w/index.php?title=Mnemonic
http://en.wikipedia.org/w/index.php?title=MOV_%28x86_instruction%29
http://en.wikipedia.org/w/index.php?title=Disassembler
http://en.wikipedia.org/w/index.php?title=High-level_language
http://en.wikipedia.org/w/index.php?title=One-to-one_correspondence
http://en.wikipedia.org/w/index.php?title=Macro_%28computer_science%29

Assembly language 89

Each computer architecture has its own machine language. Computers differ in the number and type of operations
they support, in the different sizes and numbers of registers, and in the representations of data in storage. While most
general-purpose computers are able to carry out essentially the same functionality, the ways they do so differ; the
corresponding assembly languages reflect these differences.
Multiple sets of mnemonics or assembly-language syntax may exist for a single instruction set, typically instantiated
in different assembler programs. In these cases, the most popular one is usually that supplied by the manufacturer
and used in its documentation.

Language design

Basic elements
There is a large degree of diversity in the way the authors of assemblers categorize statements and in the
nomenclature that they use. In particular, some describe anything other than a machine mnemonic or extended
mnemonic as a pseudo-operation (pseudo-op). A typical assembly language consists of 3 types of instruction
statements that are used to define program operations:
• Opcode mnemonics
•• Data definitions
•• Assembly directives

Opcode mnemonics and extended mnemonics

Instructions (statements) in assembly language are generally very simple, unlike those in high-level language.
Generally, a mnemonic is a symbolic name for a single executable machine language instruction (an opcode), and
there is at least one opcode mnemonic defined for each machine language instruction. Each instruction typically
consists of an operation or opcode plus zero or more operands. Most instructions refer to a single value, or a pair of
values. Operands can be immediate (value coded in the instruction itself), registers specified in the instruction or
implied, or the addresses of data located elsewhere in storage. This is determined by the underlying processor
architecture: the assembler merely reflects how this architecture works. Extended mnemonics are often used to
specify a combination of an opcode with a specific operand, e.g., the System/360 assemblers use B as an extended
mnemonic for BC with a mask of 15 and NOP ("NO OPeration" - do nothing for one step) for BC with a mask of 0.
Extended mnemonics are often used to support specialized uses of instructions, often for purposes not obvious from
the instruction name. For example, many CPU's do not have an explicit NOP instruction, but do have instructions
that can be used for the purpose. In 8086 CPUs the instruction xchg ax,ax is used for nop, with nop being a
pseudo-opcode to encode the instruction xchg ax,ax. Some disassemblers recognize this and will decode the xchg
ax,ax instruction as nop. Similarly, IBM assemblers for System/360 and System/370 use the extended mnemonics
NOP and NOPR for BC and BCR with zero masks. For the SPARC architecture, these are known as synthetic
instructions.
Some assemblers also support simple built-in macro-instructions that generate two or more machine instructions. For
instance, with some Z80 assemblers the instruction ld hl,bc is recognized to generate ld l,c followed by ld h,b.[4]

These are sometimes known as pseudo-opcodes.
Mnemonics are arbitrary symbols; in 1985 the IEEE published Standard 694 for a uniform set of mnemonics to be
used by all assemblers. The standard has since been withdrawn.

http://en.wikipedia.org/w/index.php?title=Computer_architecture
http://en.wikipedia.org/w/index.php?title=Mnemonic
http://en.wikipedia.org/w/index.php?title=Opcode
http://en.wikipedia.org/w/index.php?title=High-level_programming_language
http://en.wikipedia.org/w/index.php?title=Opcode
http://en.wikipedia.org/w/index.php?title=Operand
http://en.wikipedia.org/w/index.php?title=IBM_System/360
http://en.wikipedia.org/w/index.php?title=IBM_System/370
http://en.wikipedia.org/w/index.php?title=IEEE

Assembly language 90

Data directives

There are instructions used to define data elements to hold data and variables. They define the type of data, the
length and the alignment of data. These instructions can also define whether the data is available to outside programs
(programs assembled separately) or only to the program in which the data section is defined. Some assemblers
classify these as pseudo-ops.

Assembly directives

Assembly directives, also called pseudo-opcodes, pseudo-operations or pseudo-ops, are instructions that are executed
by an assembler at assembly time, not by a CPU at run time. The names of pseudo-ops often start with a dot to
distinguish them from machine instructions. Pseudo-ops can make the assembly of the program dependent on
parameters input by a programmer, so that one program can be assembled different ways, perhaps for different
applications. Or, a pseudo-op can be used to manipulate presentation of a program to make it easier to read and
maintain. Another common use of pseudo-ops is to reserve storage areas for run-time data and optionally initialize
their contents to known values.
Symbolic assemblers let programmers associate arbitrary names (labels or symbols) with memory locations and
various constants. Usually, every constant and variable is given a name so instructions can reference those locations
by name, thus promoting self-documenting code. In executable code, the name of each subroutine is associated with
its entry point, so any calls to a subroutine can use its name. Inside subroutines, GOTO destinations are given labels.
Some assemblers support local symbols which are lexically distinct from normal symbols (e.g., the use of "10$" as a
GOTO destination).
Some assemblers, such as NASM provide flexible symbol management, letting programmers manage different
namespaces, automatically calculate offsets within data structures, and assign labels that refer to literal values or the
result of simple computations performed by the assembler. Labels can also be used to initialize constants and
variables with relocatable addresses.
Assembly languages, like most other computer languages, allow comments to be added to program source code that
will be ignored during assembly. Judicious commenting is essential in assembly language programs, as the meaning
and purpose of a sequence of binary machine instructions can be difficult to determine. It should be noted that the
"raw" (uncommented) assembly language generated by compilers or disassemblers is quite difficult to read when
changes must be made.

Macros
Many assemblers support predefined macros, and others support programmer-defined (and repeatedly re-definable)
macros involving sequences of text lines in which variables and constants are embedded. This sequence of text lines
may include opcodes or directives. Once a macro has been defined its name may be used in place of a mnemonic.
When the assembler processes such a statement, it replaces the statement with the text lines associated with that
macro, then processes them as if they existed in the source code file (including, in some assemblers, expansion of
any macros existing in the replacement text).
Note that this definition of "macro" is slightly different from the use of the term in other contexts, like the C
programming language. C macros created through the #define directive typically are just one line, or a few lines at
most. Assembler macro instructions can be lengthy "programs" by themselves, executed by interpretation by the
assembler during assembly.
Since macros can have 'short' names but expand to several or indeed many lines of code, they can be used to make
assembly language programs appear to be far shorter, requiring fewer lines of source code, as with higher level
languages. They can also be used to add higher levels of structure to assembly programs, optionally introduce
embedded debugging code via parameters and other similar features.

http://en.wikipedia.org/w/index.php?title=Data_structure_alignment
http://en.wikipedia.org/w/index.php?title=Label_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Self-documenting_code
http://en.wikipedia.org/w/index.php?title=GOTO
http://en.wikipedia.org/w/index.php?title=GOTO
http://en.wikipedia.org/w/index.php?title=Namespaces
http://en.wikipedia.org/w/index.php?title=Data_structure
http://en.wikipedia.org/w/index.php?title=C_programming_language
http://en.wikipedia.org/w/index.php?title=C_programming_language

Assembly language 91

Macro assemblers often allow macros to take parameters. Some assemblers include quite sophisticated macro
languages, incorporating such high-level language elements as optional parameters, symbolic variables, conditionals,
string manipulation, and arithmetic operations, all usable during the execution of a given macro, and allowing
macros to save context or exchange information. Thus a macro might generate numerous assembly language
instructions or data definitions, based on the macro arguments. This could be used to generate record-style data
structures or "unrolled" loops, for example, or could generate entire algorithms based on complex parameters. An
organization using assembly language that has been heavily extended using such a macro suite can be considered to
be working in a higher-level language, since such programmers are not working with a computer's lowest-level
conceptual elements.
Macros were used to customize large scale software systems for specific customers in the mainframe era and were
also used by customer personnel to satisfy their employers' needs by making specific versions of manufacturer
operating systems. This was done, for example, by systems programmers working with IBM's Conversational
Monitor System / Virtual Machine (VM/CMS) and with IBM's "real time transaction processing" add-ons, Customer
Information Control System CICS, and ACP/TPF, the airline/financial system that began in the 1970s and still runs
many large computer reservations systems (CRS) and credit card systems today.
It was also possible to use solely the macro processing abilities of an assembler to generate code written in
completely different languages, for example, to generate a version of a program in COBOL using a pure macro
assembler program containing lines of COBOL code inside assembly time operators instructing the assembler to
generate arbitrary code.
This was because, as was realized in the 1960s, the concept of "macro processing" is independent of the concept of
"assembly", the former being in modern terms more word processing, text processing, than generating object code.
The concept of macro processing appeared, and appears, in the C programming language, which supports
"preprocessor instructions" to set variables, and make conditional tests on their values. Note that unlike certain
previous macro processors inside assemblers, the C preprocessor was not Turing-complete because it lacked the
ability to either loop or "go to", the latter allowing programs to loop.
Despite the power of macro processing, it fell into disuse in many high level languages (major exceptions being
C/C++ and PL/I) while remaining a perennial for assemblers.
Macro parameter substitution is strictly by name: at macro processing time, the value of a parameter is textually
substituted for its name. The most famous class of bugs resulting was the use of a parameter that itself was an
expression and not a simple name when the macro writer expected a name. In the macro: foo: macro a load
a*b the intention was that the caller would provide the name of a variable, and the "global" variable or constant b
would be used to multiply "a". If foo is called with the parameter a-c, the macro expansion of load a-c*b
occurs. To avoid any possible ambiguity, users of macro processors can parenthesize formal parameters inside macro
definitions, or callers can parenthesize the input parameters.

Support for structured programming
Some assemblers have incorporated structured programming elements to encode execution flow. The earliest
example of this approach was in the Concept-14 macro set, originally proposed by Dr. H.D. Mills (March 1970), and
implemented by Marvin Kessler at IBM's Federal Systems Division, which extended the S/360 macro assembler
with IF/ELSE/ENDIF and similar control flow blocks. This was a way to reduce or eliminate the use of GOTO
operations in assembly code, one of the main factors causing spaghetti code in assembly language. This approach
was widely accepted in the early '80s (the latter days of large-scale assembly language use).
A curious design was A-natural, a "stream-oriented" assembler for 8080/Z80 processorsWikipedia:Citation needed
from Whitesmiths Ltd. (developers of the Unix-like Idris operating system, and what was reported to be the first
commercial C compiler). The language was classified as an assembler, because it worked with raw machine
elements such as opcodes, registers, and memory references; but it incorporated an expression syntax to indicate

http://en.wikipedia.org/w/index.php?title=Parameter_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=IBM
http://en.wikipedia.org/w/index.php?title=VM/CMS
http://en.wikipedia.org/w/index.php?title=CICS
http://en.wikipedia.org/w/index.php?title=Airline_Control_Program
http://en.wikipedia.org/w/index.php?title=Transaction_Processing_Facility
http://en.wikipedia.org/w/index.php?title=Computer_reservations_system
http://en.wikipedia.org/w/index.php?title=COBOL
http://en.wikipedia.org/w/index.php?title=Turing_completeness
http://en.wikipedia.org/w/index.php?title=PL/I
http://en.wikipedia.org/w/index.php?title=Structured_programming
http://en.wikipedia.org/w/index.php?title=Concept-14_macro_set
http://en.wikipedia.org/w/index.php?title=GOTO
http://en.wikipedia.org/w/index.php?title=Spaghetti_code
http://en.wikipedia.org/w/index.php?title=A-natural
http://en.wikipedia.org/w/index.php?title=Z80
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Whitesmiths
http://en.wikipedia.org/w/index.php?title=Unix
http://en.wikipedia.org/w/index.php?title=Idris_%28operating_system%29
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=Opcodes
http://en.wikipedia.org/w/index.php?title=Processor_register

Assembly language 92

execution order. Parentheses and other special symbols, along with block-oriented structured programming
constructs, controlled the sequence of the generated instructions. A-natural was built as the object language of a C
compiler, rather than for hand-coding, but its logical syntax won some fans.
There has been little apparent demand for more sophisticated assemblers since the decline of large-scale assembly
language development. In spite of that, they are still being developed and applied in cases where resource constraints
or peculiarities in the target system's architecture prevent the effective use of higher-level languages.

Use of assembly language

Historical perspective
Assembly languages date to the introduction of the stored-program computer. The EDSAC computer (1949) had an
assembler called initial orders featuring one-letter mnemonics. Nathaniel Rochester wrote an assembler for an IBM
701 (1954). SOAP (Symbolic Optimal Assembly Program) (1955) was an assembly language for the IBM 650
computer written by Stan Poley.
Assembly languages eliminated much of the error-prone and time-consuming first-generation programming needed
with the earliest computers, freeing programmers from tedium such as remembering numeric codes and calculating
addresses. They were once widely used for all sorts of programming. However, by the 1980s (1990s on
microcomputers), their use had largely been supplanted by higher-level languages, in the search for improved
programming productivity. Today assembly language is still used for direct hardware manipulation, access to
specialized processor instructions, or to address critical performance issues. Typical uses are device drivers,
low-level embedded systems, and real-time systems.
Historically, numerous programs have been written entirely in assembly language. Operating systems were entirely
written in assembly language until the introduction of the Burroughs MCP (1961), which was written in ESPOL, an
Algol dialect. Many commercial applications were written in assembly language as well, including a large amount of
the IBM mainframe software written by large corporations. COBOL, FORTRAN and some PL/I eventually
displaced much of this work, although a number of large organizations retained assembly-language application
infrastructures well into the '90s.
Most early microcomputers relied on hand-coded assembly language, including most operating systems and large
applications. This was because these systems had severe resource constraints, imposed idiosyncratic memory and
display architectures, and provided limited, buggy system services. Perhaps more important was the lack of
first-class high-level language compilers suitable for microcomputer use. A psychological factor may have also
played a role: the first generation of microcomputer programmers retained a hobbyist, "wires and pliers" attitude.
In a more commercial context, the biggest reasons for using assembly language were minimal bloat (size), minimal
overhead, greater speed, and reliability.
Typical examples of large assembly language programs from this time are IBM PC DOS operating systems and early
applications such as the spreadsheet program Lotus 1-2-3. Even into the 1990s, most console video games were
written in assembly, including most games for the Mega Drive/Genesis and the Super Nintendo Entertainment
System.Wikipedia:Citation needed According to some industry insiders, the assembly language was the best
computer language to use to get the best performance out of the Sega Saturn, a console that was notoriously
challenging to develop and program games for.[5] The popular arcade game NBA Jam (1993) is another example.
Assembly language has long been the primary development language for many popular home computers of the
1980s and 1990s (such as the Sinclair ZX Spectrum, Commodore 64, Commodore Amiga, and Atari ST). This was
in large part because BASIC dialects on these systems offered insufficient execution speed, as well as insufficient
facilities to take full advantage of the available hardware on these systems. Some systems even have IDEs with
highly advanced debugging and macro facilities.

http://en.wikipedia.org/w/index.php?title=Stored-program_computer
http://en.wikipedia.org/w/index.php?title=Electronic_Delay_Storage_Automatic_Calculator
http://en.wikipedia.org/w/index.php?title=Nathaniel_Rochester_%28computer_scientist%29
http://en.wikipedia.org/w/index.php?title=IBM_701
http://en.wikipedia.org/w/index.php?title=IBM_701
http://en.wikipedia.org/w/index.php?title=IBM_650
http://en.wikipedia.org/w/index.php?title=First-generation_language
http://en.wikipedia.org/w/index.php?title=Microcomputer
http://en.wikipedia.org/w/index.php?title=Programming_productivity
http://en.wikipedia.org/w/index.php?title=Device_driver
http://en.wikipedia.org/w/index.php?title=Embedded_system
http://en.wikipedia.org/w/index.php?title=Real-time_computing
http://en.wikipedia.org/w/index.php?title=Burroughs_MCP
http://en.wikipedia.org/w/index.php?title=Executive_Systems_Problem_Oriented_Language
http://en.wikipedia.org/w/index.php?title=IBM_mainframe
http://en.wikipedia.org/w/index.php?title=COBOL
http://en.wikipedia.org/w/index.php?title=FORTRAN
http://en.wikipedia.org/w/index.php?title=PL/I
http://en.wikipedia.org/w/index.php?title=DOS
http://en.wikipedia.org/w/index.php?title=Spreadsheet
http://en.wikipedia.org/w/index.php?title=Lotus_1-2-3
http://en.wikipedia.org/w/index.php?title=Sega_Mega_Drive
http://en.wikipedia.org/w/index.php?title=Super_Nintendo_Entertainment_System
http://en.wikipedia.org/w/index.php?title=Super_Nintendo_Entertainment_System
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Sega_Saturn
http://en.wikipedia.org/w/index.php?title=NBA_Jam
http://en.wikipedia.org/w/index.php?title=Sinclair_ZX_Spectrum
http://en.wikipedia.org/w/index.php?title=Commodore_64
http://en.wikipedia.org/w/index.php?title=Commodore_Amiga
http://en.wikipedia.org/w/index.php?title=Atari_ST

Assembly language 93

The Assembler for the VIC-20 was written by Don French and published by French Silk. At 1,639 bytes in length, its
author believes it is the smallest symbolic assembler ever written. The assembler supported the usual symbolic
addressing and the definition of character strings or hex strings. It also allowed address expressions which could be
combined with addition, subtraction, multiplication, division, logical AND, logical OR, and exponentiation
operators.

Current usage
There have always been debates over the usefulness and performance of assembly language relative to high-level
languages. Assembly language has specific niche uses where it is important; see below. Assembler can be used to
optimize for speed or optimize for size. In the case of speed optimization, modern optimizing compilers are claimed
to render high-level languages into code that can run as fast as hand-written assembly, despite the counter-examples
that can be found. The complexity of modern processors and memory sub-systems makes effective optimization
increasingly difficult for compilers, as well as assembly programmers. Moreover, and to the dismay of efficiency
lovers, increasing processor performance has meant that most CPUs sit idle most of the time, with delays caused by
predictable bottlenecks such as cache misses, I/O operations and paging. This has made raw code execution speed a
non-issue for many programmers.
There are some situations in which developers might choose to use assembly language:
• A stand-alone executable of compact size is required that must execute without recourse to the run-time

components or libraries associated with a high-level language; this is perhaps the most common situation. For
example, firmware for telephones, automobile fuel and ignition systems, air-conditioning control systems,
security systems, and sensors.

• Code that must interact directly with the hardware, for example in device drivers and interrupt handlers.
• Programs that need to use processor-specific instructions not implemented in a compiler. A common example is

the bitwise rotation instruction at the core of many encryption algorithms.
• Programs that create vectorized functions for programs in higher-level languages such as C. In the higher-level

language this is sometimes aided by compiler intrinsic functions which map directly to SIMD mnemonics, but
nevertheless result in a one-to-one assembly conversion specific for the given vector processor.

• Programs requiring extreme optimization, for example an inner loop in a processor-intensive algorithm. Game
programmers take advantage of the abilities of hardware features in systems, enabling games to run faster. Also
large scientific simulations require highly optimized algorithms, e.g. linear algebra with BLAS or discrete cosine
transformation (e.g. SIMD assembly version from x264)

•• Situations where no high-level language exists, on a new or specialized processor, for example.
•• Programs that need precise timing such as

• real-time programs such as simulations, flight navigation systems, and medical equipment. For example, in a
fly-by-wire system, telemetry must be interpreted and acted upon within strict time constraints. Such systems
must eliminate sources of unpredictable delays, which may be created by (some) interpreted languages,
automatic garbage collection, paging operations, or preemptive multitasking. However, some higher-level
languages incorporate run-time components and operating system interfaces that can introduce such delays.
Choosing assembly or lower-level languages for such systems gives programmers greater visibility and control
over processing details.

• cryptographic algorithms that must always take strictly the same time to execute, preventing timing attacks.
• Situations where complete control over the environment is required, in extremely high security situations where

nothing can be taken for granted.
• Computer viruses, bootloaders, certain device drivers, or other items very close to the hardware or low-level

operating system.
• Instruction set simulators for monitoring, tracing and debugging where additional overhead is kept to a minimum

http://en.wikipedia.org/w/index.php?title=VIC-20
http://en.wikipedia.org/w/index.php?title=Character_string
http://en.wikipedia.org/w/index.php?title=Addition
http://en.wikipedia.org/w/index.php?title=Subtraction
http://en.wikipedia.org/w/index.php?title=Multiplication
http://en.wikipedia.org/w/index.php?title=Division_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Logical_AND
http://en.wikipedia.org/w/index.php?title=Logical_OR
http://en.wikipedia.org/w/index.php?title=Exponentiation
http://en.wikipedia.org/w/index.php?title=Optimizing_compiler
http://en.wikipedia.org/w/index.php?title=I/O
http://en.wikipedia.org/w/index.php?title=Paging
http://en.wikipedia.org/w/index.php?title=Run-time_system
http://en.wikipedia.org/w/index.php?title=Library_%28computing%29
http://en.wikipedia.org/w/index.php?title=Device_driver
http://en.wikipedia.org/w/index.php?title=Interrupt_handler
http://en.wikipedia.org/w/index.php?title=Circular_shift
http://en.wikipedia.org/w/index.php?title=Intrinsic_function
http://en.wikipedia.org/w/index.php?title=Program_loop
http://en.wikipedia.org/w/index.php?title=Game_programmer
http://en.wikipedia.org/w/index.php?title=Game_programmer
http://en.wikipedia.org/w/index.php?title=Linear_algebra
http://en.wikipedia.org/w/index.php?title=Basic_Linear_Algebra_Subprograms
http://en.wikipedia.org/w/index.php?title=DCT_%28math%29
http://en.wikipedia.org/w/index.php?title=DCT_%28math%29
http://en.wikipedia.org/w/index.php?title=SIMD
http://en.wikipedia.org/w/index.php?title=X264
http://en.wikipedia.org/w/index.php?title=Real-time_computing
http://en.wikipedia.org/w/index.php?title=Fly-by-wire
http://en.wikipedia.org/w/index.php?title=Garbage_collection_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Preemptive_multitasking
http://en.wikipedia.org/w/index.php?title=Timing_attack
http://en.wikipedia.org/w/index.php?title=Trusting_trust%23Reflections_on_Trusting_Trust
http://en.wikipedia.org/w/index.php?title=Computer_virus
http://en.wikipedia.org/w/index.php?title=Bootloader
http://en.wikipedia.org/w/index.php?title=Device_driver
http://en.wikipedia.org/w/index.php?title=Instruction_set_simulator
http://en.wikipedia.org/w/index.php?title=Debugging

Assembly language 94

• Reverse-engineering and modifying program files such as
• existing binaries that may or may not have originally been written in a high-level language, for example when

trying to recreate programs for which source code is not available or has been lost, or cracking copy protection
of proprietary software.

• Video games (also termed ROM hacking), which is possible via several methods. The most widely employed
is altering program code at the assembly language level.

• Self-modifying code, to which assembly language lends itself well.
• Games and other software for graphing calculators.
Assembly language is still taught in most computer science and electronic engineering programs. Although few
programmers today regularly work with assembly language as a tool, the underlying concepts remain very important.
Such fundamental topics as binary arithmetic, memory allocation, stack processing, character set encoding, interrupt
processing, and compiler design would be hard to study in detail without a grasp of how a computer operates at the
hardware level. Since a computer's behavior is fundamentally defined by its instruction set, the logical way to learn
such concepts is to study an assembly language. Most modern computers have similar instruction sets. Therefore,
studying a single assembly language is sufficient to learn: I) the basic concepts; II) to recognize situations where the
use of assembly language might be appropriate; and III) to see how efficient executable code can be created from
high-level languages. This is analogous to children needing to learn the basic arithmetic operations (e.g., long
division), although calculators are widely used for all except the most trivial calculations.

Typical applications
• Assembly language is typically used in a system's boot code, (BIOS on IBM-compatible PC systems and CP/M),

the low-level code that initializes and tests the system hardware prior to booting the operating system, and is often
stored in ROM.

• Some compilers translate high-level languages into assembly first before fully compiling, allowing the assembly
code to be viewed for debugging and optimization purposes.

• Relatively low-level languages, such as C, allow the programmer to embed assembly language directly in the
source code. Programs using such facilities, such as the Linux kernel, can then construct abstractions using
different assembly language on each hardware platform. The system's portable code can then use these
processor-specific components through a uniform interface.

• Assembly language is valuable in reverse engineering. Many programs are distributed only in machine code form
which is straightforward to translate into assembly language, but more difficult to translate into a higher-level
language. Tools such as the Interactive Disassembler make extensive use of disassembly for such a purpose.

• Assemblers can be used to generate blocks of data, with no high-level language overhead, from formatted and
commented source code, to be used by other code.Wikipedia:Citation needed

Related terminology
• Assembly language or assembler language is commonly called assembly, assembler, ASM, or symbolic

machine code. A generation of IBM mainframe programmers called it ALC for Assembly Language Code or
BAL[6] for Basic Assembly Language. Calling the language assembler might be considered potentially
confusing and ambiguous, since this is also the name of the utility program that translates assembly language
statements into machine code. However, this usage has been common among professionals and in the literature
for decades. Similarly, some early computers called their assembler their assembly program.

• The computational step where an assembler is run, including all macro processing, is termed assembly time. The
assembler is said to be "assembling" the source code.

• The use of the word assembly dates from the early years of computers (cf. short code, speedcode).

http://en.wikipedia.org/w/index.php?title=Reverse-engineering
http://en.wikipedia.org/w/index.php?title=Binary_file
http://en.wikipedia.org/w/index.php?title=Video_game
http://en.wikipedia.org/w/index.php?title=ROM_hacking
http://en.wikipedia.org/w/index.php?title=Self-modifying_code
http://en.wikipedia.org/w/index.php?title=Calculator_gaming
http://en.wikipedia.org/w/index.php?title=Graphing_calculator
http://en.wikipedia.org/w/index.php?title=Computer_science
http://en.wikipedia.org/w/index.php?title=Electronic_engineering
http://en.wikipedia.org/w/index.php?title=Binary_arithmetic
http://en.wikipedia.org/w/index.php?title=Memory_allocation
http://en.wikipedia.org/w/index.php?title=Stack_%28data_structure%29
http://en.wikipedia.org/w/index.php?title=Character_set
http://en.wikipedia.org/w/index.php?title=Interrupt
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=Calculator
http://en.wikipedia.org/w/index.php?title=Booting
http://en.wikipedia.org/w/index.php?title=BIOS
http://en.wikipedia.org/w/index.php?title=Personal_Computer
http://en.wikipedia.org/w/index.php?title=CP/M
http://en.wikipedia.org/w/index.php?title=Read-only_memory
http://en.wikipedia.org/w/index.php?title=Debug
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Linux_kernel
http://en.wikipedia.org/w/index.php?title=Software_portability
http://en.wikipedia.org/w/index.php?title=Reverse_engineering
http://en.wikipedia.org/w/index.php?title=Interactive_Disassembler
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Short_Code_%28Computer_language%29
http://en.wikipedia.org/w/index.php?title=Speedcoding

Assembly language 95

• A cross assembler (see also cross compiler) is an assembler that is run on a computer or operating system of a
different type from the system on which the resulting code is to run (the target system). Cross-assembling may be
necessary if the target system cannot run an assembler itself, as is typically the case for small embedded systems.
The computer on which the cross assembler is run must have some means of transporting the resulting machine
code to the target system. Common methods involve transmitting an exact byte-by-byte copy of the machine code
or an ASCII representation of the machine code in a portable format (such as Motorola or Intel hexadecimal)
through a compatible interface to the target system for execution.

• An assembler directive or pseudo-opcode is a command given to an assembler "directing it to perform
operations other than assembling instructions." Directives affect how the assembler operates and "may affect the
object code, the symbol table, the listing file, and the values of internal assembler parameters." Sometimes the
term pseudo-opcode is reserved for directives that generate object code, such as those that generate data.

• A meta-assembler is "a program that accepts the syntactic and semantic description of an assembly language,
and generates an assembler for that language." [7]

List of assemblers for different computer architectures
Main article: List of assemblers

Further details
For any given personal computer, mainframe, embedded system, and game console, both past and present, at least
one – possibly dozens – of assemblers have been written. For some examples, see the list of assemblers.
On Unix systems, the assembler is traditionally called as, although it is not a single body of code, being typically
written anew for each port. A number of Unix variants use GAS.
Within processor groups, each assembler has its own dialect. Sometimes, some assemblers can read another
assembler's dialect, for example, TASM can read old MASM code, but not the reverse. FASM and NASM have
similar syntax, but each support different macros that could make them difficult to translate to each other. The basics
are all the same, but the advanced features will differ.
Also, assembly can sometimes be portable across different operating systems on the same type of CPU. Calling
conventions between operating systems often differ slightly or not at all, and with care it is possible to gain some
portability in assembly language, usually by linking with a C library that does not change between operating
systems.Wikipedia:Citation needed An instruction set simulator can process the object code/ binary of any assembler
to achieve portability even across platforms with an overhead no greater than a typical bytecode
interpreter.Wikipedia:Citation needed This is similar to use of microcode to achieve compatibility across a processor
family.
Some higher level computer languages, such as C and Borland Pascal, support inline assembly where sections of
assembly code, in practice usually brief, can be embedded into the high level language code. The Forth language
commonly contains an assembler used in CODE words.
An emulator can be used to debug assembly-language programs.

http://en.wikipedia.org/w/index.php?title=Cross_compiler
http://en.wikipedia.org/w/index.php?title=Operating_system
http://en.wikipedia.org/w/index.php?title=ASCII
http://en.wikipedia.org/w/index.php?title=SREC_%28file_format%29
http://en.wikipedia.org/w/index.php?title=Intel_HEX
http://en.wikipedia.org/w/index.php?title=Hexadecimal
http://en.wikipedia.org/w/index.php?title=Interface_%28computing%29
http://en.wikipedia.org/w/index.php?title=List_of_assemblers
http://en.wikipedia.org/w/index.php?title=List_of_assemblers
http://en.wikipedia.org/w/index.php?title=Unix
http://en.wikipedia.org/w/index.php?title=As_%28Unix%29
http://en.wikipedia.org/w/index.php?title=GNU_Assembler
http://en.wikipedia.org/w/index.php?title=TASM
http://en.wikipedia.org/w/index.php?title=MASM
http://en.wikipedia.org/w/index.php?title=FASM
http://en.wikipedia.org/w/index.php?title=Netwide_Assembler
http://en.wikipedia.org/w/index.php?title=CPU
http://en.wikipedia.org/w/index.php?title=Calling_convention
http://en.wikipedia.org/w/index.php?title=Calling_convention
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Instruction_set_simulator
http://en.wikipedia.org/w/index.php?title=Object_code
http://en.wikipedia.org/w/index.php?title=Binary_file
http://en.wikipedia.org/w/index.php?title=Platform_%28computing%29
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Borland_Pascal
http://en.wikipedia.org/w/index.php?title=Inline_assembler
http://en.wikipedia.org/w/index.php?title=Forth_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Emulator

Assembly language 96

Example listing of assembly language source code
The following is a partial listing generated by the NASM, an assembler for 32-bit Intel x86 CPUs. The code is for a
subroutine, not a complete program.

 ;---

 ; zstr_count:

 ; Counts a zero-terminated ASCII string to determine its size

 ; in: eax = start address of the zero terminated string

 ; out: ecx = count = the length of the string

 zstr_count: ; Entry point

00000030 B9FFFFFFFF mov ecx, -1 ; Init the loop counter, pre-decrement

 ; to compensate for the increment

 .loop:

00000035 41 inc ecx ; Add 1 to the loop counter

00000036 803C0800 cmp byte [eax + ecx], 0 ; Compare the value at the string's

 ; [starting memory address Plus the

 ; loop offset], to zero

0000003A 75F9 jne .loop ; If the memory value is not zero,

 ; then jump to the label called '.loop',

 ; otherwise continue to the next line

 .done:

 ; We don't do a final increment,

 ; because even though the count is base 1,

 ; we do not include the zero terminator in the

 ; string's length

0000003C C3 ret ; Return to the calling program

The first column (from the left) is simply the line number in the listing and is otherwise meaningless. The second
column is the relative address, in hex, of where the code will be placed in memory. The third column is the actual
compiled code. For instance, B9 is the x86 opcode for the MOV ECX instruction; FFFFFFFF is the value −1 in
two's-complement binary form.
Names suffixed with colons (:) are symbolic labels; the labels do not create code, they are simply a way to tell the
assembler that those locations have symbolic names. The .done label is only present for clarity of where the
program ends, it does not serve any other purpose. Prefixing a period (.) on a label is a feature of the assembler,
declaring the label as being local to the subroutine.

http://en.wikipedia.org/w/index.php?title=Netwide_Assembler
http://en.wikipedia.org/w/index.php?title=Intel_80386

Assembly language 97

References
[1] Whether these bitgroups are orthogonal, or to what extent they are, depends on the CPU and instruction set design at hand.
[2] David Salomon (1993). Assemblers and Loaders (http:/ / www. davidsalomon. name/ assem. advertis/ asl. pdf)
[3] Hyde, Randall. "Chapter 12 – Classes and Objects". The Art of Assembly Language, 2nd Edition. No Starch Press. © 2010.
[4] Z80 Op Codes for ZINT (http:/ / www. z80. de/ z80/ z80code. htm). Z80.de. Retrieved on 2013-07-21.
[5] Eidolon's Inn : SegaBase Saturn (http:/ / www. eidolons-inn. net/ tiki-index. php?page=SegaBase+ Saturn)
[6] Technically BAL was only the assembler for BPS; the others were macro assemblers.
[7] (John Daintith, ed.) A Dictionary of Computing: "meta-assembler" (http:/ / www. encyclopedia. com/ doc/ 1O11-metaassembler. html)

Further reading
• Yurichev, Dennis, "An Introduction To Reverse Engineering for Beginners". Online book: http:/ / yurichev. com/

writings/ RE_for_beginners-en. pdf
• ASM Community Book (http:/ / www. asmcommunity. net/ book/) "An online book full of helpful ASM info,

tutorials and code examples" by the ASM Community
• Jonathan Bartlett: Programming from the Ground Up (http:/ / programminggroundup. blogspot. com/). Bartlett

Publishing, 2004. ISBN 0-9752838-4-7
Also available online as PDF (http:/ / download. savannah. gnu. org/ releases-noredirect/ pgubook/
ProgrammingGroundUp-1-0-booksize. pdf)

• Robert Britton: MIPS Assembly Language Programming. Prentice Hall, 2003. ISBN 0-13-142044-5
• Paul Carter: PC Assembly Language. Free ebook, 2001.

Website (http:/ / drpaulcarter. com/ pcasm/)
• Jeff Duntemann: Assembly Language Step-by-Step. Wiley, 2000. ISBN 0-471-37523-3
• Randall Hyde: The Art of Assembly Language. No Starch Press, 2003. ISBN 1-886411-97-2

Draft versions available online (http:/ / www. plantation-productions. com/ Webster/ www. artofasm. com/ index.
html) as PDF and HTML

• Peter Norton, John Socha, Peter Norton's Assembly Language Book for the IBM PC, Brady Books, NY: 1986.
• Michael Singer, PDP-11. Assembler Language Programming and Machine Organization, John Wiley & Sons,

NY: 1980.
• Dominic Sweetman: See MIPS Run. Morgan Kaufmann Publishers, 1999. ISBN 1-55860-410-3
• John Waldron: Introduction to RISC Assembly Language Programming. Addison Wesley, 1998. ISBN

0-201-39828-1

External links
• Machine language for beginners (http:/ / www. atariarchives. org/ mlb/ introduction. php)
• The ASM Community (http:/ / www. asmcommunity. net/), a programming resource about assembly.
• Unix Assembly Language Programming (http:/ / www. int80h. org/)
• Linux Assembly (http:/ / asm. sourceforge. net/)
• IBM High Level Assembler (http:/ / www-03. ibm. com/ systems/ z/ os/ zos/ bkserv/ r8pdf/ index. html#hlasm)

IBM manuals on mainframe assembler language.
• PPR: Learning Assembly Language (http:/ / c2. com/ cgi/ wiki?LearningAssemblyLanguage)
• NASM - The Netwide Assembler (a popular assembly language) (http:/ / www. nasm. us/)
• Assembly Language Programming Examples (http:/ / www. azillionmonkeys. com/ qed/ asmexample. html)
• Authoring Windows Applications In Assembly Language (http:/ / www. grc. com/ smgassembly. htm)
• Iczelion's Win32 Assembly Tutorial (https:/ / web. archive. org/ web/ */ http:/ / win32assembly. online. fr/

tutorials. html) at the Wayback Machine
• Assembly Optimization Tips (http:/ / mark. masmcode. com/) by Mark Larson

http://en.wikipedia.org/w/index.php?title=Orthogonal
http://www.davidsalomon.name/assem.advertis/asl.pdf
http://www.z80.de/z80/z80code.htm
http://www.eidolons-inn.net/tiki-index.php?page=SegaBase+Saturn
http://en.wikipedia.org/w/index.php?title=IBM_Basic_Programming_Support
http://www.encyclopedia.com/doc/1O11-metaassembler.html
http://yurichev.com/writings/RE_for_beginners-en.pdf
http://yurichev.com/writings/RE_for_beginners-en.pdf
http://www.asmcommunity.net/book/
http://programminggroundup.blogspot.com/
http://download.savannah.gnu.org/releases-noredirect/pgubook/ProgrammingGroundUp-1-0-booksize.pdf
http://download.savannah.gnu.org/releases-noredirect/pgubook/ProgrammingGroundUp-1-0-booksize.pdf
http://drpaulcarter.com/pcasm/
http://www.plantation-productions.com/Webster/www.artofasm.com/index.html
http://www.plantation-productions.com/Webster/www.artofasm.com/index.html
http://www.atariarchives.org/mlb/introduction.php
http://www.asmcommunity.net/
http://www.int80h.org/
http://asm.sourceforge.net/
http://www-03.ibm.com/systems/z/os/zos/bkserv/r8pdf/index.html#hlasm
http://c2.com/cgi/wiki?LearningAssemblyLanguage
http://www.nasm.us/
http://www.azillionmonkeys.com/qed/asmexample.html
http://www.grc.com/smgassembly.htm
https://web.archive.org/web/*/http://win32assembly.online.fr/tutorials.html
https://web.archive.org/web/*/http://win32assembly.online.fr/tutorials.html
http://en.wikipedia.org/w/index.php?title=Wayback_Machine
http://mark.masmcode.com/

Machine code 98

Machine code

Machine language monitor in a W65C816S
single-board computer, displaying code

disassembly, as well as processor register and
memory dumps.

Machine code or machine language is a set of instructions executed
directly by a computer's central processing unit (CPU). Each
instruction performs a very specific task, such as a load, a jump, or an
ALU operation on a unit of data in a CPU register or memory. Every
program directly executed by a CPU is made up of a series of such
instructions.

Numerical machine code (i.e. not assembly code) may be regarded as
the lowest-level representation of a compiled and/or assembled
computer program or as a primitive and hardware-dependent
programming language. While it is possible to write programs directly
in numerical machine code, it is tedious and error prone to manage
individual bits and calculate numerical addresses and constants
manually. It is therefore rarely done today, except for situations that
require extreme optimization or debugging.

Almost all practical programs today are written in higher-level languages or assembly language, and translated to
executable machine code by a compiler and/or assembler and linker. Programs in interpreted languages[1] are not
translated into machine code however, although their interpreter (which may be seen as an executor or processor)
typically consists of directly executable machine code (generated from assembly and/or high level language source
code).

Machine code instructions
Main article: Instruction set
Every processor or processor family has its own machine code instruction set. Instructions are patterns of bits that by
physical design correspond to different commands to the machine. Thus, the instruction set is specific to a class of
processors using (much) the same architecture. Successor or derivative processor designs often include all the
instructions of a predecessor and may add additional instructions. Occasionally, a successor design will discontinue
or alter the meaning of some instruction code (typically because it is needed for new purposes), affecting code
compatibility to some extent; even nearly completely compatible processors may show slightly different behavior for
some instructions, but this is rarely a problem. Systems may also differ in other details, such as memory
arrangement, operating systems, or peripheral devices. Because a program normally relies on such factors, different
systems will typically not run the same machine code, even when the same type of processor is used.
A machine code instruction set may have all instructions of the same length, or it may have variable-length
instructions. How the patterns are organized varies strongly with the particular architecture and often also with the
type of instruction. Most instructions have one or more opcode fields which specifies the basic instruction type (such
as arithmetic, logical, jump, etc.) and the actual operation (such as add or compare) and other fields that may give the
type of the operand(s), the addressing mode(s), the addressing offset(s) or index, or the actual value itself (such
constant operands contained in an instruction are called immediates).[2]

Not all machines or individual instructions have explicit operands. An accumulator machine have a combined left
operand and result in an implicit accumulator for most arithmetic instructions. Other architectures (such as 8086 and
the x86-family) have accumulator versions of common instructions, with the accumulator regarded as one of the
general registers by longer instructions. A stack machine has most or all of its operands on an implicit stack. Special
purpose instructions also often lack explicit operands (CPUID in the x86 architecture writes values into four implicit

http://en.wikipedia.org/w/index.php?title=W65C816S
http://en.wikipedia.org/w/index.php?title=Single-board_computer
http://en.wikipedia.org/w/index.php?title=Disassembler
http://en.wikipedia.org/w/index.php?title=Disassembler
http://en.wikipedia.org/w/index.php?title=File%3AW65C816S_Machine_Code_Monitor.jpeg
http://en.wikipedia.org/w/index.php?title=Instruction_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Computer
http://en.wikipedia.org/w/index.php?title=Central_processing_unit
http://en.wikipedia.org/w/index.php?title=Jump_instruction
http://en.wikipedia.org/w/index.php?title=Arithmetic_logic_unit
http://en.wikipedia.org/w/index.php?title=Processor_register
http://en.wikipedia.org/w/index.php?title=Assembly_code
http://en.wikipedia.org/w/index.php?title=Compiled
http://en.wikipedia.org/w/index.php?title=Computer_hardware
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=Assembler_%28computing%29
http://en.wikipedia.org/w/index.php?title=Linker_%28computing%29
http://en.wikipedia.org/w/index.php?title=Interpreted_language
http://en.wikipedia.org/w/index.php?title=Interpreter_%28computing%29
http://en.wikipedia.org/w/index.php?title=Instruction_set
http://en.wikipedia.org/w/index.php?title=Instruction_set
http://en.wikipedia.org/w/index.php?title=Bit
http://en.wikipedia.org/w/index.php?title=Operating_systems
http://en.wikipedia.org/w/index.php?title=Peripheral
http://en.wikipedia.org/w/index.php?title=Opcode
http://en.wikipedia.org/w/index.php?title=Branch_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Operand
http://en.wikipedia.org/w/index.php?title=Addressing_mode
http://en.wikipedia.org/w/index.php?title=Accumulator_machine
http://en.wikipedia.org/w/index.php?title=Stack_machine

Machine code 99

destination registers, for instance). This distinction between explicit and implicit operands is important in machine
code generators, especially in the register allocation and live range tracking parts. A good code optimizer can track
implicit as well as explicit operands which may allow more frequent constant propagation, constant folding of
registers (a register assigned the result of a constant expression freed up by replacing it by that constant) and other
code enhancements.

Programs
A computer program is a sequence of instructions that are executed by a CPU. While simple processors execute
instructions one after another, superscalar processors are capable of executing several instructions at once.
Program flow may be influenced by special 'jump' instructions that transfer execution to an instruction other than the
numerically following one. Conditional jumps are taken (execution continues at another address) or not (execution
continues at the next instruction) depending on some condition.

Assembly languages
Main article: Assembly language
A much more readable rendition of machine language, called assembly language, uses mnemonic codes to refer to
machine code instructions, rather than using the instructions' numeric values directly. For example, on the Zilog Z80
processor, the machine code 00000101, which causes the CPU to decrement the B processor register, would be
represented in assembly language as DEC B.

Example
The MIPS architecture provides a specific example for a machine code whose instructions are always 32 bits long.
The general type of instruction is given by the op (operation) field, the highest 6 bits. J-type (jump) and I-type
(immediate) instructions are fully specified by op. R-type (register) instructions include an additional field funct to
determine the exact operation. The fields used in these types are:

 6 5 5 5 5 6 bits

[op | rs | rt | rd |shamt| funct] R-type

[op | rs | rt | address/immediate] I-type

[op | target address] J-type

rs, rt, and rd indicate register operands; shamt gives a shift amount; and the address or immediate fields contain an
operand directly.
For example adding the registers 1 and 2 and placing the result in register 6 is encoded:

[op | rs | rt | rd |shamt| funct]

 0 1 2 6 0 32 decimal

 000000 00001 00010 00110 00000 100000 binary

Load a value into register 8, taken from the memory cell 68 cells after the location listed in register 3:

[op | rs | rt | address/immediate]

 35 3 8 68 decimal

 100011 00011 01000 00000 00001 000100 binary

Jumping to the address 1024:

[op | target address]

 2 1024 decimal

http://en.wikipedia.org/w/index.php?title=Constant_propagation
http://en.wikipedia.org/w/index.php?title=Constant_folding
http://en.wikipedia.org/w/index.php?title=Superscalar
http://en.wikipedia.org/w/index.php?title=Program_flow
http://en.wikipedia.org/w/index.php?title=Conditional_branch
http://en.wikipedia.org/w/index.php?title=Assembly_language%23Opcode_mnemonics_and_extended_mnemonics
http://en.wikipedia.org/w/index.php?title=Zilog_Z80
http://en.wikipedia.org/w/index.php?title=Processor_register
http://en.wikipedia.org/w/index.php?title=MIPS_architecture

Machine code 100

 000010 00000 00000 00000 10000 000000 binary

Relationship to microcode
In some computer architectures, the machine code is implemented by a more fundamental underlying layer of
programs called microprograms, providing a common machine language interface across a line or family of different
models of computer with widely different underlying dataflows. This is done to facilitate porting of machine
language programs between different models. An example of this use is the IBM System/360 family of computers
and their successors. With dataflow path widths of 8 bits to 64 bits and beyond, they nevertheless present a common
architecture at the machine language level across the entire line.
Using a microcode layer to implement an emulator enables the computer to present the architecture of an entirely
different computer. The System/360 line used this to allow porting programs from earlier IBM machines to the new
family of computers, e.g. an IBM 1401/1440/1460 emulator on the IBM S/360 model 40.

Relationship to bytecode
Machine code should not be confused with so-called "bytecode" (or the older term p-code), which is either executed
by an interpreter or itself compiled into machine code for faster (direct) execution. Machine code and assembly code
is sometimes called native code when referring to platform-dependent parts of language features or libraries.

Storing in memory
The Harvard architecture is a computer architecture with physically separate storage and signal pathways for the
code (instructions) and data. Today, most processors implement such separate signal pathways for performance
reasons but actually implement a Modified Harvard architecture,Wikipedia:Citation needed so they can support tasks
like loading an executable program from disk storage as data and then executing it. Harvard architecture is
contrasted to the Von Neumann architecture, where data and code are stored in the same memory.
From the point of view of a process, the code space is the part of its address space where the code in execution is
stored. In multitasking systems this comprises the program's code segment and usually shared libraries. In
multi-threading environment, different threads of one process share code space along with data space, which reduces
the overhead of context switching considerably as compared to process switching.

Readability by humans
It has been said that machine code is so unreadable that the United States Copyright Office cannot identify whether a
particular encoded program is an original work of authorship; however, the US Copyright Office does allow for
copyright registration of computer programs. Hofstadter compares machine code with the genetic code: "Looking at
a program written in machine language is vaguely comparable to looking at a DNA molecule atom by atom." (Note:
first and third sources are from the early 1980s, and may be out of date.)

http://en.wikipedia.org/w/index.php?title=Computer_architecture
http://en.wikipedia.org/w/index.php?title=Microprogram
http://en.wikipedia.org/w/index.php?title=Dataflow
http://en.wikipedia.org/w/index.php?title=Porting
http://en.wikipedia.org/w/index.php?title=System/360
http://en.wikipedia.org/w/index.php?title=Emulator
http://en.wikipedia.org/w/index.php?title=IBM_1400_series
http://en.wikipedia.org/w/index.php?title=Bytecode
http://en.wikipedia.org/w/index.php?title=P-code_machine
http://en.wikipedia.org/w/index.php?title=Native_%28computing%29
http://en.wikipedia.org/w/index.php?title=Harvard_architecture
http://en.wikipedia.org/w/index.php?title=Data_%28computing%29
http://en.wikipedia.org/w/index.php?title=Modified_Harvard_architecture
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Executable
http://en.wikipedia.org/w/index.php?title=Data_storage_device
http://en.wikipedia.org/w/index.php?title=Von_Neumann_architecture
http://en.wikipedia.org/w/index.php?title=Process_%28computing%29
http://en.wikipedia.org/w/index.php?title=Virtual_address_space
http://en.wikipedia.org/w/index.php?title=Computer_multitasking
http://en.wikipedia.org/w/index.php?title=Code_segment
http://en.wikipedia.org/w/index.php?title=Shared_libraries
http://en.wikipedia.org/w/index.php?title=Thread_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Context_switching
http://en.wikipedia.org/w/index.php?title=Copyright_Office
http://en.wikipedia.org/w/index.php?title=Douglas_Hofstadter
http://en.wikipedia.org/w/index.php?title=Genetic_code
http://en.wikipedia.org/w/index.php?title=DNA

Machine code 101

Notes and references
[1] Such as many versions of BASIC, especially early ones, as well as Smalltalk, MATLAB, Perl, Python, Ruby and other special purpose or

scripting languages.
[2] Immediate operands (http:/ / programmedlessons. org/ AssemblyTutorial/ Chapter-11/ ass11_2. html)

Further reading
• Hennessy, John L.; Patterson, David A.. Computer Organization and Design. The Hardware/Software Interface.

Morgan Kaufmann Publishers. ISBN 1-55860-281-X.
• Tanenbaum, Andrew S.. Structured Computer Organization. Prentice Hall. ISBN 0-13-020435-8.
• Brookshear, J. Glenn. Computer Science: An Overview. Addison Wesley. ISBN 0-321-38701-5.

Source code
For the 2011 film, see Source Code.
Not to be confused with source coding.

An illustration of Java source code with prologue comments indicated in red, inline
comments indicated in green, and program statements indicated in blue

In computing, source code is any collection
of computer instructions (possibly with
comments) written using some
human-readable computer language, usually
as text. The source code of a program is
specially designed to facilitate the work of
computer programmers, who specify the
actions to be performed by a computer
mostly by writing source code. The source
code is often transformed by a compiler
program into low-level machine code
understood by the computer. The machine
code might then be stored for execution at a
later time. Alternatively, an interpreter can
be used to analyze and perform the
outcomes of the source code program
directly on the fly.

Most computer applications are distributed
in a form that includes executable files, but
not their source code. If the source code were included, it would be useful to a user, programmer, or system
administrator, who may wish to modify the program or understand how it works.

Aside from its machine-readable forms, source code also appears in books and other media; often in the form of
small code snippets, but occasionally complete code bases; a well-known case is the source code of PGP.

http://en.wikipedia.org/w/index.php?title=BASIC
http://en.wikipedia.org/w/index.php?title=Smalltalk
http://en.wikipedia.org/w/index.php?title=MATLAB
http://en.wikipedia.org/w/index.php?title=Perl_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Ruby_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Scripting_language
http://programmedlessons.org/AssemblyTutorial/Chapter-11/ass11_2.html
http://en.wikipedia.org/w/index.php?title=John_L._Hennessy
http://en.wikipedia.org/w/index.php?title=David_A._Patterson_%28scientist%29
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/1-55860-281-X
http://en.wikipedia.org/w/index.php?title=Andrew_S._Tanenbaum
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/0-13-020435-8
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/0-321-38701-5
http://en.wikipedia.org/w/index.php?title=Source_Code
http://en.wikipedia.org/w/index.php?title=Source_coding
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=File%3ACodeCmmt002.svg
http://en.wikipedia.org/w/index.php?title=Computing
http://en.wikipedia.org/w/index.php?title=Comment_%28computer_programming%29
http://en.wikipedia.org/w/index.php?title=Human-readable
http://en.wikipedia.org/w/index.php?title=Computer_language
http://en.wikipedia.org/w/index.php?title=Plain_text
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=Execution_%28computing%29
http://en.wikipedia.org/w/index.php?title=Interpreter_%28computing%29
http://en.wikipedia.org/w/index.php?title=Computer_application
http://en.wikipedia.org/w/index.php?title=Executable_file
http://en.wikipedia.org/w/index.php?title=User_%28computing%29
http://en.wikipedia.org/w/index.php?title=System_administrator
http://en.wikipedia.org/w/index.php?title=System_administrator
http://en.wikipedia.org/w/index.php?title=Machine-readable_data
http://en.wikipedia.org/w/index.php?title=Code_snippets
http://en.wikipedia.org/w/index.php?title=Codebase
http://en.wikipedia.org/w/index.php?title=Pretty_Good_Privacy

Source code 102

Definitions
The notion of source code may also be taken more broadly, to include machine code and notations in graphical
languages, neither of which are textual in nature. An example from an article presented on the annual IEEE
conference on Source Code Analysis and Manipulation:[1]

For the purpose of clarity ‘source code’ is taken to mean any fully executable description of a software
system. It is therefore so construed as to include machine code, very high level languages and
executable graphical representations of systems.[2]

Organization
The source code which constitutes a program is usually held in one or more text files stored on a computer's hard
disk; usually these files are carefully arranged into a directory tree, known as a source tree. Source code can also be
stored in a database (as is common for stored procedures) or elsewhere.
The source code for a particular piece of software may be contained in a single file or many files. Though the
practice is uncommon, a program's source code can be written in different programming languages.[3] For example, a
program written primarily in the C programming language, might have portions written in assembly language for
optimization purposes. It is also possible for some components of a piece of software to be written and compiled
separately, in an arbitrary programming language, and later integrated into the software using a technique called
library linking. This is the case in some languages, such as Java: each class is compiled separately into a file and
linked by the interpreter at runtime.
Yet another method is to make the main program an interpreter for a programming languageWikipedia:Citation
needed, either designed specifically for the application in question or general-purpose, and then write the bulk of the
actual user functionality as macros or other forms of add-ins in this language, an approach taken for example by the
GNU Emacs text editor.
The code base of a computer programming project is the larger collection of all the source code of all the computer
programs which make up the project. It has become common practice to maintain code bases in version control
systems. Moderately complex software customarily requires the compilation or assembly of several, sometimes
dozens or even hundreds, of different source code files. In these cases, instructions for compilations, such as a
Makefile, are included with the source code. These describe the relationships among the source code files, and
contain information about how they are to be compiled.
The revision control system is another tool frequently used by developers for source code maintenance.

Purposes
Source code is primarily used as input to the process that produces an executable program (i.e., it is compiled or
interpreted). It is also used as a method of communicating algorithms between people (e.g., code snippets in
books).[4]

Programmers often find it helpful to review existing source code to learn about programming techniques. The
sharing of source code between developers is frequently cited as a contributing factor to the maturation of their
programming skills. Some people consider source code an expressive artistic medium.[5]

Porting software to other computer platforms is usually prohibitively difficult without source code. Without the
source code for a particular piece of software, portability is generally computationally expensive.Wikipedia:Citation
needed Possible porting options include binary translation and emulation of the original platform.
Decompilation of an executable program can be used to generate source code, either in assembly code or in a
high-level language.

http://en.wikipedia.org/w/index.php?title=Text_file
http://en.wikipedia.org/w/index.php?title=Hard_disk
http://en.wikipedia.org/w/index.php?title=Hard_disk
http://en.wikipedia.org/w/index.php?title=Directory_%28file_systems%29
http://en.wikipedia.org/w/index.php?title=Stored_procedure
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Library_linking
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Macro_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=GNU_Emacs
http://en.wikipedia.org/w/index.php?title=Version_control_system
http://en.wikipedia.org/w/index.php?title=Version_control_system
http://en.wikipedia.org/w/index.php?title=Makefile
http://en.wikipedia.org/w/index.php?title=Revision_control
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=Interpreter_%28computing%29
http://en.wikipedia.org/w/index.php?title=Algorithm
http://en.wikipedia.org/w/index.php?title=Code_snippets
http://en.wikipedia.org/w/index.php?title=Media_%28arts%29
http://en.wikipedia.org/w/index.php?title=Porting
http://en.wikipedia.org/w/index.php?title=Computer_platform
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Binary_translation
http://en.wikipedia.org/w/index.php?title=Decompilation
http://en.wikipedia.org/w/index.php?title=Assembly_code
http://en.wikipedia.org/w/index.php?title=High-level_programming_language

Source code 103

Programmers frequently adapt source code from one piece of software to use in other projects, a concept known as
software reusability.

Licensing
Main article: Software license
Software, and its accompanying source code, typically falls within one of two licensing paradigms: open source and
proprietary software.
Generally speaking, software is open source if the source code is free to use, distribute, modify and study, and
proprietary if the source code is kept secret, or is privately owned and restricted. The first software license to be
published and to explicitly grant these freedoms was the GNU General Public License in 1989. The GNU GPL was
originally intended to be used with the GNU operating system.
For proprietary software, the provisions of the various copyright laws, trade secrecy and patents are used to keep the
source code closed. Additionally, many pieces of retail software come with an end-user license agreement (EULA)
which typically prohibits decompilation, reverse engineering, analysis, modification, or circumventing of copy
protection. Types of source code protection – beyond traditional compilation to object code – include code
encryption, code obfuscation or code morphing.

Legal issues in the United States
In a 2003 court case in the United States, it was ruled that source code should be considered a constitutionally
protected form of free speech. Proponents of free speech argued that because source code conveys information to
programmers, is written in a language, and can be used to share humour and other artistic pursuits, it is a protected
form of communication.
One of the first court cases regarding the nature of source code as free speech involved University of California
mathematics professor Dan Bernstein, who had published on the Internet the source code for an encryption program
that he created. At the time, encryption algorithms were classified as munitions by the United States government;
exporting encryption to other countries was considered an issue of national security, and had to be approved by the
State Department. The Electronic Frontier Foundation sued the U.S. government on Bernstein's behalf; the court
ruled that source code was free speech, protected by the First Amendment.

Quality
Main article: Software quality
The way a program is written can have important consequences for its maintainers. Coding conventions, which stress
readability and some language-specific conventions, are aimed at the maintenance of the software source code,
which involves debugging and updating. Other priorities, such as the speed of the program's execution, or the ability
to compile the program for multiple architectures, often make code readability a less important consideration, since
code quality generally depends on its purpose.

http://en.wikipedia.org/w/index.php?title=Software_reusability
http://en.wikipedia.org/w/index.php?title=Software_license
http://en.wikipedia.org/w/index.php?title=Open_source
http://en.wikipedia.org/w/index.php?title=Proprietary_software
http://en.wikipedia.org/w/index.php?title=GNU_General_Public_License
http://en.wikipedia.org/w/index.php?title=GNU_operating_system
http://en.wikipedia.org/w/index.php?title=Trade_secret
http://en.wikipedia.org/w/index.php?title=Patent
http://en.wikipedia.org/w/index.php?title=Retail_software
http://en.wikipedia.org/w/index.php?title=Software_license_agreement
http://en.wikipedia.org/w/index.php?title=Decompilation
http://en.wikipedia.org/w/index.php?title=Reverse_engineering
http://en.wikipedia.org/w/index.php?title=Copy_protection
http://en.wikipedia.org/w/index.php?title=Copy_protection
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=Object_code
http://en.wikipedia.org/w/index.php?title=Code_obfuscation
http://en.wikipedia.org/w/index.php?title=Code_morphing
http://en.wikipedia.org/w/index.php?title=Free_speech
http://en.wikipedia.org/w/index.php?title=University_of_California
http://en.wikipedia.org/w/index.php?title=Mathematics
http://en.wikipedia.org/w/index.php?title=Dan_Bernstein
http://en.wikipedia.org/w/index.php?title=Encryption
http://en.wikipedia.org/w/index.php?title=Munition
http://en.wikipedia.org/w/index.php?title=National_security
http://en.wikipedia.org/w/index.php?title=United_States_Department_of_State
http://en.wikipedia.org/w/index.php?title=Electronic_Frontier_Foundation
http://en.wikipedia.org/w/index.php?title=Federal_government_of_the_United_States
http://en.wikipedia.org/w/index.php?title=Software_quality
http://en.wikipedia.org/w/index.php?title=Coding_conventions
http://en.wikipedia.org/w/index.php?title=Readability

Source code 104

References
[1] SCAM Working Conference (http:/ / www. ieee-scam. org/), 2001–2010.
[2] Why Source Code Analysis and Manipulation Will Always Be Important (http:/ / www. cs. ucl. ac. uk/ staff/ M. Harman/ scam10. pdf) by

Mark Harman, 10th IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM 2010). Timişoara, Romania,
12–13 September 2010.

[3] Extending and Embedding the Python Interpreter — Python v2.6 Documentation (http:/ / docs. python. org/ extending/)
[4] Spinellis, D: Code Reading: The Open Source Perspective. Addison-Wesley Professional, 2003. ISBN 0-201-79940-5
[5] "Art and Computer Programming" ONLamp.com (http:/ / www. onlamp. com/ pub/ a/ onlamp/ 2005/ 06/ 30/ artofprog. html), (2005)

• (VEW04) "Using a Decompiler for Real-World Source Recovery", M. Van Emmerik and T. Waddington, the
Working Conference on Reverse Engineering, Delft, Netherlands, 9–12 November 2004. Extended version of the
paper (http:/ / www. itee. uq. edu. au/ ~emmerik/ experience_long. pdf).

External links
• Source Code Definition (http:/ / www. linfo. org/ source_code. html) by The Linux Information Project (LINFO)
• "Obligatory accreditation system for IT security products (2008-09-22), may start from May 2009, reported by

Yomiuri on 2009-04-24." (http:/ / www. metafilter. com/ 75061/
Obligatory-accreditation-system-for-IT-security-products). MetaFilter.com. Retrieved 2009-04-24.

• Same program written in multiple languages (http:/ / rosettacode. org/ wiki/ Main_Page)

Command
"System command" redirects here. It is not to be confused with system call.
For other uses, see Command#Computing.
In computing, a command is a directive to a computer program acting as an interpreter of some kind, in order to
perform a specific task. Most commonly a command is a directive to some kind of command-line interface, such as a
shell.
Specifically, the term command is used in imperative computer languages. These languages are called this, because
statements in these languages are usually written in a manner similar to the imperative mood used in many natural
languages. If one views a statement in an imperative language as being like a sentence in a natural language, then a
command is generally like a verb in such a language.
Many programs allow specially formatted arguments, known as flags or options, which modify the default behaviour
of the command, while further arguments describe what the command acts on. Comparing to a natural language: the
flags are adverbs, whilst the other arguments are objects.

Examples
Here are some commands given to a command-line interpreter (Unix shell).
The following command changes the user's place in the directory tree from their current position to the directory
/home/pete. cd is the command and /home/pete is the argument:

 cd /home/pete

The following command prints the text Hello World out to the standard output stream, which, in this case, will
just print the text out on the screen. echo is the command and "Hello World" is the argument. The quotes are
used to prevent Hello and World being treated as separate arguments:

 echo "Hello World"

http://www.ieee-scam.org/
http://www.cs.ucl.ac.uk/staff/M.Harman/scam10.pdf
http://en.wikipedia.org/w/index.php?title=Mark_Harman_%28computer_scientist%29
http://docs.python.org/extending/
http://www.onlamp.com/pub/a/onlamp/2005/06/30/artofprog.html
http://en.wikipedia.org/w/index.php?title=Delft
http://en.wikipedia.org/w/index.php?title=Netherlands
http://www.itee.uq.edu.au/~emmerik/experience_long.pdf
http://www.linfo.org/source_code.html
http://en.wikipedia.org/w/index.php?title=Linux
http://www.metafilter.com/75061/Obligatory-accreditation-system-for-IT-security-products
http://www.metafilter.com/75061/Obligatory-accreditation-system-for-IT-security-products
http://rosettacode.org/wiki/Main_Page
http://en.wikipedia.org/w/index.php?title=System_call
http://en.wikipedia.org/w/index.php?title=Command%23Computing
http://en.wikipedia.org/w/index.php?title=Computing
http://en.wikipedia.org/w/index.php?title=Command-line_interface
http://en.wikipedia.org/w/index.php?title=Shell_%28computing%29
http://en.wikipedia.org/w/index.php?title=Imperative_programming
http://en.wikipedia.org/w/index.php?title=Computer_language
http://en.wikipedia.org/w/index.php?title=Statement_%28programming%29
http://en.wikipedia.org/w/index.php?title=Imperative_mood
http://en.wikipedia.org/w/index.php?title=Natural_language
http://en.wikipedia.org/w/index.php?title=Natural_language
http://en.wikipedia.org/w/index.php?title=Imperative_language
http://en.wikipedia.org/w/index.php?title=Command-line_argument
http://en.wikipedia.org/w/index.php?title=Parameter_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Object_%28grammar%29
http://en.wikipedia.org/w/index.php?title=Command-line_interpreter
http://en.wikipedia.org/w/index.php?title=Unix_shell
http://en.wikipedia.org/w/index.php?title=Directory_tree
http://en.wikipedia.org/w/index.php?title=Cd_%28command%29
http://en.wikipedia.org/w/index.php?title=Standard_output
http://en.wikipedia.org/w/index.php?title=Echo_%28command%29

Command 105

The following commands are equivalent. They list files in the directory /bin. ls is the command, /bin is the
argument and there are three flags: -l, -t and -r:

 ls -l -t -r /lvl 100

 ls -ltr /bin

The following command displays the contents of the files ch1.txt and ch2.txt. cat is the command and
ch1.txt and ch2.txt are both arguments.

 cat ch1.txt ch2.txt

The following command lists all the contents of the current directory. dir is the command and "A" is a flag. There
is no argument. Here are some commands given to a different command-line interpreter (the DOS, OS/2 and
Microsoft Windows command prompt). Notice that the flags are identified differently but that the concepts are the
same:

 dir /A

The following command displays the contents of the file readme.txt. type is the command. "readme.txt" is the
argument. "P" is a parameter...

 type /P readme.txt

External links
• command [1] from FOLDOC

References
[1] http:/ / foldoc. org/ index. cgi?query=command

http://en.wikipedia.org/w/index.php?title=Ls
http://en.wikipedia.org/w/index.php?title=Filesystem_Hierarchy_Standard
http://en.wikipedia.org/w/index.php?title=Cat_%28Unix%29
http://en.wikipedia.org/w/index.php?title=Dir_%28command%29
http://en.wikipedia.org/w/index.php?title=DOS
http://en.wikipedia.org/w/index.php?title=OS/2
http://en.wikipedia.org/w/index.php?title=Microsoft_Windows
http://en.wikipedia.org/w/index.php?title=Type_%28command%29
http://foldoc.org/index.cgi?query=command
http://en.wikipedia.org/w/index.php?title=FOLDOC
http://foldoc.org/index.cgi?query=command

Execution 106

Execution

Program
execution
General topics

•• Runtime system
•• Runtime library
•• Executable
•• Interpreter
•• Virtual machine

Specific runtimes

•• crt0
•• Java virtual machine

•• v
•• t
• e [1]

Execution in computer and software engineering is the process by which a computer or a virtual machine performs
the instructions of a computer program. The instructions in the program trigger sequences of simple actions on the
executing machine. Those actions produce effects according to the semantics of the instructions in the program.
Programs for a computer may execute in a batch process without human interaction, or a user may type commands in
an interactive session of an interpreter. In this case the "commands" are simply programs, whose execution is
chained together.
The term run is used almost synonymously. A related meaning of both "to run" and "to execute" refers to the
specific action of a user starting (or launching or invoking) a program, as in "Please run the ... application."

Context of execution
The context in which execution takes place is crucial. Very few programs execute on a bare machine. Programs
usually contain implicit and explicit assumptions about resources available at the time of execution. Most programs
execute with the support of an operating system and run-time libraries specific to the source language that provide
crucial services not supplied directly by the computer itself. This supportive environment, for instance, usually
decouples a program from direct manipulation of the computer peripherals, providing more general, abstract services
instead.

Interpreter
A system that executes a program is called an interpreter of the program. Loosely speaking, an interpreter actually
does what the program says to do. This contrasts with a language translator that converts a program from one
language to another. The most common language translators are compilers. Translators typically convert their source
from a high-level, human readable language into a lower-level language (sometimes as low as native machine code)
that is simpler and faster for the processor to directly execute. The ideal is that the ratio of executions to translations
of a program will be large; that is, a program need only be compiled once and can be run any number of times. This
can provide a large benefit for translation versus direct interpretation of the source language. One trade-off is that
development time is increased, because of the compilation. In some cases, only the changed files must be
recompiled. Then the executable needs to be relinked. For some changes, the executable must be rebuilt from
scratch. As computers and compilers become faster, this fact becomes less of an obstacle. Also, the speed of the end

http://en.wikipedia.org/w/index.php?title=Execution_%28computing%29
http://en.wikipedia.org/w/index.php?title=Execution_%28computing%29
http://en.wikipedia.org/w/index.php?title=Runtime_system
http://en.wikipedia.org/w/index.php?title=Runtime_library
http://en.wikipedia.org/w/index.php?title=Executable
http://en.wikipedia.org/w/index.php?title=Interpreter_%28computing%29
http://en.wikipedia.org/w/index.php?title=Virtual_machine
http://en.wikipedia.org/w/index.php?title=Crt0
http://en.wikipedia.org/w/index.php?title=Java_virtual_machine
http://en.wikipedia.org/w/index.php?title=Template:Program_execution
http://en.wikipedia.org/w/index.php?title=Template_talk:Program_execution
http://en.wikipedia.org/w/index.php?title=Template:Program_execution&action=edit
http://en.wikipedia.org/w/index.php?title=Computer_engineering
http://en.wikipedia.org/w/index.php?title=Software_engineering
http://en.wikipedia.org/w/index.php?title=Computer
http://en.wikipedia.org/w/index.php?title=Virtual_machine
http://en.wikipedia.org/w/index.php?title=Formal_semantics_of_programming_languages
http://en.wikipedia.org/w/index.php?title=Batch_processing
http://en.wikipedia.org/w/index.php?title=User_%28computing%29
http://en.wikipedia.org/w/index.php?title=Command_%28computing%29
http://en.wikipedia.org/w/index.php?title=Session_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Interpreter_%28computing%29
http://en.wikipedia.org/w/index.php?title=Bare_machine
http://en.wikipedia.org/w/index.php?title=Operating_system
http://en.wikipedia.org/w/index.php?title=Runtime_library
http://en.wikipedia.org/w/index.php?title=Interpreter_%28computing%29
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=CPU

Execution 107

product is typically more important to the user than the development time.
Translators usually produce an abstract result that is not completely ready to execute. Frequently, the operating
system will convert the translator's object code into the final executable form just before execution of the program
begins. This usually involves modifying the code to bind it to real hardware addresses and establishing address links
between the program and support code in libraries. In some cases this code is further transformed the first time it is
executed, for instance by just-in-time compilers, into a more efficient form that persists for some period, usually at
least during the current execution run.

References
[1] http:/ / en. wikipedia. org/ w/ index. php?title=Template:Program_execution& action=edit

http://en.wikipedia.org/w/index.php?title=Object_code
http://en.wikipedia.org/w/index.php?title=Template:Program_execution&action=edit

108

Theory

Programming language theory

The lowercase Greek letter λ (lambda) is an unofficial symbol of the
field of programming language theory. This usage derives from the

lambda calculus, a computational model introduced by Alonzo
Church in the 1930s and widely used by programming language
researchers. It graces the cover of the classic text Structure and

Interpretation of Computer Programs, and the title of the so-called
Lambda Papers, written by Gerald Jay Sussman and Guy Steele, the

developers of the Scheme programming language.

Programming language theory (PLT) is a branch of
computer science that deals with the design,
implementation, analysis, characterization, and
classification of programming languages and their
individual features. It falls within the discipline of
computer science, both depending on and affecting
mathematics, software engineering and linguistics. It is
a well-recognized branch of computer science, and an
active research area, with results published in numerous
journals dedicated to PLT, as well as in general
computer science and engineering publications.

History

In some ways, the history of programming language
theory predates even the development of programming
languages themselves. The lambda calculus, developed
by Alonzo Church and Stephen Cole Kleene in the
1930s, is considered by some to be the world's first
programming language, even though it was intended to
model computation rather than being a means for
programmers to describe algorithms to a computer
system. Many modern functional programming
languages have been described as providing a "thin veneer" over the lambda calculus,[1] and many are easily
described in terms of it.

The first programming language to be proposed was Plankalkül, which was designed by Konrad Zuse in the 1940s,
but not publicly known until 1972 (and not implemented until 1998). The first widely known and successful
programming language was Fortran, developed from 1954 to 1957 by a team of IBM researchers led by John
Backus. The success of FORTRAN led to the formation of a committee of scientists to develop a "universal"
computer language; the result of their effort was ALGOL 58. Separately, John McCarthy of MIT developed the Lisp
programming language (based on the lambda calculus), the first language with origins in academia to be successful.
With the success of these initial efforts, programming languages became an active topic of research in the 1960s and
beyond.

Some other key events in the history of programming language theory since then:

1950s

• Noam Chomsky developed the Chomsky hierarchy in the field of linguistics; a discovery which has directly
impacted programming language theory and other branches of computer science.

http://en.wikipedia.org/w/index.php?title=Greek_alphabet
http://en.wikipedia.org/w/index.php?title=Lambda
http://en.wikipedia.org/w/index.php?title=Lambda_calculus
http://en.wikipedia.org/w/index.php?title=Computational_model
http://en.wikipedia.org/w/index.php?title=Alonzo_Church
http://en.wikipedia.org/w/index.php?title=Alonzo_Church
http://en.wikipedia.org/w/index.php?title=Structure_and_Interpretation_of_Computer_Programs
http://en.wikipedia.org/w/index.php?title=Structure_and_Interpretation_of_Computer_Programs
http://en.wikipedia.org/w/index.php?title=Lambda_Papers
http://en.wikipedia.org/w/index.php?title=Gerald_Jay_Sussman
http://en.wikipedia.org/w/index.php?title=Guy_Steele
http://en.wikipedia.org/w/index.php?title=Scheme_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=File%3ALambda_lc.svg
http://en.wikipedia.org/w/index.php?title=Computer_science
http://en.wikipedia.org/w/index.php?title=Programming_language%23Elements
http://en.wikipedia.org/w/index.php?title=Computer_science
http://en.wikipedia.org/w/index.php?title=Mathematics
http://en.wikipedia.org/w/index.php?title=Software_engineering
http://en.wikipedia.org/w/index.php?title=Linguistics
http://en.wikipedia.org/w/index.php?title=Academic_journal
http://en.wikipedia.org/w/index.php?title=Lambda_calculus
http://en.wikipedia.org/w/index.php?title=Alonzo_Church
http://en.wikipedia.org/w/index.php?title=Stephen_Cole_Kleene
http://en.wikipedia.org/w/index.php?title=Model_of_computation
http://en.wikipedia.org/w/index.php?title=Functional_programming_language
http://en.wikipedia.org/w/index.php?title=Functional_programming_language
http://en.wikipedia.org/w/index.php?title=Plankalk%C3%BCl
http://en.wikipedia.org/w/index.php?title=Konrad_Zuse
http://en.wikipedia.org/w/index.php?title=Fortran
http://en.wikipedia.org/w/index.php?title=IBM
http://en.wikipedia.org/w/index.php?title=John_Backus
http://en.wikipedia.org/w/index.php?title=John_Backus
http://en.wikipedia.org/w/index.php?title=ALGOL_58
http://en.wikipedia.org/w/index.php?title=John_McCarthy_%28computer_scientist%29
http://en.wikipedia.org/w/index.php?title=MIT
http://en.wikipedia.org/w/index.php?title=Lisp_programming_language
http://en.wikipedia.org/w/index.php?title=Lisp_programming_language
http://en.wikipedia.org/w/index.php?title=Noam_Chomsky
http://en.wikipedia.org/w/index.php?title=Chomsky_hierarchy
http://en.wikipedia.org/w/index.php?title=Linguistics

Programming language theory 109

1960s
• The Simula language was developed by Ole-Johan Dahl and Kristen Nygaard; it is widely considered to be the

first example of an object-oriented programming language; Simula also introduced the concept of coroutines.
• In 1964, Peter Landin is the first to realize Church's lambda calculus can be used to model programming

languages. He introduces the SECD machine which "interprets" lambda expressions.
• In 1965, Landin introduces the J operator, essentially a form of continuation.
• In 1966, Landin introduces ISWIM, an abstract computer programming language in his article The Next 700

Programming Languages. It is influential in the design of languages leading to the Haskell programming
language.

• In 1966, Corrado Böhm introduced the programming language CUCH (Curry-Church).[2]

• In 1967, Christopher Strachey publishes his influential set of lecture notes Fundamental Concepts in
Programming Languages, introducing the terminology R-values, L-values, parametric polymorphism, and ad hoc
polymorphism.

• In 1969, J. Roger Hindley publishes The Principal Type-Scheme of an Object in Combinatory Logic, later
generalized into the Hindley–Milner type inference algorithm.

• In 1969, Tony Hoare introduces the Hoare logic, a form of axiomatic semantics.
• In 1969, William Alvin Howard observed that a "high-level" proof system, referred to as natural deduction, can

be directly interpreted in its intuitionistic version as a typed variant of the model of computation known as lambda
calculus. This became known as the Curry–Howard correspondence.

1970s
• In 1970, Dana Scott first publishes his work on denotational semantics.
• In 1972, Logic programming and Prolog were developed thus allowing computer programs to be expressed as

mathematical logic.
• In 1974, John C. Reynolds discovers System F. It had already been discovered in 1971 by the mathematical

logician Jean-Yves Girard.
• From 1975, Sussman and Steele develop the Scheme programming language, a Lisp dialect incorporating lexical

scoping, a unified namespace, and elements from the Actor model including first-class continuations.
• Backus, at the 1977 ACM Turing Award lecture, assailed the current state of industrial languages and proposed a

new class of programming languages now known as function-level programming languages.
• In 1977, Gordon Plotkin introduces Programming Computable Functions, an abstract typed functional language.
• In 1978, Robin Milner introduces the Hindley–Milner type inference algorithm for the ML programming

language. Type theory became applied as a discipline to programming languages, this application has led to
tremendous advances in type theory over the years.

1980s
• In 1981, Gordon Plotkin publishes his paper on structured operational semantics.
• In 1988, Gilles Kahn published his paper on natural semantics.
• A team of scientists at Xerox PARC led by Alan Kay develop Smalltalk, an object-oriented language widely

known for its innovative development environment.
• There emerged process calculi, such as the Calculus of Communicating Systems of Robin Milner, and the

Communicating sequential processes model of C. A. R. Hoare, as well as similar models of concurrency such as
the Actor model of Carl Hewitt.

• In 1985, The release of Miranda sparks an academic interest in lazy-evaluated pure functional programming
languages. A committee was formed to define an open standard resulting in the release of the Haskell 1.0 standard
in 1990.

http://en.wikipedia.org/w/index.php?title=Simula
http://en.wikipedia.org/w/index.php?title=Ole-Johan_Dahl
http://en.wikipedia.org/w/index.php?title=Kristen_Nygaard
http://en.wikipedia.org/w/index.php?title=Object-oriented_programming_language
http://en.wikipedia.org/w/index.php?title=Coroutine
http://en.wikipedia.org/w/index.php?title=Peter_Landin
http://en.wikipedia.org/w/index.php?title=Alonzo_Church
http://en.wikipedia.org/w/index.php?title=Lambda_calculus
http://en.wikipedia.org/w/index.php?title=SECD_machine
http://en.wikipedia.org/w/index.php?title=J_operator
http://en.wikipedia.org/w/index.php?title=Continuation
http://en.wikipedia.org/w/index.php?title=ISWIM
http://en.wikipedia.org/w/index.php?title=Haskell_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Corrado_B%C3%B6hm
http://en.wikipedia.org/w/index.php?title=CUCH
http://en.wikipedia.org/w/index.php?title=Christopher_Strachey
http://en.wikipedia.org/w/index.php?title=Fundamental_Concepts_in_Programming_Languages
http://en.wikipedia.org/w/index.php?title=Fundamental_Concepts_in_Programming_Languages
http://en.wikipedia.org/w/index.php?title=Value_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Value_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Parametric_polymorphism
http://en.wikipedia.org/w/index.php?title=Ad_hoc_polymorphism
http://en.wikipedia.org/w/index.php?title=Ad_hoc_polymorphism
http://en.wikipedia.org/w/index.php?title=J._Roger_Hindley
http://en.wikipedia.org/w/index.php?title=Hindley%E2%80%93Milner
http://en.wikipedia.org/w/index.php?title=Type_inference
http://en.wikipedia.org/w/index.php?title=Tony_Hoare
http://en.wikipedia.org/w/index.php?title=Hoare_logic
http://en.wikipedia.org/w/index.php?title=Axiomatic_semantics
http://en.wikipedia.org/w/index.php?title=William_Alvin_Howard
http://en.wikipedia.org/w/index.php?title=Proof_calculus
http://en.wikipedia.org/w/index.php?title=Natural_deduction
http://en.wikipedia.org/w/index.php?title=Intuitionistic
http://en.wikipedia.org/w/index.php?title=Model_of_computation
http://en.wikipedia.org/w/index.php?title=Lambda_calculus
http://en.wikipedia.org/w/index.php?title=Lambda_calculus
http://en.wikipedia.org/w/index.php?title=Curry%E2%80%93Howard_correspondence
http://en.wikipedia.org/w/index.php?title=Dana_Scott
http://en.wikipedia.org/w/index.php?title=Denotational_semantics
http://en.wikipedia.org/w/index.php?title=Logic_programming
http://en.wikipedia.org/w/index.php?title=Prolog
http://en.wikipedia.org/w/index.php?title=John_C._Reynolds
http://en.wikipedia.org/w/index.php?title=System_F
http://en.wikipedia.org/w/index.php?title=Jean-Yves_Girard
http://en.wikipedia.org/w/index.php?title=Scheme_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Lexical_scoping
http://en.wikipedia.org/w/index.php?title=Lexical_scoping
http://en.wikipedia.org/w/index.php?title=Actor_model
http://en.wikipedia.org/w/index.php?title=Continuation
http://en.wikipedia.org/w/index.php?title=ACM_Turing_Award
http://en.wikipedia.org/w/index.php?title=Function-level_programming
http://en.wikipedia.org/w/index.php?title=Gordon_Plotkin
http://en.wikipedia.org/w/index.php?title=Programming_Computable_Functions
http://en.wikipedia.org/w/index.php?title=Robin_Milner
http://en.wikipedia.org/w/index.php?title=Hindley%E2%80%93Milner_type_inference_algorithm
http://en.wikipedia.org/w/index.php?title=ML_programming_language
http://en.wikipedia.org/w/index.php?title=ML_programming_language
http://en.wikipedia.org/w/index.php?title=Type_theory
http://en.wikipedia.org/w/index.php?title=Gordon_Plotkin
http://en.wikipedia.org/w/index.php?title=Structured_operational_semantics
http://en.wikipedia.org/w/index.php?title=Gilles_Kahn
http://en.wikipedia.org/w/index.php?title=Natural_semantics
http://en.wikipedia.org/w/index.php?title=Xerox_PARC
http://en.wikipedia.org/w/index.php?title=Alan_Kay
http://en.wikipedia.org/w/index.php?title=Smalltalk
http://en.wikipedia.org/w/index.php?title=Process_calculus
http://en.wikipedia.org/w/index.php?title=Calculus_of_Communicating_Systems
http://en.wikipedia.org/w/index.php?title=Robin_Milner
http://en.wikipedia.org/w/index.php?title=Communicating_sequential_processes
http://en.wikipedia.org/w/index.php?title=C._A._R._Hoare
http://en.wikipedia.org/w/index.php?title=Actor_model
http://en.wikipedia.org/w/index.php?title=Carl_Hewitt
http://en.wikipedia.org/w/index.php?title=Miranda_%28programming_language%29

Programming language theory 110

• Bertrand Meyer created the methodology Design by contract and incorporated it into the Eiffel programming
language.

1990s
• Gregor Kiczales, Jim Des Rivieres and Daniel G. Bobrow published the book The Art of the Metaobject Protocol.
• Eugenio Moggi and Philip Wadler introduced the use of monads for structuring programs written in functional

programming languages.

Sub-disciplines and related fields
There are several fields of study which either lie within programming language theory, or which have a profound
influence on it; many of these have considerable overlap. In addition, PLT makes use of many other branches of
mathematics, including computability theory, category theory, and set theory.

Formal semantics
Main article: Formal semantics of programming languages
Formal semantics is the formal specification of the behaviour of computer programs and programming languages.
Three common approaches to describe the semantics or "meaning" of a computer program are denotational
semantics, operational semantics and axiomatic semantics.

Type theory
Main article: type theory
Type theory is the study of type systems; which are "a tractable syntactic method for proving the absence of certain
program behaviors by classifying phrases according to the kinds of values they compute".[3] Many programming
languages are distinguished by the characteristics of their type systems.

Program analysis and transformation
Main articles: Program analysis and Program transformation
Program analysis is the general problem of examining a program and determining key characteristics (such as the
absence of classes of program errors). Program transformation is the process of transforming a program in one form
(language) to another form.

Comparative programming language analysis
Comparative programming language analysis seeks to classify programming languages into different types based on
their characteristics; broad categories of programming languages are often known as programming paradigms.

http://en.wikipedia.org/w/index.php?title=Bertrand_Meyer
http://en.wikipedia.org/w/index.php?title=Design_by_contract
http://en.wikipedia.org/w/index.php?title=Eiffel_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Eiffel_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Gregor_Kiczales
http://en.wikipedia.org/w/index.php?title=Daniel_G._Bobrow
http://en.wikipedia.org/w/index.php?title=The_Art_of_the_Metaobject_Protocol
http://en.wikipedia.org/w/index.php?title=Eugenio_Moggi
http://en.wikipedia.org/w/index.php?title=Philip_Wadler
http://en.wikipedia.org/w/index.php?title=Monads_in_functional_programming
http://en.wikipedia.org/w/index.php?title=Functional_programming_language
http://en.wikipedia.org/w/index.php?title=Functional_programming_language
http://en.wikipedia.org/w/index.php?title=Mathematics
http://en.wikipedia.org/w/index.php?title=Computability_theory
http://en.wikipedia.org/w/index.php?title=Category_theory
http://en.wikipedia.org/w/index.php?title=Set_theory
http://en.wikipedia.org/w/index.php?title=Formal_semantics_of_programming_languages
http://en.wikipedia.org/w/index.php?title=Denotational_semantics
http://en.wikipedia.org/w/index.php?title=Denotational_semantics
http://en.wikipedia.org/w/index.php?title=Operational_semantics
http://en.wikipedia.org/w/index.php?title=Axiomatic_semantics
http://en.wikipedia.org/w/index.php?title=Type_theory
http://en.wikipedia.org/w/index.php?title=Program_analysis
http://en.wikipedia.org/w/index.php?title=Program_transformation
http://en.wikipedia.org/w/index.php?title=Software_bug
http://en.wikipedia.org/w/index.php?title=Programming_paradigm

Programming language theory 111

Generic and metaprogramming
Metaprogramming is the generation of higher-order programs which, when executed, produce programs (possibly in
a different language, or in a subset of the original language) as a result.

Domain-specific languages
Domain-specific languages are languages constructed to efficiently solve problems in a particular problem domain.

Compiler construction
Main article: Compiler construction
Compiler theory is the theory of writing compilers (or more generally, translators); programs which translate a
program written in one language into another form. The actions of a compiler are traditionally broken up into syntax
analysis (scanning and parsing), semantic analysis (determining what a program should do), optimization (improving
the performance of a program as indicated by some metric; typically execution speed) and code generation
(generation and output of an equivalent program in some target language; often the instruction set of a CPU).

Run-time systems
Runtime systems refers to the development of programming language runtime environments and their components,
including virtual machines, garbage collection, and foreign function interfaces.

Journals, publications, and conferences
Conferences are the primary venue for presenting research in programming languages. The most well known
conferences include the Symposium on Principles of Programming Languages (POPL), Conference on Programming
Language Design and Implementation (PLDI), the International Conference on Functional Programming (ICFP), and
the International Conference on Object Oriented Programming, Systems, Languages and Applications (OOPSLA).
Notable journals that publish PLT research include the ACM Transactions on Programming Languages and Systems
(TOPLAS), Journal of Functional Programming (JFP), Journal of Functional and Logic Programming, and
Higher-Order and Symbolic Computation.

References
[1] http:/ / www. c2. com/ cgi/ wiki?ModelsOfComputation
[2] C. Böhm and W. Gross (1996). Introduction to the CUCH. In E. R. Caianiello (ed.), Automata Theory, p. 35-64/
[3][3] Benjamin C. Pierce. 2002. Types and Programming Languages. MIT Press, Cambridge, MA, USA.

Further reading
See also: Programming language § Further reading and Semantics of programming languages § Further reading
• Abadi, Martín and Cardelli, Luca. A Theory of Objects. Springer-Verlag.
• Michael J. C. Gordon. Programming Language Theory and Its Implementation. Prentice Hall.
• Gunter, Carl and Mitchell, John C. (eds.). Theoretical Aspects of Object Oriented Programming Languages:

Types, Semantics, and Language Design. MIT Press.
• Harper, Robert. Practical Foundations for Programming Languages (http:/ / www. cs. cmu. edu/ ~rwh/ plbook/

book. pdf). Draft version.
• Knuth, Donald E. (2003). Selected Papers on Computer Languages (http:/ / www-cs-faculty. stanford. edu/ ~uno/

cl. html). Stanford, California: Center for the Study of Language and Information.
• Mitchell, John C.. Foundations for Programming Languages.
• Mitchell, John C.. Introduction to Programming Language Theory.

http://en.wikipedia.org/w/index.php?title=Metaprogramming
http://en.wikipedia.org/w/index.php?title=Domain-specific_language
http://en.wikipedia.org/w/index.php?title=Compiler_construction
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wiktionary.org/wiki/scan
http://en.wikipedia.org/w/index.php?title=Parsing
http://en.wikipedia.org/w/index.php?title=Compiler_optimization
http://en.wikipedia.org/w/index.php?title=Code_generation_%28compiler%29
http://en.wikipedia.org/w/index.php?title=Instruction_set
http://en.wikipedia.org/w/index.php?title=Run-time_system
http://en.wikipedia.org/w/index.php?title=Runtime_environment
http://en.wikipedia.org/w/index.php?title=Virtual_machine
http://en.wikipedia.org/w/index.php?title=Garbage_collection_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Foreign_function_interface
http://en.wikipedia.org/w/index.php?title=Symposium_on_Principles_of_Programming_Languages
http://en.wikipedia.org/w/index.php?title=Conference_on_Programming_Language_Design_and_Implementation
http://en.wikipedia.org/w/index.php?title=Conference_on_Programming_Language_Design_and_Implementation
http://en.wikipedia.org/w/index.php?title=International_Conference_on_Functional_Programming
http://en.wikipedia.org/w/index.php?title=OOPSLA
http://en.wikipedia.org/w/index.php?title=ACM_Transactions_on_Programming_Languages_and_Systems
http://en.wikipedia.org/w/index.php?title=Journal_of_Functional_Programming
http://en.wikipedia.org/w/index.php?title=Journal_of_Functional_and_Logic_Programming
http://en.wikipedia.org/w/index.php?title=Higher-Order_and_Symbolic_Computation
http://www.c2.com/cgi/wiki?ModelsOfComputation
http://en.wikipedia.org/w/index.php?title=Corrado_B%C3%B6hm
http://en.wikipedia.org/w/index.php?title=Programming_language%23Further_reading
http://en.wikipedia.org/w/index.php?title=Semantics_of_programming_languages%23Further_reading
http://en.wikipedia.org/w/index.php?title=Mart%C3%ADn_Abadi
http://en.wikipedia.org/w/index.php?title=Luca_Cardelli
http://en.wikipedia.org/w/index.php?title=Michael_J._C._Gordon
http://en.wikipedia.org/w/index.php?title=Carl_Gunter_%28computer_scintist%29
http://en.wikipedia.org/w/index.php?title=John_C._Mitchell
http://en.wikipedia.org/w/index.php?title=Robert_Harper_%28computer_scientist%29
http://www.cs.cmu.edu/~rwh/plbook/book.pdf
http://www.cs.cmu.edu/~rwh/plbook/book.pdf
http://en.wikipedia.org/w/index.php?title=Donald_Knuth
http://www-cs-faculty.stanford.edu/~uno/cl.html
http://www-cs-faculty.stanford.edu/~uno/cl.html
http://en.wikipedia.org/w/index.php?title=John_C._Mitchell
http://en.wikipedia.org/w/index.php?title=John_C._Mitchell

Programming language theory 112

• O'Hearn, Peter. W. and Tennent, Robert. D. (1997). Algol-like Languages (http:/ / www. eecs. qmul. ac. uk/
~ohearn/ Algol/ algol. html). Progress in Theoretical Computer Science. Birkhauser, Boston.

• Pierce, Benjamin C. (2002). Types and Programming Languages (http:/ / www. cis. upenn. edu/ ~bcpierce/ tapl/
main. html). MIT Press.

• Pierce, Benjamin C. Advanced Topics in Types and Programming Languages.
• Pierce, Benjamin C. et al. (2010). Software Foundations (http:/ / www. cis. upenn. edu/ ~bcpierce/ sf/).

External links
• Lambda the Ultimate (http:/ / lambda-the-ultimate. org/ policies#Purpose), a community weblog for professional

discussion and repository of documents on programming language theory.
• Great Works in Programming Languages (http:/ / www. cis. upenn. edu/ ~bcpierce/ courses/ 670Fall04/

GreatWorksInPL. shtml). Collected by Benjamin C. Pierce (University of Pennsylvania).
• Classic Papers in Programming Languages and Logic (http:/ / www. cs. cmu. edu/ ~crary/ 819-f09/). Collected

by Karl Crary (Carnegie Mellon University).
• Programming Language Research (http:/ / www. cs. cmu. edu/ afs/ cs. cmu. edu/ user/ mleone/ web/

language-research. html). Directory by Mark Leone.
• Programming Language Theory Texts Online (http:/ / www. cs. uu. nl/ wiki/ Techno/

ProgrammingLanguageTheoryTextsOnline). At Utrecht University.
• λ-Calculus: Then & Now (http:/ / turing100. acm. org/ lambda_calculus_timeline. pdf) by Dana S. Scott for the

ACM Turing Centenary Celebration
• Grand Challenges in Programming Languages (http:/ / plgrand. blogspot. com/). Panel session at POPL 2009.

Type system
This article is about type systems from the point-of-view of computer programming. For a theoretical formulation,
see type theory.

Type systems
•• Type safety
•• Dynamic type-checking
•• Static type-checking
• Inferred vs. Manifest
• Nominal vs. Structural
•• Dependent typing
•• Duck typing
•• Latent typing
•• Substructural typing
•• Uniqueness typing
•• Strong and weak typing

•• v
•• t
• e [1]

In programming languages, a type system is a collection of rules that assign a property called a type to the various
constructs—such as variables, expressions, functions or modules—a computer program is composed of.[2] The main
purpose of a type system is to reduce bugs in computer programs[3] by defining interfaces between different parts of
a computer program, and then checking that the parts have been connected in a consistent way. This checking can

http://en.wikipedia.org/w/index.php?title=Peter._W._O%27Hearn
http://en.wikipedia.org/w/index.php?title=Robert._D._Tennent
http://www.eecs.qmul.ac.uk/~ohearn/Algol/algol.html
http://www.eecs.qmul.ac.uk/~ohearn/Algol/algol.html
http://en.wikipedia.org/w/index.php?title=Benjamin_C._Pierce
http://www.cis.upenn.edu/~bcpierce/tapl/main.html
http://www.cis.upenn.edu/~bcpierce/tapl/main.html
http://www.cis.upenn.edu/~bcpierce/sf/
http://lambda-the-ultimate.org/policies#Purpose
http://www.cis.upenn.edu/~bcpierce/courses/670Fall04/GreatWorksInPL.shtml
http://www.cis.upenn.edu/~bcpierce/courses/670Fall04/GreatWorksInPL.shtml
http://en.wikipedia.org/w/index.php?title=Benjamin_C._Pierce
http://en.wikipedia.org/w/index.php?title=University_of_Pennsylvania
http://www.cs.cmu.edu/~crary/819-f09/
http://en.wikipedia.org/w/index.php?title=Karl_Crary
http://en.wikipedia.org/w/index.php?title=Carnegie_Mellon_University
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mleone/web/language-research.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mleone/web/language-research.html
http://en.wikipedia.org/w/index.php?title=Mark_Leone
http://www.cs.uu.nl/wiki/Techno/ProgrammingLanguageTheoryTextsOnline
http://www.cs.uu.nl/wiki/Techno/ProgrammingLanguageTheoryTextsOnline
http://en.wikipedia.org/w/index.php?title=Utrecht_University
http://turing100.acm.org/lambda_calculus_timeline.pdf
http://en.wikipedia.org/w/index.php?title=Dana_S._Scott
http://plgrand.blogspot.com/
http://en.wikipedia.org/w/index.php?title=POPL
http://en.wikipedia.org/w/index.php?title=Type_theory
http://en.wikipedia.org/w/index.php?title=Type_safety
http://en.wikipedia.org/w/index.php?title=Type_system%23Dynamic_type-checking_and_runtime_type_information
http://en.wikipedia.org/w/index.php?title=Type_system%23Static_type-checking
http://en.wikipedia.org/w/index.php?title=Type_inference
http://en.wikipedia.org/w/index.php?title=Manifest_typing
http://en.wikipedia.org/w/index.php?title=Nominal_type_system
http://en.wikipedia.org/w/index.php?title=Structural_type_system
http://en.wikipedia.org/w/index.php?title=Dependent_type
http://en.wikipedia.org/w/index.php?title=Duck_typing
http://en.wikipedia.org/w/index.php?title=Latent_typing
http://en.wikipedia.org/w/index.php?title=Substructural_type_system
http://en.wikipedia.org/w/index.php?title=Uniqueness_type
http://en.wikipedia.org/w/index.php?title=Strong_and_weak_typing
http://en.wikipedia.org/w/index.php?title=Template:Type_systems
http://en.wikipedia.org/w/index.php?title=Template_talk:Type_systems
http://en.wikipedia.org/w/index.php?title=Template:Type_systems&action=edit
http://en.wikipedia.org/w/index.php?title=Type_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Variable_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Expression_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Function_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Modular_programming
http://en.wikipedia.org/w/index.php?title=Bug_%28computer_programming%29

Type system 113

happen statically (at compile time), dynamically (at run time), or it can happen as a combination of static and
dynamic checking. Type systems have other purposes as well, such as enabling certain compiler optimizations,
allowing for multiple dispatch, providing a form of documentation, etc.
An example of a simple type system is that of the C language. The portions of a C program are the function
definitions. One function is invoked by another function. The interface of a function states the name of the function
and a list of values that are passed to the function's code. The code of an invoking function states the name of the
invoked, along with the names of variables that hold values to pass to it. During execution, the values are placed into
temporary storage, then execution jumps to the code of the invoked function. The invoked function's code accesses
the values and makes use of them. If the instructions inside the function are written with the assumption of receiving
an integer value, but the calling code passed a floating-point value, then the wrong result will be computed by the
invoked function. The C compiler checks the type declared for each variable sent, against the type declared for each
variable in the interface of the invoked function. If the types do not match, the compiler throws a compile-time error.
In greater technical depth, a type-system associates a type with each computed value. By examining the flow of these
values, a type system attempts to ensure or prove that no type errors can occur. The particular type system in
question determines exactly what constitutes a type error, but in general the aim is to prevent operations expecting a
certain kind of value from being used with values for which that operation does not make sense (logic errors);
memory errors will also be prevented. Type systems are often specified as part of programming languages, and built
into the interpreters and compilers for them; although the type system of a language can be extended by optional
tools that perform additional kinds of checks using the language's original type syntax and grammar.
A compiler may also use the static type of a value to optimize the storage it needs and the choice of algorithms for
operations on the value. In many C compilers the float data type, for example, is represented in 32 bits, in accord
with the IEEE specification for single-precision floating point numbers. They will thus use floating-point-specific
microprocessor operations on those values (floating-point addition, multiplication, etc.).
The depth of type constraints and the manner of their evaluation affect the typing of the language. A programming
language may further associate an operation with varying concrete algorithms on each type in the case of type
polymorphism. Type theory is the study of type systems, although the concrete type systems of programming
languages originate from practical issues of computer architecture, compiler implementation, and language design.

Fundamentals
Formally, type theory studies type systems. A programming language must have occurrence to type check using the
type system whether at compiler time or runtime, manually annotated or automatically inferred. As Mark Manasse
concisely put it:[4]

The fundamental problem addressed by a type theory is to ensure that programs have meaning. The
fundamental problem caused by a type theory is that meaningful programs may not have meanings
ascribed to them. The quest for richer type systems results from this tension.

Assigning a data type, what is called typing, gives meaning to a sequences of bits such as a value in memory or some
object such as a variable. The hardware of a general purpose computer is unable to discriminate between for example
a memory address and an instruction code, or between a character, an integer, or a floating-point number, because it
makes no intrinsic distinction between any of the possible values that a sequence of bits might mean. Associating a
sequence of bits with a type conveys that meaning to the programmable hardware to form a symbolic system
composed of that hardware and some program.
A program associates each value with at least one particular type, but it also can occur that one value is associated
with many subtypes. Other entities, such as objects, modules, communication channels, dependencies can become
associated with a type. Even a type can become associated with a type. An implementation of some type system
could in theory associate some identifications named this way:

http://en.wikipedia.org/w/index.php?title=Compile_time
http://en.wikipedia.org/w/index.php?title=Run_time_%28program_lifecycle_phase%29
http://en.wikipedia.org/w/index.php?title=Multiple_dispatch
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Subroutine
http://en.wikipedia.org/w/index.php?title=Datatype
http://en.wikipedia.org/w/index.php?title=Type_error
http://en.wikipedia.org/w/index.php?title=Logic_error
http://en.wikipedia.org/w/index.php?title=Memory_error
http://en.wikipedia.org/w/index.php?title=Extended_static_checking
http://en.wikipedia.org/w/index.php?title=Extended_static_checking
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Data_type
http://en.wikipedia.org/w/index.php?title=Bit
http://en.wikipedia.org/w/index.php?title=IEEE_754-2008
http://en.wikipedia.org/w/index.php?title=Instruction_set
http://en.wikipedia.org/w/index.php?title=Type_polymorphism
http://en.wikipedia.org/w/index.php?title=Type_polymorphism
http://en.wikipedia.org/w/index.php?title=Type_theory
http://en.wikipedia.org/w/index.php?title=Type_theory
http://en.wikipedia.org/w/index.php?title=Mark_Manasse
http://en.wikipedia.org/w/index.php?title=Bit
http://en.wikipedia.org/w/index.php?title=Computer_memory
http://en.wikipedia.org/w/index.php?title=Object_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Variable_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=General_purpose_computer
http://en.wikipedia.org/w/index.php?title=Memory_address
http://en.wikipedia.org/w/index.php?title=Instruction_code_%28programming%29
http://en.wikipedia.org/w/index.php?title=Character_%28computing%29
http://en.wikipedia.org/w/index.php?title=Integer
http://en.wikipedia.org/w/index.php?title=Floating-point_number
http://en.wiktionary.org/wiki/meaning
http://en.wikipedia.org/w/index.php?title=Symbolic_system
http://en.wikipedia.org/w/index.php?title=Subtype
http://en.wikipedia.org/w/index.php?title=Object_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Module_%28programming%29
http://en.wikipedia.org/w/index.php?title=Dependency_%28computer_science%29

Type system 114

• data type – a type of a value
• class – a type of an object
• kind (type theory) – a type of a type, or metatype
These are the kinds of abstractions typing can go through on a hierarchy of levels contained in a system.
When a programming language evolves a more elaborate type system, it gains a more finely-grained rule set than
basic type checking, but this comes at a price when the type inferences (and other properties) become undecidable,
and when more attention must be paid by the programmer to annotate code or to consider computer-related
operations and functioning. It is challenging to find a sufficiently expressive type system that satisfies all
programming practices in a type safe manner.
The more type restrictions that are imposed by the compiler, the more strongly typed a programming language is.
Strongly typed languages often require the programmer to make explicit conversions in contexts where an implicit
conversion would cause no harm. Pascal's type system has been described as "too strong" because, for example, the
size of an array or string is part of its type, making some programming tasks difficult.[5][6] Haskell is also strongly
typed but its types are automatically inferred so that explicit conversions are unnecessary.
A programming language compiler can also implement a dependent type or an effect system, which enables even
more program specifications to be verified by a type checker. Beyond simple value-type pairs, a virtual "region" of
code is associated with an "effect" component describing what is being done with what, and enabling for example to
"throw" an error report. Thus the symbolic system may be a type and effect system, which endows it with more safety
checking than type checking alone.
Whether automated by the compiler or specified by a programmer, a type system makes program behavior illegal
that is outside the type-system rules. Advantages provided by programmer-specified type systems include:
• Abstraction (or modularity) – Types enable programmers to think at a higher level than the bit or byte, not

bothering with low-level implementation. For example, programmers can begin to think of a string as a collection
of character values instead of as a mere array of bytes. Higher still, types enable programmers to think about and
express interfaces between two of any-sized subsystems. This enables more levels of localization so that the
definitions required for interoperability of the subsystems remain consistent when those two subsystems
communicate.

• Documentation – In more expressive type systems, types can serve as a form of documentation clarifying the
intent of the programmer. For instance, if a programmer declares a function as returning a timestamp type, this
documents the function when the timestamp type can be explicitly declared deeper in the code to be integer type.

Advantages provided by compiler-specified type systems include:
• Optimization – Static type-checking may provide useful compile-time information. For example, if a type requires

that a value must align in memory at a multiple of four bytes, the compiler may be able to use more efficient
machine instructions.

• Safety – A type system enables the compiler to detect meaningless or probably invalid code. For example, we can
identify an expression 3 / "Hello, World" as invalid, when the rules do not specify how to divide an
integer by a string. Strong typing offers more safety, but cannot guarantee complete type safety.

Type safety contributes to program correctness, but can only guarantee correctness at the expense of making the type
checking itself an undecidable problem. In a type system with automated type checking a program may prove to run
incorrectly yet be safely typed, and produce no compiler errors. Division by zero is an unsafe and incorrect
operation, but a type checker running only at compile time doesn't scan for division by zero in most programming
languages, and then it is left as a runtime error. To prove the absence of these more-general-than-types defects, other
kinds of formal methods, collectively known as program analyses, are in common use. In addition software testing is
an empirical method for finding errors that the type checker cannot detect.

http://en.wikipedia.org/w/index.php?title=Data_type
http://en.wikipedia.org/w/index.php?title=Class_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Kind_%28type_theory%29
http://en.wikipedia.org/w/index.php?title=Undecidable_problem
http://en.wikipedia.org/w/index.php?title=Type_safe
http://en.wikipedia.org/w/index.php?title=Haskell_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Dependent_type
http://en.wikipedia.org/w/index.php?title=Effect_system
http://en.wikipedia.org/w/index.php?title=Interface_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Documentation
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=Integer
http://en.wikipedia.org/w/index.php?title=String_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Type_safety
http://en.wikipedia.org/w/index.php?title=Program_correctness
http://en.wikipedia.org/w/index.php?title=Undecidable_problem
http://en.wikipedia.org/w/index.php?title=Compile_time
http://en.wikipedia.org/w/index.php?title=Division_by_zero
http://en.wikipedia.org/w/index.php?title=Runtime_error
http://en.wikipedia.org/w/index.php?title=Formal_method
http://en.wikipedia.org/w/index.php?title=Program_analysis_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Software_testing
http://en.wikipedia.org/w/index.php?title=Empirical

Type system 115

Type checking
The process of verifying and enforcing the constraints of types – type checking – may occur either at compile-time
(a static check) or run-time (a dynamic check). If a language specification requires its typing rules strongly (i.e.,
more or less allowing only those automatic type conversions that do not lose information), one can refer to the
process as strongly typed, if not, as weakly typed. The terms are not usually used in a strict sense.

Static type-checking
Static type-checking is the process of verifying the type safety of a program based on analysis of a program's text
(source code). If a program passes a static type-checker, then the program is guaranteed to satisfy some set of
type-safety properties for all possible inputs.
Because static type-checking operates on a program's text, it allows many bugs to be caught early in the development
cycle.
Static type-checking can be thought of as a limited form of program verification (see type safety). In a type-safe
language, static type-checking can also be thought of as an optimization. If a compiler can prove that a program is
well-typed, then it does not need to emit dynamic safety checks, allowing the resulting compiled binary to run faster.
Static type-checking for Turing-complete languages is inherently conservative. That is, if a type system is both
sound (meaning that it rejects all incorrect programs) and decidable (meaning that it is possible to write an algorithm
which determines whether a program is well-typed), then it will always be possible to define a program which is
well-typed but which does not satisfy the type-checker. For example, consider a program containing the code:
if <complex test> then <do something> else <generate type error>

Even if the expression <complex test> always evaluates to true at run-time, most type-checkers will reject
the program as ill-typed, because it is difficult (if not impossible) for a static analyzer to determine that the else
branch will not be taken.[7] Conversely, a static type-checker will quickly detect type errors in rarely-used code
paths. Without static type checking, even code coverage tests with 100% coverage may be unable to find such type
errors. The tests may fail to detect such type errors, because the combination of all places where values are created
and all places where a certain value is used must be taken into account.
A number of useful and common programming language features cannot be checked statically, such as downcasting.
Therefore, many languages will have both static and dynamic type-checking; the static type-checker verifies what it
can, and dynamic checks verify the rest.
Many languages with static type-checking provide a way to bypass the type checker. Some languages allow
programmers to choose between static and dynamic type safety. For example, C# distinguishes between
"statically-typed" and "dynamically-typed" variables; uses of the former are checked statically, while uses of the
latter are checked dynamically. Other languages allow users to write code which is not type-safe. For example, in C,
programmers can freely cast a value between any two types which have the same size.
For a list of languages with static type-checking, see the category for statically typed languages.

http://en.wikipedia.org/w/index.php?title=Compile-time
http://en.wikipedia.org/w/index.php?title=Run_time_%28program_lifecycle_phase%29
http://en.wikipedia.org/w/index.php?title=Fail-fast
http://en.wikipedia.org/w/index.php?title=Program_verification
http://en.wikipedia.org/w/index.php?title=Type_safety
http://en.wikipedia.org/w/index.php?title=Code_coverage
http://en.wikipedia.org/w/index.php?title=Downcasting
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Category:Statically_typed_programming_languages

Type system 116

Dynamic type-checking and runtime type information
Dynamic type-checking is the process of verifying the type safety of a program at runtime. Implementations of
dynamically type-checked languages generally associate each runtime object with a "type tag" (i.e., a reference to a
type) containing its type information. This runtime type information (RTTI) can also be used to implement dynamic
dispatch, late binding, downcasting, reflection, and similar features.
Most type-safe languages include some form of dynamic type-checking, even if they also have a static type checker.
The reason for this is that many useful features or properties are difficult or impossible to verify statically. For
example, suppose that a program defines two types, A and B, where B is a subtype of A. If the program tries to
convert a value of type A to type B, then the operation is legal only if the value being converted is actually a value of
type B. Therefore, a dynamic check is needed to verify that the operation is safe.
By definition, dynamic type-checking may cause a program to fail at runtime. In some programming languages, it is
possible to anticipate and recover from these failures. In others, type-checking errors are considered fatal.
Programming languages which include dynamic type-checking but not static type-checking are often called
"dynamically-typed programming languages". For a list of such languages, see the category for dynamically typed
programming languages.

Combining static and dynamic type-checking
The presence of static type-checking in a programming language does not necessarily imply the absence of dynamic
type-checking. For example, Java and some other ostensibly statically typed languages support downcasting types to
their subtypes, querying an object to discover its dynamic type and other type operations that depend on runtime type
information. More generally, most programming languages include mechanisms for dispatching over different 'kinds'
of data, such as disjoint unions, subtype polymorphism, and variant types. Even when not interacting with type
annotations or type checking, such mechanisms are materially similar to dynamic typing implementations. See
programming language for more discussion of the interactions between static and dynamic typing.
Objects in object oriented languages are usually accessed by a reference whose static target type (or manifest type) is
equal to either the object's run-time type (its latent type) or a supertype thereof. This is conformant with the Liskov
substitution principle that states that all operations performed on an instance of a given type can also be performed
on an instance of a subtype. This concept is also known as subsumption. In some languages subtypes may also
possess covariant or contravariant return types and argument types respectively.
Certain languages, for example Clojure, Common Lisp, or Cython, are dynamically type-checked by default, but
allow programs to opt into static type-checking by providing optional annotations. One reason to use such hints
would be to optimize the performance of critical sections of a program.
As of version 4.0, the C# language provides a way to indicate that a variable should not be statically type-checked. A
variable whose type is dynamic will not be subject to static type-checking. Instead, the program relies on runtime
type information to determine how the variable may be used.

Static and dynamic type checking in practice
The choice between static and dynamic typing requires trade-offs.
Static typing can find type errors reliably at compile time. This should increase the reliability of the delivered
program. However, programmers disagree over how commonly type errors occur, and thus disagree over the
proportion of those bugs that are coded that would be caught by appropriately representing the designed types in
code. Static typing advocates believe programs are more reliable when they have been well type-checked, while
dynamic typing advocates point to distributed code that has proven reliable and to small bug databases. The value of
static typing, then, presumably increases as the strength of the type system is increased. Advocates of dependently
typed languages such as Dependent ML and Epigram have suggested that almost all bugs can be considered type

http://en.wikipedia.org/w/index.php?title=Dynamic_dispatch
http://en.wikipedia.org/w/index.php?title=Dynamic_dispatch
http://en.wikipedia.org/w/index.php?title=Late_binding
http://en.wikipedia.org/w/index.php?title=Downcasting
http://en.wikipedia.org/w/index.php?title=Reflection_%28computer_programming%29
http://en.wikipedia.org/w/index.php?title=Category:Dynamically_typed_programming_languages
http://en.wikipedia.org/w/index.php?title=Category:Dynamically_typed_programming_languages
http://en.wikipedia.org/w/index.php?title=Downcasting
http://en.wikipedia.org/w/index.php?title=Subtypes
http://en.wikipedia.org/w/index.php?title=Disjoint_union
http://en.wikipedia.org/w/index.php?title=Polymorphism_in_object-oriented_programming
http://en.wikipedia.org/w/index.php?title=Variant_type
http://en.wikipedia.org/w/index.php?title=Liskov_substitution_principle
http://en.wikipedia.org/w/index.php?title=Liskov_substitution_principle
http://en.wikipedia.org/w/index.php?title=Covariance_and_contravariance_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Clojure
http://en.wikipedia.org/w/index.php?title=Common_Lisp
http://en.wikipedia.org/w/index.php?title=Cython
http://en.wikipedia.org/w/index.php?title=Trade-off
http://en.wikipedia.org/w/index.php?title=Dependent_type
http://en.wikipedia.org/w/index.php?title=Dependent_type
http://en.wikipedia.org/w/index.php?title=Dependent_ML
http://en.wikipedia.org/w/index.php?title=Epigram_%28programming_language%29

Type system 117

errors, if the types used in a program are properly declared by the programmer or correctly inferred by the compiler.
Static typing usually results in compiled code that executes more quickly. When the compiler knows the exact data
types that are in use, it can produce optimized machine code. Further, compilers for statically typed languages can
find assembler shortcuts more easily. Some dynamically typed languages such as Common Lisp allow optional type
declarations for optimization for this very reason. Static typing makes this pervasive. See optimization.
By contrast, dynamic typing may allow compilers to run more quickly and allow interpreters to dynamically load
new code, since changes to source code in dynamically typed languages may result in less checking to perform and
less code to revisit. This too may reduce the edit-compile-test-debug cycle.
Statically typed languages that lack type inference (such as C and Java) require that programmers declare the types
they intend a method or function to use. This can serve as additional documentation for the program, which the
compiler will not permit the programmer to ignore or permit to drift out of synchronization. However, a language
can be statically typed without requiring type declarations (examples include Haskell, Scala, OCaml, F# and to a
lesser extent C#), so explicit type declaration is not a necessary requirement for static typing in all languages.
Dynamic typing allows constructs that some static type checking would reject as illegal. For example, eval functions,
which execute arbitrary data as code, become possible. An eval function is possible with static typing, but requires
advanced uses of algebraic data types. Furthermore, dynamic typing better accommodates transitional code and
prototyping, such as allowing a placeholder data structure (mock object) to be transparently used in place of a
full-fledged data structure (usually for the purposes of experimentation and testing).
Dynamic typing typically allows duck typing (which enables easier code reuse). Many languages with static typing
also feature duck typing or other mechanisms like generic programming which also enables easier code reuse.
Dynamic typing typically makes metaprogramming easier to use. For example, C++ templates are typically more
cumbersome to write than the equivalent Ruby or Python code. More advanced run-time constructs such as
metaclasses and introspection are often more difficult to use in statically typed languages. In some languages, such
features may also be used e.g. to generate new types and behaviors on the fly, based on run-time data. Such
advanced constructs are often provided by dynamic programming languages; many of these are dynamically typed,
although dynamic typing need not be related to dynamic programming languages.

"Strong" and "weak" type systems
Main article: Strong and weak typing
Languages are often colloquially referred to as "strongly typed" or "weakly typed". In fact, there is no universally
accepted definition of what these terms mean. In general, there are more precise terms to represent the differences
between type systems that lead people to call them "strong" or "weak".

Type safety and memory safety
Main article: Type safety
A third way of categorizing the type system of a programming language uses the safety of typed operations and
conversions. Computer scientists consider a language "type-safe" if it does not allow operations or conversions that
violate the rules of the type system.
Some observers use the term memory-safe language (or just safe language) to describe languages that do not allow
programs to access memory that has not been assigned for their use. For example, a memory-safe language will
check array bounds, or else statically guarantee (i.e., at compile time before execution) that array accesses out of the
array boundaries will cause compile-time and perhaps runtime errors.
Consider the following program of a language that is both type-safe and memory-safe:[8]

http://en.wikipedia.org/w/index.php?title=Common_Lisp
http://en.wikipedia.org/w/index.php?title=Optimization_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Language_interpretation
http://en.wikipedia.org/w/index.php?title=Type_inference
http://en.wikipedia.org/w/index.php?title=Haskell_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Scala_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=OCaml_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=F_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Eval
http://en.wikipedia.org/w/index.php?title=GADT
http://en.wikipedia.org/w/index.php?title=Mock_object
http://en.wikipedia.org/w/index.php?title=Duck_typing
http://en.wikipedia.org/w/index.php?title=Duck_typing%23Comparison_with_other_type_systems
http://en.wikipedia.org/w/index.php?title=Duck_typing%23In_statically_typed_languages
http://en.wikipedia.org/w/index.php?title=Generic_programming
http://en.wikipedia.org/w/index.php?title=Metaprogramming
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=Template_%28programming%29
http://en.wikipedia.org/w/index.php?title=Ruby_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Metaclass
http://en.wikipedia.org/w/index.php?title=Introspection_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Dynamic_programming_language
http://en.wikipedia.org/w/index.php?title=Strong_and_weak_typing
http://en.wikipedia.org/w/index.php?title=Type_safety
http://en.wikipedia.org/w/index.php?title=Bounds_checking

Type system 118

var x := 5;

var y := "37";

var z := x + y;

In this example, the variable z will have the value 42. While this may not be what the programmer anticipated, it is
a well-defined result. If y was a different string, one that could not be converted to a number (e.g. "Hello World"),
the result would be well-defined as well. Note that a program can be type-safe or memory-safe and still crash on an
invalid operation; in fact, if a program encounters an operation which is not type-safe, terminating the program is
often the only option.
Now consider a similar example in C:

int x = 5;

char y[] = "37";

char* z = x + y;

In this example z will point to a memory address five characters beyond y , equivalent to three characters after the
terminating zero character of the string pointed to by y . This is memory that the program is not expected to access.
It may contain garbage data, and it certainly doesn't contain anything useful. As this example shows, C is neither a
memory-safe nor a type-safe language.
In general, type-safety and memory-safety go hand in hand. For example, a language which supports pointer
arithmetic and number-to-pointer conversions (like C) is neither memory-safe nor type-safe, since it allows arbitrary
memory to be accessed as if it were valid memory of any type.
For more information, see memory safety.

Variable levels of type checking
Some languages allow different levels of checking to apply to different regions of code. Examples include:-
• The use strict directive in javascript[9][10][11] and Perl applies stronger checking.
• The @ operator in PHP suppresses some error messages.
• The Option Strict On in VB.NET allows the compiler to require a conversion between objects.
Additional tools such as lint and IBM Rational Purify can also be used to achieve a higher level of strictness.

Optional type systems
It has been proposed, chiefly by Gilad Bracha, that the choice of type system be made independent of choice of
language; that a type system should be a module that can be "plugged" into a language as required. He believes this
is advantageous, because what he calls mandatory type systems make languages less expressive and code more
fragile.[12] The requirement that types do not affect the semantics of the language is difficult to fulfill; for instance,
class-based inheritance becomes impossible.Wikipedia:Citation needed
Optional typing is related to gradual typing, but still distinct from it.[13]WP:NOTRS

http://en.wikipedia.org/w/index.php?title=Memory_safety
http://en.wikipedia.org/w/index.php?title=Javascript
http://en.wikipedia.org/w/index.php?title=Perl
http://en.wikipedia.org/w/index.php?title=PHP
http://en.wikipedia.org/w/index.php?title=VB.NET
http://en.wikipedia.org/w/index.php?title=Lint_%28software%29
http://en.wikipedia.org/w/index.php?title=IBM_Rational_Purify
http://en.wikipedia.org/w/index.php?title=Gilad_Bracha
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Gradual_typing
http://en.wikipedia.org/w/index.php?title=Wikipedia:NOTRS

Type system 119

Polymorphism and types
Main article: Polymorphism (computer science)
The term "polymorphism" refers to the ability of code (in particular, methods or classes) to act on values of multiple
types, or to the ability of different instances of the same data structure to contain elements of different types. Type
systems that allow polymorphism generally do so in order to improve the potential for code re-use: in a language
with polymorphism, programmers need only implement a data structure such as a list or an associative array once,
rather than once for each type of element with which they plan to use it. For this reason computer scientists
sometimes call the use of certain forms of polymorphism generic programming. The type-theoretic foundations of
polymorphism are closely related to those of abstraction, modularity and (in some cases) subtyping.

Duck typing
Main article: Duck typing
In "duck typing", a statement calling a method m on an object does not rely on the declared type of the object; only
that the object, of whatever type, must supply an implementation of the method called, when called, at run-time.
Duck typing differs from structural typing in that, if the "part" (of the whole module structure) needed for a given
local computation is present at runtime, the duck type system is satisfied in its type identity analysis. On the other
hand, a structural type system would require the analysis of the whole module structure at compile time to determine
type identity or type dependence.
Duck typing differs from a nominative type system in a number of aspects. The most prominent ones are that for
duck typing, type information is determined at runtime (as contrasted to compile time), and the name of the type is
irrelevant to determine type identity or type dependence; only partial structure information is required for that for a
given point in the program execution.
Duck typing uses the premise that (referring to a value) "if it walks like a duck, and quacks like a duck, then it is a
duck" (this is a reference to the duck test that is attributed to James Whitcomb Riley). The term may have been
coined Wikipedia:Citation needed by Alex Martelli in a 2000 message to the comp.lang.python newsgroup (see
Python).
Duck typing has been demonstrated to increase programmer productivity in a controlled
experiment.[14]Wikipedia:Verifiability

Specialized type systems
Many type systems have been created that are specialized for use in certain environments with certain types of data,
or for out-of-band static program analysis. Frequently, these are based on ideas from formal type theory and are only
available as part of prototype research systems.

Dependent types
Dependent types are based on the idea of using scalars or values to more precisely describe the type of some other
value. For example, might be the type of a 3×3 matrix. We can then define typing rules such as the
following rule for matrix multiplication:

where , , are arbitrary positive integer values. A variant of ML called Dependent ML has been created
based on this type system, but because type checking for conventional dependent types is undecidable, not all
programs using them can be type-checked without some kind of limits. Dependent ML limits the sort of equality it
can decide to Presburger arithmetic.

http://en.wikipedia.org/w/index.php?title=Polymorphism_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Associative_array
http://en.wikipedia.org/w/index.php?title=Generic_programming
http://en.wikipedia.org/w/index.php?title=Abstraction_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Module_%28programming%29
http://en.wikipedia.org/w/index.php?title=Subtype
http://en.wikipedia.org/w/index.php?title=Duck_typing
http://en.wikipedia.org/w/index.php?title=Method_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Structural_type_system
http://en.wikipedia.org/w/index.php?title=Nominative_type_system
http://en.wikipedia.org/w/index.php?title=Duck_test
http://en.wikipedia.org/w/index.php?title=James_Whitcomb_Riley
http://en.wikipedia.org/wiki/Citation_needed
http://en.wikipedia.org/w/index.php?title=Alex_Martelli
http://en.wikipedia.org/w/index.php?title=Newsgroup
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/wiki/Verifiability
http://en.wikipedia.org/w/index.php?title=Static_program_analysis
http://en.wikipedia.org/w/index.php?title=Type_theory
http://en.wikipedia.org/w/index.php?title=Dependent_type
http://en.wikipedia.org/w/index.php?title=ML_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Dependent_ML
http://en.wikipedia.org/w/index.php?title=Decidable_set
http://en.wikipedia.org/w/index.php?title=Presburger_arithmetic

Type system 120

Other languages such as Epigram make the value of all expressions in the language decidable so that type checking
can be decidable. However, in general proof of decidability is undecidable, so many programs require hand-written
annotations, which may be very non-trivial. As this impedes the development process many language
implementations provide an easy way out in the form of an option to disable this condition. This, however, comes at
the cost of making the type-checker run in an infinite loop when fed programs that don't type-check, causing the
compiler to hang.

Linear types
Linear types, based on the theory of linear logic, and closely related to uniqueness types, are types assigned to values
having the property that they have one and only one reference to them at all times. These are valuable for describing
large immutable values such as files, strings, and so on, because any operation that simultaneously destroys a linear
object and creates a similar object (such as 'str = str + "a"') can be optimized "under the hood" into an
in-place mutation. Normally this is not possible, as such mutations could cause side effects on parts of the program
holding other references to the object, violating referential transparency. They are also used in the prototype
operating system Singularity for interprocess communication, statically ensuring that processes cannot share objects
in shared memory in order to prevent race conditions. The Clean language (a Haskell-like language) uses this type
system in order to gain a lot of speedWikipedia:Verifiability while remaining safe.

Intersection types
Intersection types are types describing values that belong to both of two other given types with overlapping value
sets. For example, in most implementations of C the signed char has range -128 to 127 and the unsigned char has
range 0 to 255, so the intersection type of these two types would have range 0 to 127. Such an intersection type could
be safely passed into functions expecting either signed or unsigned chars, because it is compatible with both types.
Intersection types are useful for describing overloaded function types: For example, if "int → int " is the type of
functions taking an integer argument and returning an integer, and "float → float " is the type of functions
taking a float argument and returning a float, then the intersection of these two types can be used to describe
functions that do one or the other, based on what type of input they are given. Such a function could be passed into
another function expecting an "int → int " function safely; it simply would not use the "float → float "
functionality.
In a subclassing hierarchy, the intersection of a type and an ancestor type (such as its parent) is the most derived
type. The intersection of sibling types is empty.
The Forsythe language includes a general implementation of intersection types. A restricted form is refinement
types.

Union types
Union types are types describing values that belong to either of two types. For example, in C, the signed char has
range -128 to 127, and the unsigned char has range 0 to 255, so the union of these two types would have range -128
to 255. Any function handling this union type would have to deal with integers in this complete range. More
generally, the only valid operations on a union type are operations that are valid on both types being unioned. C's
"union" concept is similar to union types, but is not typesafe, as it permits operations that are valid on either type,
rather than both. Union types are important in program analysis, where they are used to represent symbolic values
whose exact nature (e.g., value or type) is not known.
In a subclassing hierarchy, the union of a type and an ancestor type (such as its parent) is the ancestor type. The
union of sibling types is a subtype of their common ancestor (that is, all operations permitted on their common
ancestor are permitted on the union type, but they may also have other valid operations in common).

http://en.wikipedia.org/w/index.php?title=Epigram_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Halting_Problem
http://en.wikipedia.org/w/index.php?title=Infinite_loop
http://en.wikipedia.org/w/index.php?title=Linear_type
http://en.wikipedia.org/w/index.php?title=Linear_logic
http://en.wikipedia.org/w/index.php?title=Uniqueness_type
http://en.wikipedia.org/w/index.php?title=Immutable_value
http://en.wikipedia.org/w/index.php?title=Referential_transparency_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Singularity_%28operating_system%29
http://en.wikipedia.org/w/index.php?title=Clean_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Haskell_%28programming_language%29
http://en.wikipedia.org/wiki/Verifiability
http://en.wikipedia.org/w/index.php?title=Intersection_type
http://en.wikipedia.org/w/index.php?title=Refinement_type
http://en.wikipedia.org/w/index.php?title=Refinement_type
http://en.wikipedia.org/w/index.php?title=Union_type

Type system 121

Existential types
Existential types are frequently used in connection with record types to represent modules and abstract data types,
due to their ability to separate implementation from interface. For example, the type "T = ∃X { a: X; f: (X → int); }"
describes a module interface that has a data member named a of type X and a function named f that takes a parameter
of the same type X and returns an integer. This could be implemented in different ways; for example:
• intT = { a: int; f: (int → int); }
• floatT = { a: float; f: (float → int); }
These types are both subtypes of the more general existential type T and correspond to concrete implementation
types, so any value of one of these types is a value of type T. Given a value "t" of type "T", we know that "t.f(t.a)" is
well-typed, regardless of what the abstract type X is. This gives flexibility for choosing types suited to a particular
implementation while clients that use only values of the interface type—the existential type—are isolated from these
choices.
In general it's impossible for the typechecker to infer which existential type a given module belongs to. In the above
example intT { a: int; f: (int → int); } could also have the type ∃X { a: X; f: (int → int); }. The simplest solution is to
annotate every module with its intended type, e.g.:
• intT = { a: int; f: (int → int); } as ∃X { a: X; f: (X → int); }
Although abstract data types and modules had been implemented in programming languages for quite some time, it
wasn't until 1988 that John C. Mitchell and Gordon Plotkin established the formal theory under the slogan: "Abstract
[data] types have existential type".[15] The theory is a second-order typed lambda calculus similar to System F, but
with existential instead of universal quantification.

Explicit or implicit declaration and inference
For more details on this topic, see Type inference.
Many static type systems, such as those of C and Java, require type declarations: The programmer must explicitly
associate each variable with a particular type. Others, such as Haskell's, perform type inference: The compiler draws
conclusions about the types of variables based on how programmers use those variables. For example, given a
function f(x, y) that adds x and y together, the compiler can infer that x and y must be numbers – since
addition is only defined for numbers. Therefore, any call to f elsewhere in the program that specifies a non-numeric
type (such as a string or list) as an argument would signal an error.
Numerical and string constants and expressions in code can and often do imply type in a particular context. For
example, an expression 3.14 might imply a type of floating-point, while [1, 2, 3] might imply a list of
integers – typically an array.
Type inference is in general possible, if it is decidable in the type theory in question. Moreover, even if inference is
undecidable in general for a given type theory, inference is often possible for a large subset of real-world programs.
Haskell's type system, a version of Hindley-Milner, is a restriction of System Fω to so-called rank-1 polymorphic
types, in which type inference is decidable. Most Haskell compilers allow arbitrary-rank polymorphism as an
extension, but this makes type inference undecidable. (Type checking is decidable, however, and rank-1 programs
still have type inference; higher rank polymorphic programs are rejected unless given explicit type annotations.)

http://en.wikipedia.org/w/index.php?title=Existential_quantifier
http://en.wikipedia.org/w/index.php?title=Record_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Module_%28programming%29
http://en.wikipedia.org/w/index.php?title=Abstract_data_type
http://en.wikipedia.org/w/index.php?title=John_C._Mitchell
http://en.wikipedia.org/w/index.php?title=Gordon_Plotkin
http://en.wikipedia.org/w/index.php?title=Typed_lambda_calculus
http://en.wikipedia.org/w/index.php?title=System_F
http://en.wikipedia.org/w/index.php?title=Type_inference
http://en.wikipedia.org/w/index.php?title=Type_inference
http://en.wikipedia.org/w/index.php?title=Floating-point
http://en.wikipedia.org/w/index.php?title=Array_data_structure
http://en.wikipedia.org/w/index.php?title=Decidability_%28logic%29
http://en.wikipedia.org/w/index.php?title=Type_inference%23Hindley%E2%80%93Milner_type_inference_algorithm
http://en.wikipedia.org/w/index.php?title=System_F-omega

Type system 122

Types of types
Main article: Data type
A type of types is a kind. Kinds appear explicitly in typeful programming, such as a type constructor in the Haskell
language.
Types fall into several broad categories:
• Primitive types – the simplest kind of type; e.g., integer and floating-point number

•• Boolean
• Integral types – types of whole numbers; e.g., integers and natural numbers
• Floating point types – types of numbers in floating-point representation

• Reference types
• Option types

• Nullable types
• Composite types – types composed of basic types; e.g., arrays or records.

Abstract data types
•• Algebraic types
•• Subtype
•• Derived type
• Object types; e.g., type variable
•• Partial type
•• Recursive type
• Function types; e.g., binary functions
• universally quantified types, such as parameterized types
• existentially quantified types, such as modules
• Refinement types – types that identify subsets of other types
• Dependent types – types that depend on terms (values)
• Ownership types – types that describe or constrain the structure of object-oriented systems
•• Pre-defined types provided for convenience in real-world applications, such as date, time and money.

Unified type system
Some languages like C# have a unified type system.[16] This means that all C# types including primitive types inherit
from a single root object. Every type in C# inherits from the Object class. Java has several primitive types that are
not objects. Java provides wrapper object types that exist together with the primitive types so developers can use
either the wrapper object types or the simpler non-object primitive types.

Compatibility: equivalence and subtyping
A type-checker for a statically typed language must verify that the type of any expression is consistent with the type
expected by the context in which that expression appears. For instance, in an assignment statement of the form x
:= e, the inferred type of the expression e must be consistent with the declared or inferred type of the variable x.
This notion of consistency, called compatibility, is specific to each programming language.
If the type of e and the type of x are the same and assignment is allowed for that type, then this is a valid
expression. In the simplest type systems, therefore, the question of whether two types are compatible reduces to that
of whether they are equal (or equivalent). Different languages, however, have different criteria for when two type
expressions are understood to denote the same type. These different equational theories of types vary widely, two
extreme cases being structural type systems, in which any two types are equivalent that describe values with the

http://en.wikipedia.org/w/index.php?title=Data_type
http://en.wikipedia.org/w/index.php?title=Kind_%28type_theory%29
http://en.wikipedia.org/w/index.php?title=Typeful_programming
http://en.wikipedia.org/w/index.php?title=Haskell_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Primitive_type
http://en.wikipedia.org/w/index.php?title=Integer
http://en.wikipedia.org/w/index.php?title=Floating-point_number
http://en.wikipedia.org/w/index.php?title=Boolean_data_type
http://en.wikipedia.org/w/index.php?title=Integral_type
http://en.wikipedia.org/w/index.php?title=Floating_point_type
http://en.wikipedia.org/w/index.php?title=Floating-point
http://en.wikipedia.org/w/index.php?title=Reference_type
http://en.wikipedia.org/w/index.php?title=Option_type
http://en.wikipedia.org/w/index.php?title=Nullable_type
http://en.wikipedia.org/w/index.php?title=Composite_type
http://en.wikipedia.org/w/index.php?title=Array_data_structure
http://en.wikipedia.org/w/index.php?title=Record_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Abstract_data_type
http://en.wikipedia.org/w/index.php?title=Algebraic_types
http://en.wikipedia.org/w/index.php?title=Subtype
http://en.wikipedia.org/w/index.php?title=Derived_class
http://en.wikipedia.org/w/index.php?title=Object_type
http://en.wikipedia.org/w/index.php?title=Type_variable
http://en.wikipedia.org/w/index.php?title=Partial_type
http://en.wikipedia.org/w/index.php?title=Recursive_type
http://en.wikipedia.org/w/index.php?title=Function_type
http://en.wikipedia.org/w/index.php?title=Universal_quantification
http://en.wikipedia.org/w/index.php?title=Existential_quantification
http://en.wikipedia.org/w/index.php?title=Module_%28programming%29
http://en.wikipedia.org/w/index.php?title=Refinement_type
http://en.wikipedia.org/w/index.php?title=Dependent_type
http://en.wikipedia.org/w/index.php?title=Ownership_type
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Expression_%28programming%29
http://en.wikipedia.org/w/index.php?title=Assignment_statement
http://en.wikipedia.org/w/index.php?title=Structural_type_system

Type system 123

same structure, and nominative type systems, in which no two syntactically distinct type expressions denote the same
type (i.e., types must have the same "name" in order to be equal).
In languages with subtyping, the compatibility relation is more complex. In particular, if A is a subtype of B, then a
value of type A can be used in a context where one of type B is expected, even if the reverse is not true. Like
equivalence, the subtype relation is defined differently for each programming language, with many variations
possible. The presence of parametric or ad hoc polymorphism in a language may also have implications for type
compatibility.

Programming style
Some programmers prefer statically typed languages; others prefer dynamically typed languages. Statically typed
languages alert programmers to type errors during compilation, and they may perform better at runtime. Advocates
of dynamically typed languages claim they better support rapid prototyping and that type errors are only a small
subset of errors in a program. Likewise, there is often no need to manually declare all types in statically typed
languages with type inference; thus, the need for the programmer to explicitly specify types of variables is
automatically lowered for such languages.

References
[1] http:/ / en. wikipedia. org/ w/ index. php?title=Template:Type_systems& action=edit
[2][2] Pierce 2002, p. 1: "A type system is a tractable syntactic method for proving the absence of certain program behaviors by classifying phrases

according to the kinds of values they compute."
[3] Cardelli 2004, p. 1: "The fundamental purpose of a type system is to prevent the occurrence of execution errors during the running of a

program."
[4][4] Pierce 2002, p. 208.
[5] Infoworld 25 April 1983 (http:/ / books. google. co. uk/ books?id=7i8EAAAAMBAJ& pg=PA66& lpg=PA66& dq=pascal+ type+ system+

"too+ strong"& source=bl& ots=PGyKS1fWUb& sig=ebFI6fk_yxwyY4b7sHSklp048Q4& hl=en& ei=lSmjTunuBo6F8gPOu43CCA&
sa=X& oi=book_result& ct=result& resnum=1& ved=0CBsQ6AEwAA#v=onepage& q=pascal type system "too strong"& f=false)

[6] [[Brian Kernighan (http:/ / www. cs. virginia. edu/ ~cs655/ readings/ bwk-on-pascal. html)]: Why Pascal is not my favorite language]
[7][7] Pierce 2002.
[8] Visual Basic is an example of a language that is both type-safe and memory-safe.
[9] Standard ECMA-262 (http:/ / www. ecma-international. org/ publications/ standards/ Ecma-262. htm). Ecma-international.org. Retrieved on

2013-07-17.
[10] Strict mode - JavaScript | MDN (https:/ / developer. mozilla. org/ en-US/ docs/ JavaScript/ Reference/ Functions_and_function_scope/

Strict_mode). Developer.mozilla.org (2013-07-03). Retrieved on 2013-07-17.
[11] Strict Mode (JavaScript) (http:/ / msdn. microsoft. com/ en-us/ library/ ie/ br230269(v=vs. 94). aspx). Msdn.microsoft.com. Retrieved on

2013-07-17.
[12] Bracha, G.: Pluggable Types (http:/ / bracha. org/ pluggableTypesPosition. pdf)
[13] http:/ / stackoverflow. com/ a/ 13414347/ 975097
[14] Stefan Hanenberg. ”An experiment about static and dynamic type systems: doubts about the positive impact of static type systems on

development time“. OOPSLA 2010.
[15] Mitchell, John C.; Plotkin, Gordon D.; Abstract Types Have Existential Type (http:/ / theory. stanford. edu/ ~jcm/ papers/ mitch-plotkin-88.

pdf), ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988, pp. 470–502
[16] Standard ECMA-334 (http:/ / www. ecma-international. org/ publications/ standards/ Ecma-334. htm), 8.2.4 Type system unification.

http://en.wikipedia.org/w/index.php?title=Nominative_type_system
http://en.wikipedia.org/w/index.php?title=Subtype
http://en.wikipedia.org/w/index.php?title=Polymorphism_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Template:Type_systems&action=edit
http://books.google.co.uk/books?id=7i8EAAAAMBAJ&pg=PA66&lpg=PA66&dq=pascal+type+system+%22too+strong%22&source=bl&ots=PGyKS1fWUb&sig=ebFI6fk_yxwyY4b7sHSklp048Q4&hl=en&ei=lSmjTunuBo6F8gPOu43CCA&sa=X&oi=book_result&ct=result&resnum=1&ved=0CBsQ6AEwAA#v=onepage&q=pascal%20type%20system%20%22too%20strong%22&f=false
http://books.google.co.uk/books?id=7i8EAAAAMBAJ&pg=PA66&lpg=PA66&dq=pascal+type+system+%22too+strong%22&source=bl&ots=PGyKS1fWUb&sig=ebFI6fk_yxwyY4b7sHSklp048Q4&hl=en&ei=lSmjTunuBo6F8gPOu43CCA&sa=X&oi=book_result&ct=result&resnum=1&ved=0CBsQ6AEwAA#v=onepage&q=pascal%20type%20system%20%22too%20strong%22&f=false
http://books.google.co.uk/books?id=7i8EAAAAMBAJ&pg=PA66&lpg=PA66&dq=pascal+type+system+%22too+strong%22&source=bl&ots=PGyKS1fWUb&sig=ebFI6fk_yxwyY4b7sHSklp048Q4&hl=en&ei=lSmjTunuBo6F8gPOu43CCA&sa=X&oi=book_result&ct=result&resnum=1&ved=0CBsQ6AEwAA#v=onepage&q=pascal%20type%20system%20%22too%20strong%22&f=false
http://www.cs.virginia.edu/~cs655/readings/bwk-on-pascal.html
http://en.wikipedia.org/w/index.php?title=Visual_Basic
http://www.ecma-international.org/publications/standards/Ecma-262.htm
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Functions_and_function_scope/Strict_mode
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Functions_and_function_scope/Strict_mode
http://msdn.microsoft.com/en-us/library/ie/br230269(v=vs.94).aspx
http://bracha.org/pluggableTypesPosition.pdf
http://stackoverflow.com/a/13414347/975097
http://theory.stanford.edu/~jcm/papers/mitch-plotkin-88.pdf
http://theory.stanford.edu/~jcm/papers/mitch-plotkin-88.pdf
http://www.ecma-international.org/publications/standards/Ecma-334.htm

Type system 124

Further reading
• Cardelli, Luca; Wegner, Peter (December 1985). "On Understanding Types, Data Abstraction, and

Polymorphism" (http:/ / lucacardelli. name/ Papers/ OnUnderstanding. A4. pdf). ACM Computing Surveys (New
York, NY, USA: ACM) 17 (4): 471–523. doi: 10.1145/6041.6042 (http:/ / dx. doi. org/ 10. 1145/ 6041. 6042).
ISSN 0360-0300 (http:/ / www. worldcat. org/ issn/ 0360-0300).

• Pierce, Benjamin C. (2002). Types and Programming Languages. MIT Press. ISBN 978-0-262-16209-8.
• Cardelli, Luca (2004). "Type systems" (http:/ / lucacardelli. name/ Papers/ TypeSystems. pdf). In Allen B.

Tucker. CRC Handbook of Computer Science and Engineering (2nd ed.). CRC Press. ISBN 158488360X.
• Tratt, Laurence, Dynamically Typed Languages (http:/ / tratt. net/ laurie/ research/ publications/ html/

tratt__dynamically_typed_languages/), Advances in Computers, Vol. 77, pp. 149–184, July 2009

External links
• Smith, Chris, What To Know Before Debating Type Systems (http:/ / cdsmith. wordpress. com/ 2011/ 01/ 09/

an-old-article-i-wrote/)

Strongly typed programming language
In computer programming, programming languages are often colloquially referred to as strongly typed or weakly
typed. In general, these terms do not have a precise definition. Rather, they tend to be used by advocates or critics of
a given programming language, as a means of explaining why a given language is better or worse than alternatives.

History
In 1974, Liskov and Zilles described a strong-typed language as one in which "whenever an object is passed from a
calling function to a called function, its type must be compatible with the type declared in the called function."
Jackson wrote, "In a strongly typed language each data area will have a distinct type and each process will state its
communication requirements in terms of these types."

Definitions of "strong" or "weak"
A number of different language design decisions have been referred to as evidence of "strong" or "weak" typing. In
fact, many of these are more accurately understood as the presence or absence of type safety, memory safety, static
type-checking, or dynamic type-checking.

Implicit type conversions and "type punning"
Some programming languages make it easy to use a value of one type as if it were a value of another type. This is
sometimes described as "weak typing".
For example, Aahz Maruch writes that "Coercion occurs when you have a statically typed language and you use the
syntactic features of the language to force the usage of one type as if it were a different type (consider the common
use of void* in C). Coercion is usually a symptom of weak typing. Conversion, OTOH, creates a brand-new object of
the appropriate type." [1]

As another example, GCC describes this as type-punning and warns that it will break strict aliasing. Thiago Macieira
discusses several problems that can arise when type-punning causes the compiler to make inappropriate
optimizations.[2]

http://en.wikipedia.org/w/index.php?title=Luca_Cardelli
http://en.wikipedia.org/w/index.php?title=Peter_Wegner
http://lucacardelli.name/Papers/OnUnderstanding.A4.pdf
http://en.wikipedia.org/w/index.php?title=ACM_Computing_Surveys
http://en.wikipedia.org/w/index.php?title=Association_for_Computing_Machinery
http://en.wikipedia.org/w/index.php?title=Digital_object_identifier
http://dx.doi.org/10.1145%2F6041.6042
http://en.wikipedia.org/w/index.php?title=International_Standard_Serial_Number
http://www.worldcat.org/issn/0360-0300
http://en.wikipedia.org/w/index.php?title=Benjamin_C._Pierce
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/978-0-262-16209-8
http://en.wikipedia.org/w/index.php?title=Luca_Cardelli
http://lucacardelli.name/Papers/TypeSystems.pdf
http://en.wikipedia.org/w/index.php?title=International_Standard_Book_Number
http://en.wikipedia.org/w/index.php?title=Special:BookSources/158488360X
http://tratt.net/laurie/research/publications/html/tratt__dynamically_typed_languages/
http://tratt.net/laurie/research/publications/html/tratt__dynamically_typed_languages/
http://cdsmith.wordpress.com/2011/01/09/an-old-article-i-wrote/
http://cdsmith.wordpress.com/2011/01/09/an-old-article-i-wrote/
http://en.wikipedia.org/w/index.php?title=Type_safety
http://en.wikipedia.org/w/index.php?title=Memory_safety
http://en.wikipedia.org/w/index.php?title=Type_system%23Static_type-checking
http://en.wikipedia.org/w/index.php?title=Type_system%23Static_type-checking
http://en.wikipedia.org/w/index.php?title=Type_system%23Dynamic_type-checking_and_runtime_type_information
http://en.wikipedia.org/w/index.php?title=Type_conversion
http://en.wikipedia.org/w/index.php?title=Statically_typed
http://en.wiktionary.org/wiki/OTOH
http://en.wikipedia.org/w/index.php?title=Type_punning
http://en.wikipedia.org/w/index.php?title=Aliasing_%28computing%29
http://en.wikipedia.org/w/index.php?title=Thiago_Macieira
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=Optimization

Strongly typed programming language 125

It is easy to focus on the syntax, but Macieira's argument is really about semantics. There are many examples of
languages which allow implicit conversions, but in a type-safe manner. For example, both C++ and C# allow
programs to define operators to convert a value from one type to another in a semantically meaningful way. When a
C++ compiler encounters such a conversion, it treats the operation just like a function call. In contrast, converting a
value to the C type "void*" is an unsafe operation which is invisible to the compiler.

Pointers
Some programming languages expose pointers as if they were numeric values, and allow users to perform arithmetic
on them. These languages are sometimes referred to as "weakly typed", since pointer arithmetic can be used to
bypass the language's type system.

Untagged unions
Some programming languages support untagged unions, which allow a value of one type to be viewed as if it were a
value of another type. In the article titled A hacked Boolean, Bill McCarthy demonstrates how a Boolean value in
.NET programming may become internally corrupted so that two values may both be "true" and yet still be
considered unequal to each other.[3]

Dynamic type-checking
Some programming languages do not have static type-checking. In many such languages, it is easy to write programs
which would be rejected by most static type-checkers. For example, a variable might store either a number or the
Boolean value "false". Some programmers refer to these languages as "weakly typed", since they do not seem to
enforce the "strong" type discipline found in a language with a static type-checker.

Static type-checking
In Luca Cardelli's article Typeful Programming,[4] a "strong type system" is described as one in which there is no
possibility of an unchecked runtime type error. In other writing, the absence of unchecked run-time errors is referred
to as safety or type safety; Tony Hoare's early papers call this property security.

Predictability
Some programmers refer to a language as "weakly typed" if simple operations do not behave in a way that they
would expect. For example, consider the following program:

x = "5" + 6

Different languages will assign a different value to 'x':
• One language might convert 6 to a string, and concatenate the two arguments to produce the string "56" (e.g.

JavaScript)
• Another language might convert "5" to a number, and add the two arguments to produce the number 11 (e.g. Perl,

PHP)
• Yet another language might convert the string "5" to a pointer representing where the string is stored within

memory, and add 6 to that value to produce a semi-random address (e.g. C)
• And yet another language might simply fail to compile this program or run the code, saying that the two operands

have incompatible type (e.g. Ruby, Python, BASIC)
Languages that work like the first three examples have all been called "weakly typed" at various times, even though
only one of them (the third) represents a safety violation.

http://en.wikipedia.org/w/index.php?title=Implicit_type_conversion
http://en.wikipedia.org/w/index.php?title=Union_type%23C%2B%2B
http://en.wikipedia.org/w/index.php?title=Boolean_data_type
http://en.wikipedia.org/w/index.php?title=.NET_Framework
http://en.wikipedia.org/w/index.php?title=Luca_Cardelli
http://en.wikipedia.org/w/index.php?title=Typeful_programming
http://en.wikipedia.org/w/index.php?title=C._A._R._Hoare
http://en.wikipedia.org/w/index.php?title=JavaScript
http://en.wikipedia.org/w/index.php?title=Perl
http://en.wikipedia.org/w/index.php?title=PHP
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Ruby_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=BASIC_%28programming_language%29

Strongly typed programming language 126

Type inference
Languages with static type systems differ to the extent that users are required to manually state the types used in
their program. Some languages, such as C, require that every variable be declared with a type. Other languages, such
as Haskell, use the Hindley-Milner method to infer all types based on a global analysis. Other languages, such as C#
and C++, lie somewhere in between; some types can be inferred based on local information, while others must be
specified. Some programmers use the term weakly typed to refer to languages with type inference, often without
realizing that the type information is present but implicit.

Variation across programming languages
Note that some of these definitions are contradictory, others are merely orthogonal, and still others are special cases
(with additional constraints) of other, more "liberal" (less strong) definitions. Because of the wide divergence among
these definitions, it is possible to defend claims about most programming languages that they are either strongly or
weakly typed. For instance:
• Java, Pascal, Ada and C require all variables to have a declared type, and support the use of explicit casts of

arithmetic values to other arithmetic types. Java, C#, Ada and Pascal are sometimes said to be more strongly
typed than C, a claim that is probably based on the fact that C supports more kinds of implicit conversions, and C
also allows pointer values to be explicitly cast while Java and Pascal do not. Java itself may be considered more
strongly typed than Pascal as manners of evading the static type system in Java are controlled by the Java Virtual
Machine's type system. C# is similar to Java in that respect, though it allows disabling dynamic type checking by
explicitly putting code segments in an "unsafe context". Pascal's type system has been described as "too strong",
because the size of an array or string is part of its type, making some programming tasks very difficult.[5][6]

• The object-oriented programming languages Smalltalk, Ruby, Python, and Self are all "strongly typed" in the
sense that typing errors are prevented at runtime and they do little implicit type conversion, but these languages
make no use of static type checking: the compiler does not check or enforce type constraint rules. The term duck
typing is now used to describe the dynamic typing paradigm used by the languages in this group.

• The Lisp family of languages are all "strongly typed" in the sense that typing errors are prevented at runtime.
Some Lisp dialects like Common Lisp or Clojure do support various forms of type declarations[7] and some
compilers (CMUCL[8] and related) use these declarations together with type inference to enable various
optimizations and also limited forms of compile time type checks.

• Standard ML, F#, OCaml and Haskell are statically type checked but the compiler automatically infers a precise
type for all values. These languages (along with most functional languages) are considered to have stronger type
systems than Java, as they permit no implicit type conversions. While OCaml's libraries allow one form of
evasion (Object magic), this feature remains unused in most applications.

• Visual Basic is a hybrid language. In addition to variables with declared types, it is also possible to declare a
variable of "Variant" data type that can store data of any type. Its implicit casts are fairly liberal where, for
example, one can sum string variants and pass the result into an integer variable.

• Assembly language and Forth have been said to be untyped. There is no type checking; it is up to the programmer
to ensure that data given to functions is of the appropriate type. Any type conversion required is explicit.

For this reason, writers who wish to write unambiguously about type systems often eschew the term "strong typing"
in favor of specific expressions such as "type safety".

http://en.wikipedia.org/w/index.php?title=Haskell_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Hindley-Milner
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Pascal_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Variable_%28programming%29
http://en.wikipedia.org/w/index.php?title=Pointer_%28computer_programming%29
http://en.wikipedia.org/w/index.php?title=Virtual_machine
http://en.wikipedia.org/w/index.php?title=Virtual_machine
http://en.wikipedia.org/w/index.php?title=Smalltalk
http://en.wikipedia.org/w/index.php?title=Ruby_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Self_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Type_conversion
http://en.wikipedia.org/w/index.php?title=Duck_typing
http://en.wikipedia.org/w/index.php?title=Duck_typing
http://en.wikipedia.org/w/index.php?title=Dynamic_typing
http://en.wikipedia.org/w/index.php?title=Lisp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Common_Lisp
http://en.wikipedia.org/w/index.php?title=Clojure
http://en.wikipedia.org/w/index.php?title=CMUCL
http://en.wikipedia.org/w/index.php?title=Type_inference
http://en.wikipedia.org/w/index.php?title=Standard_ML
http://en.wikipedia.org/w/index.php?title=F_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=OCaml
http://en.wikipedia.org/w/index.php?title=Haskell_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Functional_programming
http://en.wikipedia.org/w/index.php?title=Visual_Basic
http://en.wikipedia.org/w/index.php?title=Forth_%28programming_language%29

Strongly typed programming language 127

References
[1] Typing: Strong vs. Weak, Static vs. Dynamic (http:/ / www. artima. com/ weblogs/ viewpost. jsp?thread=7590)
[2] Type-punning and strict-aliasing, Thiago Macieira (http:/ / blog. qt. digia. com/ blog/ 2011/ 06/ 10/ type-punning-and-strict-aliasing/)
[3] A hacked Boolean (http:/ / msmvps. com/ blogs/ bill/ archive/ 2004/ 06/ 23/ 8730. aspx)
[4] ftp:/ / gatekeeper. research. compaq. com/ pub/ DEC/ SRC/ research-reports/ SRC-045. pdf page 3
[5] Infoworld April 25, 1983 (http:/ / books. google. co. uk/ books?id=7i8EAAAAMBAJ& pg=PA66& lpg=PA66& dq=pascal+ type+ system+

"too+ strong"& source=bl& ots=PGyKS1fWUb& sig=ebFI6fk_yxwyY4b7sHSklp048Q4& hl=en& ei=lSmjTunuBo6F8gPOu43CCA&
sa=X& oi=book_result& ct=result& resnum=1& ved=0CBsQ6AEwAA#v=onepage& q=pascal type system "too strong"& f=false)

[6] [[Brian Kernighan (http:/ / www. cs. virginia. edu/ ~cs655/ readings/ bwk-on-pascal. html): Why Pascal is not my favourite language]
[7] Common Lisp HyperSpec, Types and Classes (http:/ / www. lispworks. com/ documentation/ HyperSpec/ Body/ 04_. htm)
[8] CMUCL User's Manual: The Compiler, Types in Python (http:/ / common-lisp. net/ project/ cmucl/ doc/ cmu-user/ compiler. html#toc123)

Weak typing
In computer programming, programming languages are often colloquially referred to as strongly typed or weakly
typed. In general, these terms do not have a precise definition. Rather, they tend to be used by advocates or critics of
a given programming language, as a means of explaining why a given language is better or worse than alternatives.

History
In 1974, Liskov and Zilles described a strong-typed language as one in which "whenever an object is passed from a
calling function to a called function, its type must be compatible with the type declared in the called function."
Jackson wrote, "In a strongly typed language each data area will have a distinct type and each process will state its
communication requirements in terms of these types."

Definitions of "strong" or "weak"
A number of different language design decisions have been referred to as evidence of "strong" or "weak" typing. In
fact, many of these are more accurately understood as the presence or absence of type safety, memory safety, static
type-checking, or dynamic type-checking.

Implicit type conversions and "type punning"
Some programming languages make it easy to use a value of one type as if it were a value of another type. This is
sometimes described as "weak typing".
For example, Aahz Maruch writes that "Coercion occurs when you have a statically typed language and you use the
syntactic features of the language to force the usage of one type as if it were a different type (consider the common
use of void* in C). Coercion is usually a symptom of weak typing. Conversion, OTOH, creates a brand-new object of
the appropriate type." [1]

As another example, GCC describes this as type-punning and warns that it will break strict aliasing. Thiago Macieira
discusses several problems that can arise when type-punning causes the compiler to make inappropriate
optimizations.[2]

It is easy to focus on the syntax, but Macieira's argument is really about semantics. There are many examples of
languages which allow implicit conversions, but in a type-safe manner. For example, both C++ and C# allow
programs to define operators to convert a value from one type to another in a semantically meaningful way. When a
C++ compiler encounters such a conversion, it treats the operation just like a function call. In contrast, converting a
value to the C type "void*" is an unsafe operation which is invisible to the compiler.

http://www.artima.com/weblogs/viewpost.jsp?thread=7590
http://blog.qt.digia.com/blog/2011/06/10/type-punning-and-strict-aliasing/
http://msmvps.com/blogs/bill/archive/2004/06/23/8730.aspx
ftp://gatekeeper.research.compaq.com/pub/DEC/SRC/research-reports/SRC-045.pdf
http://books.google.co.uk/books?id=7i8EAAAAMBAJ&pg=PA66&lpg=PA66&dq=pascal+type+system+%22too+strong%22&source=bl&ots=PGyKS1fWUb&sig=ebFI6fk_yxwyY4b7sHSklp048Q4&hl=en&ei=lSmjTunuBo6F8gPOu43CCA&sa=X&oi=book_result&ct=result&resnum=1&ved=0CBsQ6AEwAA#v=onepage&q=pascal%20type%20system%20%22too%20strong%22&f=false
http://books.google.co.uk/books?id=7i8EAAAAMBAJ&pg=PA66&lpg=PA66&dq=pascal+type+system+%22too+strong%22&source=bl&ots=PGyKS1fWUb&sig=ebFI6fk_yxwyY4b7sHSklp048Q4&hl=en&ei=lSmjTunuBo6F8gPOu43CCA&sa=X&oi=book_result&ct=result&resnum=1&ved=0CBsQ6AEwAA#v=onepage&q=pascal%20type%20system%20%22too%20strong%22&f=false
http://books.google.co.uk/books?id=7i8EAAAAMBAJ&pg=PA66&lpg=PA66&dq=pascal+type+system+%22too+strong%22&source=bl&ots=PGyKS1fWUb&sig=ebFI6fk_yxwyY4b7sHSklp048Q4&hl=en&ei=lSmjTunuBo6F8gPOu43CCA&sa=X&oi=book_result&ct=result&resnum=1&ved=0CBsQ6AEwAA#v=onepage&q=pascal%20type%20system%20%22too%20strong%22&f=false
http://www.cs.virginia.edu/~cs655/readings/bwk-on-pascal.html
http://www.lispworks.com/documentation/HyperSpec/Body/04_.htm
http://common-lisp.net/project/cmucl/doc/cmu-user/compiler.html#toc123
http://en.wikipedia.org/w/index.php?title=Type_safety
http://en.wikipedia.org/w/index.php?title=Memory_safety
http://en.wikipedia.org/w/index.php?title=Type_system%23Static_type-checking
http://en.wikipedia.org/w/index.php?title=Type_system%23Static_type-checking
http://en.wikipedia.org/w/index.php?title=Type_system%23Dynamic_type-checking_and_runtime_type_information
http://en.wikipedia.org/w/index.php?title=Type_conversion
http://en.wikipedia.org/w/index.php?title=Statically_typed
http://en.wiktionary.org/wiki/OTOH
http://en.wikipedia.org/w/index.php?title=Type_punning
http://en.wikipedia.org/w/index.php?title=Aliasing_%28computing%29
http://en.wikipedia.org/w/index.php?title=Thiago_Macieira
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=Optimization
http://en.wikipedia.org/w/index.php?title=Implicit_type_conversion

Weak typing 128

Pointers
Some programming languages expose pointers as if they were numeric values, and allow users to perform arithmetic
on them. These languages are sometimes referred to as "weakly typed", since pointer arithmetic can be used to
bypass the language's type system.

Untagged unions
Some programming languages support untagged unions, which allow a value of one type to be viewed as if it were a
value of another type. In the article titled A hacked Boolean, Bill McCarthy demonstrates how a Boolean value in
.NET programming may become internally corrupted so that two values may both be "true" and yet still be
considered unequal to each other.[3]

Dynamic type-checking
Some programming languages do not have static type-checking. In many such languages, it is easy to write programs
which would be rejected by most static type-checkers. For example, a variable might store either a number or the
Boolean value "false". Some programmers refer to these languages as "weakly typed", since they do not seem to
enforce the "strong" type discipline found in a language with a static type-checker.

Static type-checking
In Luca Cardelli's article Typeful Programming,[4] a "strong type system" is described as one in which there is no
possibility of an unchecked runtime type error. In other writing, the absence of unchecked run-time errors is referred
to as safety or type safety; Tony Hoare's early papers call this property security.

Predictability
Some programmers refer to a language as "weakly typed" if simple operations do not behave in a way that they
would expect. For example, consider the following program:

x = "5" + 6

Different languages will assign a different value to 'x':
• One language might convert 6 to a string, and concatenate the two arguments to produce the string "56" (e.g.

JavaScript)
• Another language might convert "5" to a number, and add the two arguments to produce the number 11 (e.g. Perl,

PHP)
• Yet another language might convert the string "5" to a pointer representing where the string is stored within

memory, and add 6 to that value to produce a semi-random address (e.g. C)
• And yet another language might simply fail to compile this program or run the code, saying that the two operands

have incompatible type (e.g. Ruby, Python, BASIC)
Languages that work like the first three examples have all been called "weakly typed" at various times, even though
only one of them (the third) represents a safety violation.

Type inference
Languages with static type systems differ to the extent that users are required to manually state the types used in
their program. Some languages, such as C, require that every variable be declared with a type. Other languages, such
as Haskell, use the Hindley-Milner method to infer all types based on a global analysis. Other languages, such as C#
and C++, lie somewhere in between; some types can be inferred based on local information, while others must be
specified. Some programmers use the term weakly typed to refer to languages with type inference, often without

http://en.wikipedia.org/w/index.php?title=Union_type%23C%2B%2B
http://en.wikipedia.org/w/index.php?title=Boolean_data_type
http://en.wikipedia.org/w/index.php?title=.NET_Framework
http://en.wikipedia.org/w/index.php?title=Luca_Cardelli
http://en.wikipedia.org/w/index.php?title=Typeful_programming
http://en.wikipedia.org/w/index.php?title=C._A._R._Hoare
http://en.wikipedia.org/w/index.php?title=JavaScript
http://en.wikipedia.org/w/index.php?title=Perl
http://en.wikipedia.org/w/index.php?title=PHP
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Ruby_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=BASIC_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Haskell_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Hindley-Milner

Weak typing 129

realizing that the type information is present but implicit.

Variation across programming languages
Note that some of these definitions are contradictory, others are merely orthogonal, and still others are special cases
(with additional constraints) of other, more "liberal" (less strong) definitions. Because of the wide divergence among
these definitions, it is possible to defend claims about most programming languages that they are either strongly or
weakly typed. For instance:
• Java, Pascal, Ada and C require all variables to have a declared type, and support the use of explicit casts of

arithmetic values to other arithmetic types. Java, C#, Ada and Pascal are sometimes said to be more strongly
typed than C, a claim that is probably based on the fact that C supports more kinds of implicit conversions, and C
also allows pointer values to be explicitly cast while Java and Pascal do not. Java itself may be considered more
strongly typed than Pascal as manners of evading the static type system in Java are controlled by the Java Virtual
Machine's type system. C# is similar to Java in that respect, though it allows disabling dynamic type checking by
explicitly putting code segments in an "unsafe context". Pascal's type system has been described as "too strong",
because the size of an array or string is part of its type, making some programming tasks very difficult.[5][6]

• The object-oriented programming languages Smalltalk, Ruby, Python, and Self are all "strongly typed" in the
sense that typing errors are prevented at runtime and they do little implicit type conversion, but these languages
make no use of static type checking: the compiler does not check or enforce type constraint rules. The term duck
typing is now used to describe the dynamic typing paradigm used by the languages in this group.

• The Lisp family of languages are all "strongly typed" in the sense that typing errors are prevented at runtime.
Some Lisp dialects like Common Lisp or Clojure do support various forms of type declarations[7] and some
compilers (CMUCL[8] and related) use these declarations together with type inference to enable various
optimizations and also limited forms of compile time type checks.

• Standard ML, F#, OCaml and Haskell are statically type checked but the compiler automatically infers a precise
type for all values. These languages (along with most functional languages) are considered to have stronger type
systems than Java, as they permit no implicit type conversions. While OCaml's libraries allow one form of
evasion (Object magic), this feature remains unused in most applications.

• Visual Basic is a hybrid language. In addition to variables with declared types, it is also possible to declare a
variable of "Variant" data type that can store data of any type. Its implicit casts are fairly liberal where, for
example, one can sum string variants and pass the result into an integer variable.

• Assembly language and Forth have been said to be untyped. There is no type checking; it is up to the programmer
to ensure that data given to functions is of the appropriate type. Any type conversion required is explicit.

For this reason, writers who wish to write unambiguously about type systems often eschew the term "strong typing"
in favor of specific expressions such as "type safety".

References
[1] Typing: Strong vs. Weak, Static vs. Dynamic (http:/ / www. artima. com/ weblogs/ viewpost. jsp?thread=7590)
[2] Type-punning and strict-aliasing, Thiago Macieira (http:/ / blog. qt. digia. com/ blog/ 2011/ 06/ 10/ type-punning-and-strict-aliasing/)
[3] A hacked Boolean (http:/ / msmvps. com/ blogs/ bill/ archive/ 2004/ 06/ 23/ 8730. aspx)
[4] ftp:/ / gatekeeper. research. compaq. com/ pub/ DEC/ SRC/ research-reports/ SRC-045. pdf page 3
[5] Infoworld April 25, 1983 (http:/ / books. google. co. uk/ books?id=7i8EAAAAMBAJ& pg=PA66& lpg=PA66& dq=pascal+ type+ system+

"too+ strong"& source=bl& ots=PGyKS1fWUb& sig=ebFI6fk_yxwyY4b7sHSklp048Q4& hl=en& ei=lSmjTunuBo6F8gPOu43CCA&
sa=X& oi=book_result& ct=result& resnum=1& ved=0CBsQ6AEwAA#v=onepage& q=pascal type system "too strong"& f=false)

[6] [[Brian Kernighan (http:/ / www. cs. virginia. edu/ ~cs655/ readings/ bwk-on-pascal. html): Why Pascal is not my favourite language]
[7] Common Lisp HyperSpec, Types and Classes (http:/ / www. lispworks. com/ documentation/ HyperSpec/ Body/ 04_. htm)
[8] CMUCL User's Manual: The Compiler, Types in Python (http:/ / common-lisp. net/ project/ cmucl/ doc/ cmu-user/ compiler. html#toc123)

http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Pascal_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Variable_%28programming%29
http://en.wikipedia.org/w/index.php?title=Pointer_%28computer_programming%29
http://en.wikipedia.org/w/index.php?title=Virtual_machine
http://en.wikipedia.org/w/index.php?title=Virtual_machine
http://en.wikipedia.org/w/index.php?title=Smalltalk
http://en.wikipedia.org/w/index.php?title=Ruby_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Self_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Type_conversion
http://en.wikipedia.org/w/index.php?title=Duck_typing
http://en.wikipedia.org/w/index.php?title=Duck_typing
http://en.wikipedia.org/w/index.php?title=Dynamic_typing
http://en.wikipedia.org/w/index.php?title=Lisp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Common_Lisp
http://en.wikipedia.org/w/index.php?title=Clojure
http://en.wikipedia.org/w/index.php?title=CMUCL
http://en.wikipedia.org/w/index.php?title=Type_inference
http://en.wikipedia.org/w/index.php?title=Standard_ML
http://en.wikipedia.org/w/index.php?title=F_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=OCaml
http://en.wikipedia.org/w/index.php?title=Haskell_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Functional_programming
http://en.wikipedia.org/w/index.php?title=Visual_Basic
http://en.wikipedia.org/w/index.php?title=Forth_%28programming_language%29
http://www.artima.com/weblogs/viewpost.jsp?thread=7590
http://blog.qt.digia.com/blog/2011/06/10/type-punning-and-strict-aliasing/
http://msmvps.com/blogs/bill/archive/2004/06/23/8730.aspx
ftp://gatekeeper.research.compaq.com/pub/DEC/SRC/research-reports/SRC-045.pdf
http://books.google.co.uk/books?id=7i8EAAAAMBAJ&pg=PA66&lpg=PA66&dq=pascal+type+system+%22too+strong%22&source=bl&ots=PGyKS1fWUb&sig=ebFI6fk_yxwyY4b7sHSklp048Q4&hl=en&ei=lSmjTunuBo6F8gPOu43CCA&sa=X&oi=book_result&ct=result&resnum=1&ved=0CBsQ6AEwAA#v=onepage&q=pascal%20type%20system%20%22too%20strong%22&f=false
http://books.google.co.uk/books?id=7i8EAAAAMBAJ&pg=PA66&lpg=PA66&dq=pascal+type+system+%22too+strong%22&source=bl&ots=PGyKS1fWUb&sig=ebFI6fk_yxwyY4b7sHSklp048Q4&hl=en&ei=lSmjTunuBo6F8gPOu43CCA&sa=X&oi=book_result&ct=result&resnum=1&ved=0CBsQ6AEwAA#v=onepage&q=pascal%20type%20system%20%22too%20strong%22&f=false
http://books.google.co.uk/books?id=7i8EAAAAMBAJ&pg=PA66&lpg=PA66&dq=pascal+type+system+%22too+strong%22&source=bl&ots=PGyKS1fWUb&sig=ebFI6fk_yxwyY4b7sHSklp048Q4&hl=en&ei=lSmjTunuBo6F8gPOu43CCA&sa=X&oi=book_result&ct=result&resnum=1&ved=0CBsQ6AEwAA#v=onepage&q=pascal%20type%20system%20%22too%20strong%22&f=false
http://www.cs.virginia.edu/~cs655/readings/bwk-on-pascal.html
http://www.lispworks.com/documentation/HyperSpec/Body/04_.htm
http://common-lisp.net/project/cmucl/doc/cmu-user/compiler.html#toc123

Syntax 130

Syntax

Syntax highlighting and indent style are often used to aid programmers in
recognizing elements of source code. Color coded highlighting is used in this

piece of code written in Python.

In computer science, the syntax of a computer
language is the set of rules that defines the
combinations of symbols that are considered
to be a correctly structured document or
fragment in that language. This applies both
to programming languages, where the
document represents source code, and markup
languages, where the document represents
data. The syntax of a language defines its
surface form. Text-based computer languages
are based on sequences of characters, while
visual programming languages are based on
the spatial layout and connections between
symbols (which may be textual or graphical).
Documents that are syntactically invalid are
said to have a syntax error.

Syntax – the form – is contrasted with
semantics – the meaning. In processing computer languages, semantic processing generally comes after syntactic
processing, but in some cases semantic processing is necessary for complete syntactic analysis, and these are done
together or concurrently. In a compiler, the syntactic analysis comprises the frontend, while semantic analysis
comprises the backend (and middle end, if this phase is distinguished).

Levels of syntax
Computer language syntax is generally distinguished into three levels:
• Words – the lexical level, determining how characters form tokens;
• Phrases – the grammar level, narrowly speaking, determining how tokens form phrases;
• Context – determining what objects or variables names refer to, if types are valid, etc.
Distinguishing in this way yields modularity, allowing each level to be described and processed separately, and often
independently. First a lexer turns the linear sequence of characters into a linear sequence of tokens; this is known as
"lexical analysis" or "lexing". Second the parser turns the linear sequence of tokens into a hierarchical syntax tree;
this is known as "parsing" narrowly speaking. Thirdly the contextual analysis resolves names and checks types. This
modularity is sometimes possible, but in many real-world languages an earlier step depends on a later step – for
example, the lexer hack in C is because tokenization depends on context. Even in these cases, syntactical analysis is
often seen as approximating this ideal model.
The parsing stage itself can be divided into two parts: the parse tree or "concrete syntax tree" which is determined by
the grammar, but is generally far too detailed for practical use, and the abstract syntax tree (AST), which simplifies
this into a usable form. The AST and contextual analysis steps can be considered a form of semantic analysis, as they
are adding meaning and interpretation to the syntax, or alternatively as informal, manual implementations of
syntactical rules that would be difficult or awkward to describe or implement formally.
The levels generally correspond to levels in the Chomsky hierarchy. Words are in a regular language, specified in the
lexical grammar, which is a Type-3 grammar, generally given as regular expressions. Phrases are in a context-free
language (CFL), generally a deterministic context-free language (DCFL), specified in a phrase structure grammar,

http://en.wikipedia.org/w/index.php?title=Syntax_highlighting
http://en.wikipedia.org/w/index.php?title=Indent_style
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=File%3APython_add5_syntax.svg
http://en.wikipedia.org/w/index.php?title=Computer_science
http://en.wikipedia.org/w/index.php?title=Computer_language
http://en.wikipedia.org/w/index.php?title=Computer_language
http://en.wikipedia.org/w/index.php?title=Markup_language
http://en.wikipedia.org/w/index.php?title=Markup_language
http://en.wikipedia.org/w/index.php?title=Visual_programming_languages
http://en.wikipedia.org/w/index.php?title=Syntax_error
http://en.wikipedia.org/w/index.php?title=Semantics_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Concurrency_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=Compiler_frontend
http://en.wikipedia.org/w/index.php?title=Compiler_backend
http://en.wikipedia.org/w/index.php?title=Token_%28parser%29
http://en.wikipedia.org/w/index.php?title=Lexical_analysis
http://en.wikipedia.org/w/index.php?title=Parsing
http://en.wikipedia.org/w/index.php?title=The_lexer_hack
http://en.wikipedia.org/w/index.php?title=Parse_tree
http://en.wikipedia.org/w/index.php?title=Abstract_syntax_tree
http://en.wikipedia.org/w/index.php?title=Chomsky_hierarchy
http://en.wikipedia.org/w/index.php?title=Regular_language
http://en.wikipedia.org/w/index.php?title=Lexical_grammar
http://en.wikipedia.org/w/index.php?title=Regular_expression
http://en.wikipedia.org/w/index.php?title=Context-free_language
http://en.wikipedia.org/w/index.php?title=Context-free_language
http://en.wikipedia.org/w/index.php?title=Deterministic_context-free_language
http://en.wikipedia.org/w/index.php?title=Phrase_structure_grammar

Syntax 131

which is a Type-2 grammar, generally given as production rules in Backus–Naur Form (BNF). Phrase grammars are
often specified in much more constrained grammars than full context-free grammars, in order to make them easier to
parse; while the LR parser can parse any DCFL in linear time, the simple LALR parser and even simpler LL parser
are more efficient, but can only parse grammars whose production rules are constrained. Contextual structure can in
principle be described by a context-sensitive grammar, and automatically analyzed by means such as attribute
grammars, though in general this step is done manually, via name resolution rules and type checking, and
implemented via a symbol table which stores names and types for each scope.
Tools have been written that automatically generate a lexer from a lexical specification written in regular expressions
and a parser from the phrase grammar written in BNF: this allows one to use declarative programming, rather than
need to have procedural or functional programming. A notable example is the lex-yacc pair. These automatically
produce a concrete syntax tree; the parser writer must then manually write code describing how this is converted to
an abstract syntax tree. Contextual analysis is also generally implemented manually. Despite the existence of these
automatic tools, parsing is often implemented manually, for various reasons – perhaps the phrase structure is not
context-free, or an alternative implementation improves performance or error-reporting, or allows the grammar to be
changed more easily. Parsers are often written in functional languages, such as Haskell, in scripting languages, such
as Python or Perl, or in C or C++.

Examples of errors
Main article: Syntax error
As an example, (add 1 1) is a syntactically valid Lisp program (assuming the 'add' function exists, else name
resolution fails), adding 1 and 1. However, the following are invalid:

(_ 1 1) lexical error: '_' is not valid

(add 1 1 parsing error: missing closing ')'

(add 1 x) name error: 'x' is not bound

Note that the lexer is unable to identify the error – all it knows is that, after producing the token LEFT_PAREN, '('
the remainder of the program is invalid, since no word rule begins with '_'. At the parsing stage, the parser has
identified the "list" production rule due to the '(' token (as the only match), and thus can give an error message; in
general it may be ambiguous. At the context stage, the symbol 'x' exists in the syntax tree, but has not been defined,
and thus the context analyzer can give a specific error.
In a strongly typed language, type errors are also a form of syntax error which is generally determined at the
contextual analysis stage, and this is considered a strength of strong typing. For example, the following is
syntactically invalid Python code (as these are literals, the type can be determined at parse time):

'a' + 1

…as it adds a string and an integer. This can be detected at the parsing (phrase analysis) level if one has separate
rules for "string + string" and "integer + integer", but more commonly this will instead be parsed by a general rule
like "LiteralOrIdentifier + LiteralOrIdentifier" and then the error will be detected at contextual analysis stage, where
type checking occurs. In some cases this validation is not done, and these syntax errors are only detected at runtime.
In a weakly typed language, where type can only be determined at runtime, type errors are instead a semantic error,
and can only be determined at runtime. The following Python code:

a + b

is ambiguous, and while syntactically valid at the phrase level, it can only be validated at runtime, as variables do not
have type in Python, only values do.

http://en.wikipedia.org/w/index.php?title=Production_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Backus%E2%80%93Naur_Form
http://en.wikipedia.org/w/index.php?title=Context-free_grammar
http://en.wikipedia.org/w/index.php?title=LR_parser
http://en.wikipedia.org/w/index.php?title=LALR_parser
http://en.wikipedia.org/w/index.php?title=LL_parser
http://en.wikipedia.org/w/index.php?title=Context-sensitive_grammar
http://en.wikipedia.org/w/index.php?title=Attribute_grammar
http://en.wikipedia.org/w/index.php?title=Attribute_grammar
http://en.wikipedia.org/w/index.php?title=Name_resolution
http://en.wikipedia.org/w/index.php?title=Type_checking
http://en.wikipedia.org/w/index.php?title=Symbol_table
http://en.wikipedia.org/w/index.php?title=Declarative_programming
http://en.wikipedia.org/w/index.php?title=Lex_%28software%29
http://en.wikipedia.org/w/index.php?title=Yacc
http://en.wikipedia.org/w/index.php?title=Syntax_error

Syntax 132

Syntax definition

Parse tree of Python code with inset tokenization

The syntax of textual programming
languages is usually defined using a
combination of regular expressions
(for lexical structure) and
Backus–Naur Form (for grammatical
structure) to inductively specify
syntactic categories (nonterminals) and
terminal symbols. Syntactic categories
are defined by rules called
productions, which specify the values
that belong to a particular syntactic
category. Terminal symbols are the
concrete characters or strings of
characters (for example keywords such
as define, if, let, or void) from which
syntactically valid programs are
constructed.

A language can have different equivalent grammars, such as equivalent regular expressions (at the lexical levels), or
different phrase rules which generate the same language. Using a broader category of grammars, such as LR
grammars, can allow shorter or simpler grammars compared with more restricted categories, such as LL grammar,
which may requires longer grammars with more rules. Different but equivalent phrase grammars yield different
parse trees, though the underlying language (set of valid documents) is the same.

Example: Lisp
Below is a simple grammar, defined using the notation of regular expressions and Backus–Naur Form. It describes
the syntax of Lisp, which defines productions for the syntactic categories expression, atom, number, symbol, and list:

expression ::= atom | list

atom ::= number | symbol

number ::= [+-]?['0'-'9']+

symbol ::= ['A'-'Z''a'-'z'].*

list ::= '(' expression* ')'

This grammar specifies the following:
• an expression is either an atom or a list;
• an atom is either a number or a symbol;
• a number is an unbroken sequence of one or more decimal digits, optionally preceded by a plus or minus sign;
• a symbol is a letter followed by zero or more of any characters (excluding whitespace); and
• a list is a matched pair of parentheses, with zero or more expressions inside it.
Here the decimal digits, upper- and lower-case characters, and parentheses are terminal symbols.
The following are examples of well-formed token sequences in this grammar: '12345', '()', '(a b c232 (1))'

http://en.wikipedia.org/w/index.php?title=Parse_tree
http://en.wikipedia.org/w/index.php?title=File%3APython_add5_parse.svg
http://en.wikipedia.org/w/index.php?title=Regular_expression
http://en.wikipedia.org/w/index.php?title=Lexical_analysis
http://en.wikipedia.org/w/index.php?title=Backus%E2%80%93Naur_Form
http://en.wikipedia.org/w/index.php?title=Context-free_grammar
http://en.wikipedia.org/w/index.php?title=Syntactic_category
http://en.wikipedia.org/w/index.php?title=Keyword_%28computer_programming%29
http://en.wikipedia.org/w/index.php?title=Lisp_programming_language

Syntax 133

Complex grammars
The grammar needed to specify a programming language can be classified by its position in the Chomsky hierarchy.
The phrase grammar of most programming languages can be specified using a Type-2 grammar, i.e., they are
context-free grammars,[1] though the overall syntax is context-sensitive (due to variable declarations and nested
scopes), hence Type-1. However, there are exceptions, and for some languages the phrase grammar is Type-0
(Turing-complete).
In some languages like Perl and Lisp the specification (or implementation) of the language allows constructs that
execute during the parsing phase. Furthermore, these languages have constructs that allow the programmer to alter
the behavior of the parser. This combination effectively blurs the distinction between parsing and execution, and
makes syntax analysis an undecidable problem in these languages, meaning that the parsing phase may not finish.
For example, in Perl it is possible to execute code during parsing using a BEGIN statement, and Perl function
prototypes may alter the syntactic interpretation, and possibly even the syntactic validity of the remaining code.[2]

Colloquially this is referred to as "only Perl can parse Perl" (because code must be executed during parsing, and can
modify the grammar), or more strongly "even Perl cannot parse Perl" (because it is undecidable). Similarly, Lisp
macros introduced by the defmacro syntax also execute during parsing, meaning that a Lisp compiler must have
an entire Lisp run-time system present. In contrast C macros are merely string replacements, and do not require code
execution.

Syntax versus semantics
The syntax of a language describes the form of a valid program, but does not provide any information about the
meaning of the program or the results of executing that program. The meaning given to a combination of symbols is
handled by semantics (either formal or hard-coded in a reference implementation). Not all syntactically correct
programs are semantically correct. Many syntactically correct programs are nonetheless ill-formed, per the
language's rules; and may (depending on the language specification and the soundness of the implementation) result
in an error on translation or execution. In some cases, such programs may exhibit undefined behavior. Even when a
program is well-defined within a language, it may still have a meaning that is not intended by the person who wrote
it.
Using natural language as an example, it may not be possible to assign a meaning to a grammatically correct
sentence or the sentence may be false:
• "Colorless green ideas sleep furiously." is grammatically well formed but has no generally accepted meaning.
•• "John is a married bachelor." is grammatically well formed but expresses a meaning that cannot be true.
The following C language fragment is syntactically correct, but performs an operation that is not semantically
defined (because p is a null pointer, the operations p->real and p->im have no meaning):

 complex *p = NULL;

 complex abs_p = sqrt (p->real * p->real + p->im * p->im);

More simply:

 int x;

 printf("%d", x);

is syntactically valid, but not semantically defined, as it uses an uninitialized variable.

http://en.wikipedia.org/w/index.php?title=Chomsky_hierarchy
http://en.wikipedia.org/w/index.php?title=Context-free_grammar
http://en.wikipedia.org/w/index.php?title=Undecidable_problem
http://en.wikipedia.org/w/index.php?title=Macro_instruction
http://en.wikipedia.org/w/index.php?title=Formal_semantics_of_programming_languages
http://en.wikipedia.org/w/index.php?title=Reference_implementation_%28computing%29
http://en.wikipedia.org/w/index.php?title=Undefined_behavior
http://en.wikipedia.org/w/index.php?title=Natural_language
http://en.wikipedia.org/w/index.php?title=Colorless_green_ideas_sleep_furiously
http://en.wikipedia.org/w/index.php?title=Null_pointer
http://en.wikipedia.org/w/index.php?title=Uninitialized_variable

Syntax 134

References
[1] Section 2.2: Pushdown Automata, pp.101–114.
[2][2] The following discussions give examples:

• Perl and Undecidability (http:/ / www. jeffreykegler. com/ Home/ perl-and-undecidability)
• LtU comment clarifying that the undecidable problem is membership in the class of Perl programs (http:/ / lambda-the-ultimate. org/ node/

3564#comment-50578)
• chromatic's example of Perl code that gives a syntax error depending on the value of random variable (http:/ / www. modernperlbooks.

com/ mt/ 2009/ 08/ on-parsing-perl-5. html)

External links
• Various syntactic constructs used in computer programming languages (http:/ / merd. sourceforge. net/ pixel/

language-study/ syntax-across-languages/)

Scripting language
A scripting language or script language is a programming language that supports scripts, programs written for a
special run-time environment that can interpret (rather than compile) and automate the execution of tasks that could
alternatively be executed one-by-one by a human operator. Environments that can be automated through scripting
include software applications, web pages within a web browser, the shells of operating systems (OS), and embedded
systems. A scripting language can be viewed as a domain-specific language for a particular environment; in the case
of scripting an application, this is also known as an extension language. Scripting languages are also sometimes
referred to as very high-level programming languages, as they operate at a high level of abstraction, or as control
languages, particularly for job control languages on mainframes.
The term "scripting language" is also used loosely to refer to dynamic high-level general-purpose language, such as
Perl, Tcl, and Python,[1] with the term "script" often used for small programs (up to a few thousand lines of code) in
such languages, or in domain-specific languages such as the text-processing languages sed and AWK. Some of these
languages were originally developed for use within a particular environment, and later developed into portable
domain-specific or general-purpose languages. Conversely, many general-purpose languages have dialects that are
used as scripting languages. This article discusses scripting languages in the narrow sense of languages for a specific
environment; dynamic, general-purpose, and high-level languages are discussed at those articles.
The spectrum of scripting languages ranges from very small and highly domain-specific languages to
general-purpose programming languages used for scripting. Standard examples of scripting languages for specific
environments include: Bash, for the Unix or Unix-like operating systems; ECMAScript (JavaScript), for web
browsers; and Visual Basic for Applications, for Microsoft Office applications. Lua is a language designed and
widely used as an extension language. Python is a general-purpose language that is also commonly used as an
extension language, while ECMAScript is still primarily a scripting language for web browsers, but is also used as a
general-purpose language. The Emacs Lisp dialect of Lisp (for the Emacs editor) and the Visual Basic for
Applications dialect of Visual Basic are examples of scripting language dialects of general-purpose languages. Some
game systems, notably the Trainz franchise of Railroad simulators have been extensively extended in functionality
by scripting extensions.

http://www.jeffreykegler.com/Home/perl-and-undecidability
http://lambda-the-ultimate.org/node/3564#comment-50578
http://lambda-the-ultimate.org/node/3564#comment-50578
http://www.modernperlbooks.com/mt/2009/08/on-parsing-perl-5.html
http://www.modernperlbooks.com/mt/2009/08/on-parsing-perl-5.html
http://merd.sourceforge.net/pixel/language-study/syntax-across-languages/
http://merd.sourceforge.net/pixel/language-study/syntax-across-languages/
http://en.wikipedia.org/w/index.php?title=Scripts
http://en.wikipedia.org/w/index.php?title=Run-time_environment
http://en.wikipedia.org/w/index.php?title=Interpreted_language
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=Automate
http://en.wikipedia.org/w/index.php?title=Execution_%28computing%29
http://en.wikipedia.org/w/index.php?title=Software_application
http://en.wikipedia.org/w/index.php?title=Web_page
http://en.wikipedia.org/w/index.php?title=Web_browser
http://en.wikipedia.org/w/index.php?title=Shell_script
http://en.wikipedia.org/w/index.php?title=Operating_system
http://en.wikipedia.org/w/index.php?title=Embedded_system
http://en.wikipedia.org/w/index.php?title=Embedded_system
http://en.wikipedia.org/w/index.php?title=Domain-specific_language
http://en.wikipedia.org/w/index.php?title=Very_high-level_programming_language
http://en.wikipedia.org/w/index.php?title=Dynamic_programming_language
http://en.wikipedia.org/w/index.php?title=High-level_language
http://en.wikipedia.org/w/index.php?title=General-purpose_programming_language
http://en.wikipedia.org/w/index.php?title=Perl
http://en.wikipedia.org/w/index.php?title=Tcl
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Sed
http://en.wikipedia.org/w/index.php?title=AWK
http://en.wikipedia.org/w/index.php?title=Domain-specific_language
http://en.wikipedia.org/w/index.php?title=Bash_%28Unix_shell%29
http://en.wikipedia.org/w/index.php?title=Unix
http://en.wikipedia.org/w/index.php?title=Unix-like
http://en.wikipedia.org/w/index.php?title=Operating_system
http://en.wikipedia.org/w/index.php?title=ECMAScript
http://en.wikipedia.org/w/index.php?title=JavaScript
http://en.wikipedia.org/w/index.php?title=Visual_Basic_for_Applications
http://en.wikipedia.org/w/index.php?title=Microsoft_Office
http://en.wikipedia.org/w/index.php?title=Lua_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Emacs_Lisp
http://en.wikipedia.org/w/index.php?title=Lisp
http://en.wikipedia.org/w/index.php?title=Emacs
http://en.wikipedia.org/w/index.php?title=Visual_Basic
http://en.wikipedia.org/w/index.php?title=Trainz

Scripting language 135

Characteristics
In principle any language can be used as a scripting language, given libraries or bindings for a specific environment.
Formally speaking, "scripting" is a property of the primary implementations and uses of a language, hence the
ambiguity about whether a language "is" a scripting language for languages with multiple implementations.
However, many languages are not very suited for use as scripting languages and are rarely if ever used as such.
Typically scripting languages are intended to be very fast to pick up and author programs in. This generally implies
relatively simple syntax and semantics. For example, it is uncommon to use Java as a scripting language due to the
lengthy syntax and restrictive rules about which classes exist in which files – contrast to Python, where it is possible
to briefly define some functions in a file. A scripting language is usually interpreted from source code or bytecode.
By contrast, the software environment the scripts are written for is typically written in a compiled language and
distributed in machine code form. Scripting languages may be designed for use by end users of a program – end-user
development – or may be only for internal use by developers, so they can write portions of the program in the
scripting language. Scripting languages abstract their users from variable types and memory management.
Scripts are often created or modified by the person executing them,[2] though they are also often distributed, such as
when large portions of games are written in a scripting language. In many implementations a script or portions of
one may be executed interactively on a command line.

History
Early mainframe computers (in the 1950s) were non-interactive, instead using batch processing. IBM's Job Control
Language (JCL) is the archetype of languages used to control batch processing.
The first interactive shells were developed in the 1960s to enable remote operation of the first time-sharing systems,
and these used shell scripts, which controlled running computer programs within a computer program, the shell.
Calvin Mooers in his TRAC language is generally credited with inventing command substitution, the ability to
embed commands in scripts that when interpreted insert a character string into the script. Multics calls these active
functions. Louis Pouzin wrote an early processor for command scripts called RUNCOM for CTSS around 1964.
Stuart Madnick at MIT wrote a scripting language for IBM's CP/CMS in 1966. He originally called this processor
COMMAND, later named EXEC. Multics included an offshoot of CTSS RUNCOM, also called RUNCOM. EXEC
was eventually replaced by EXEC 2 and REXX.
Languages such as Tcl and Lua were specifically designed as general purpose scripting languages that could be
embedded in any application. Other languages such as Visual Basic for Applications (VBA) provided strong
integration with the automation facilities of an underlying system. Embedding of such general purpose scripting
languages instead of developing a new language for each application also had obvious benefits, relieving the
application developer of the need to code a language translator from scratch and allowing the user to apply skills
learned elsewhere.
Some software incorporates several different scripting languages. Modern web browsers typically provide a
language for writing extensions to the browser itself, and several standard embedded languages for controlling the
browser, including JavaScript (a dialect of ECMAScript) or XUL.

Types of scripting languages

Glue languages
Scripting is often contrasted with system programming, as in Ousterhout's dichotomy or "programming in the large
and programming in the small". In this view, scripting is particularly glue code, connecting system components, and
a language specialized for this purpose is a glue language. Pipelines and shell scripting are archetypal examples of
glue languages, and Perl was initially developed to fill this same role. Web development can be considered a use of

http://en.wikipedia.org/w/index.php?title=Semantics
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Interpreter_%28computing%29
http://en.wikipedia.org/w/index.php?title=Bytecode
http://en.wikipedia.org/w/index.php?title=Compiled_language
http://en.wikipedia.org/w/index.php?title=End-user_development
http://en.wikipedia.org/w/index.php?title=End-user_development
http://en.wikipedia.org/w/index.php?title=Memory_management
http://en.wikipedia.org/w/index.php?title=Mainframe_computer
http://en.wikipedia.org/w/index.php?title=Batch_processing
http://en.wikipedia.org/w/index.php?title=Job_Control_Language
http://en.wikipedia.org/w/index.php?title=Job_Control_Language
http://en.wikipedia.org/w/index.php?title=Shell_%28computing%29
http://en.wikipedia.org/w/index.php?title=Time-sharing
http://en.wikipedia.org/w/index.php?title=Shell_scripts
http://en.wikipedia.org/w/index.php?title=Calvin_Mooers
http://en.wikipedia.org/w/index.php?title=TRAC_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Multics
http://en.wikipedia.org/w/index.php?title=Louis_Pouzin
http://en.wikipedia.org/w/index.php?title=Compatible_Time_Sharing_System
http://en.wikipedia.org/w/index.php?title=Stuart_Madnick
http://en.wikipedia.org/w/index.php?title=CP/CMS
http://en.wikipedia.org/w/index.php?title=CMS_EXEC
http://en.wikipedia.org/w/index.php?title=CMS_EXEC
http://en.wikipedia.org/w/index.php?title=EXEC_2
http://en.wikipedia.org/w/index.php?title=REXX
http://en.wikipedia.org/w/index.php?title=Tcl
http://en.wikipedia.org/w/index.php?title=Lua_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Visual_Basic_for_Applications
http://en.wikipedia.org/w/index.php?title=Web_browser
http://en.wikipedia.org/w/index.php?title=JavaScript
http://en.wikipedia.org/w/index.php?title=ECMAScript
http://en.wikipedia.org/w/index.php?title=XUL
http://en.wikipedia.org/w/index.php?title=System_programming
http://en.wikipedia.org/w/index.php?title=Ousterhout%27s_dichotomy
http://en.wikipedia.org/w/index.php?title=Programming_in_the_large_and_programming_in_the_small
http://en.wikipedia.org/w/index.php?title=Programming_in_the_large_and_programming_in_the_small
http://en.wikipedia.org/w/index.php?title=Glue_code
http://en.wikipedia.org/w/index.php?title=Web_development

Scripting language 136

glue languages, interfacing between a database and web server. The characterization of glue languages as scripting
languages is ambiguous, however, as if a substantial amount of logic is part of the "glue" code, it is better
characterized as simply another software component.
A glue language is a programming language (usually an interpreted scripting language) that is designed or suited for
writing glue code – code to connect software components. They are especially useful for writing and maintaining:
•• Custom commands for a command shell
•• Smaller programmes than those that are better implemented in a compiled language
•• "Wrapper" programmes for executables, like a batch file that moves or manipulates files and does other things

with the operating system before or after running an application like a word processor, spreadsheet, data base,
assembler, compiler, etc.

•• Scripts that may change
• Rapid prototypes of a solution eventually implemented in another, usually compiled, language.
Glue language examples:
•• Erlang
• Unix Shell scripts (ksh, csh, bash, sh and others)
• Windows PowerShell
•• ecl
•• DCL
•• Scheme
•• JCL
•• m4
•• VBScript
• JScript and JavaScript
•• AppleScript
•• Python
•• Ruby
•• Lua
•• Tcl
•• Perl
•• PHP
•• Pure
•• REXX
•• XSLT
Macro languages exposed to operating system or application components can serve as glue languages. These include
Visual Basic for Applications, WordBasic, LotusScript, CorelScript, PerfectScript, Hummingbird Basic,
QuickScript, SaxBasic, and WinWrap Basic. Other tools like awk can also be considered glue languages, as can any
language implemented by an ActiveX WSH engine (VBScript, JScript and VBA by default in Windows and
third-party engines including implementations of Rexx, Perl, Tcl, Python, XSLT, Ruby, Delphi, &c). A majority of
applications can access and use operating system components via the object models or its own functions.
Other devices like programmable calculators may also have glue languages; the operating systems of PDAs such as
Windows CE may have available native or third-party macro tools that glue applications together, in addition to
implementations of common glue languages—including Windows NT, MS-DOS and some Unix shells, Rexx, PHP,
and Perl. Depending upon the OS version, WSH and the default script engines (VBScript and JScript) are available.
Programmable calculators can be programmed in glue languages in three ways. For example, the Texas Instruments
TI-92, by factory default can be programmed with a command script language. Inclusion of the scripting and glue
language Lua in the TI-NSpire series of calculators could be seen as a successor to this. The primary on-board

http://en.wikipedia.org/w/index.php?title=Database
http://en.wikipedia.org/w/index.php?title=Web_server
http://en.wikipedia.org/w/index.php?title=Interpreter_%28computing%29
http://en.wikipedia.org/w/index.php?title=Glue_code
http://en.wikipedia.org/w/index.php?title=Software_component
http://en.wikipedia.org/w/index.php?title=Rapid_application_development
http://en.wikipedia.org/w/index.php?title=Erlang_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Unix
http://en.wikipedia.org/w/index.php?title=Shell_script
http://en.wikipedia.org/w/index.php?title=Korn_shell
http://en.wikipedia.org/w/index.php?title=C_shell
http://en.wikipedia.org/w/index.php?title=Bash_%28Unix_shell%29
http://en.wikipedia.org/w/index.php?title=Bourne_shell
http://en.wikipedia.org/w/index.php?title=PowerShell
http://en.wikipedia.org/w/index.php?title=ECL_programming_language
http://en.wikipedia.org/w/index.php?title=DIGITAL_Command_Language
http://en.wikipedia.org/w/index.php?title=Scheme_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Job_Control_Language
http://en.wikipedia.org/w/index.php?title=M4_%28computer_language%29
http://en.wikipedia.org/w/index.php?title=VBScript
http://en.wikipedia.org/w/index.php?title=JScript
http://en.wikipedia.org/w/index.php?title=JavaScript
http://en.wikipedia.org/w/index.php?title=AppleScript
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Ruby_programming_language
http://en.wikipedia.org/w/index.php?title=Lua_programming_language
http://en.wikipedia.org/w/index.php?title=Tcl
http://en.wikipedia.org/w/index.php?title=Perl
http://en.wikipedia.org/w/index.php?title=PHP
http://en.wikipedia.org/w/index.php?title=Pure_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=REXX
http://en.wikipedia.org/w/index.php?title=XSLT
http://en.wikipedia.org/w/index.php?title=Macro_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Visual_Basic_for_Applications
http://en.wikipedia.org/w/index.php?title=WordBasic
http://en.wikipedia.org/w/index.php?title=LotusScript
http://en.wikipedia.org/w/index.php?title=CorelScript
http://en.wikipedia.org/w/index.php?title=PerfectScript
http://en.wikipedia.org/w/index.php?title=SaxBasic
http://en.wikipedia.org/w/index.php?title=WinWrap_Basic
http://en.wikipedia.org/w/index.php?title=Awk
http://en.wikipedia.org/w/index.php?title=ActiveX
http://en.wikipedia.org/w/index.php?title=Object_model
http://en.wikipedia.org/w/index.php?title=Texas_Instruments
http://en.wikipedia.org/w/index.php?title=TI-92
http://en.wikipedia.org/w/index.php?title=Lua_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=TI-NSpire

Scripting language 137

high-level programming languages of most graphing calculators (most often Basic variants, sometimes Lisp
derivatives, and more uncommonly, C derivatives) in many cases can glue together calculator functions—such as
graphs, lists, matrices, etc. Third-party implementations of more comprehensive Basic version that may be closer to
variants listed as glue languages in this article are available—and attempts to implement Perl, Rexx, or various
operating system shells on the TI and HP graphing calculators are also mentioned. PC-based C cross-compilers for
some of the TI and HP machines used in conjunction with tools that convert between C and Perl, Rexx, awk, as well
as shell scripts to Perl, VBScript to and from Perl make it possible to write a programme in a glue language for
eventual implementation (as a compiled programme) on the calculator.

Job control languages and shells
Main article: Shell script
A major class of scripting languages has grown out of the automation of job control, which relates to starting and
controlling the behavior of system programs. (In this sense, one might think of shells as being descendants of IBM's
JCL, or Job Control Language, which was used for exactly this purpose.) Many of these languages' interpreters
double as command-line interpreters such as the Unix shell or the MS-DOS COMMAND.COM. Others, such as
AppleScript offer the use of English-like commands to build scripts.

GUI scripting
With the advent of graphical user interfaces, a specialized kind of scripting language emerged for controlling a
computer. These languages interact with the same graphic windows, menus, buttons, and so on that a human user
would. They do this by simulating the actions of a user. These languages are typically used to automate user actions.
Such languages are also called "macros" when control is through simulated key presses or mouse clicks.
These languages could in principle be used to control any GUI application; but, in practice their use is limited
because their use needs support from the application and from the operating system. There are a few exceptions to
this limitation. Some GUI scripting languages are based on recognizing graphical objects from their display screen
pixels. These GUI scripting languages do not depend on support from the operating system or application.

Application-specific languages
Many large application programs include an idiomatic scripting language tailored to the needs of the application
user. Likewise, many computer game systems use a custom scripting language to express the programmed actions of
non-player characters and the game environment. Languages of this sort are designed for a single application; and,
while they may superficially resemble a specific general-purpose language (e.g. QuakeC, modeled after C), they
have custom features that distinguish them. Emacs Lisp, while a fully formed and capable dialect of Lisp, contains
many special features that make it most useful for extending the editing functions of Emacs. An application-specific
scripting language can be viewed as a domain-specific programming language specialized to a single application.

Extension/embeddable languages
A number of languages have been designed for the purpose of replacing application-specific scripting languages by
being embeddable in application programs. The application programmer (working in C or another systems language)
includes "hooks" where the scripting language can control the application. These languages may be technically
equivalent to an application-specific extension language but when an application embeds a "common" language, the
user gets the advantage of being able to transfer skills from application to application. A more generic alternative is
simply to provide a library (often a C library) that a general-purpose language can use to control the application,
without modifying the language for the specific domain.
JavaScript began as and primarily still is a language for scripting inside web browsers; however, the standardization
of the language as ECMAScript has made it popular as a general purpose embeddable language. In particular, the

http://en.wikipedia.org/w/index.php?title=Cross-compilers
http://en.wikipedia.org/w/index.php?title=Shell_script
http://en.wikipedia.org/w/index.php?title=Job_control
http://en.wikipedia.org/w/index.php?title=Job_Control_Language
http://en.wikipedia.org/w/index.php?title=Command-line_interpreter
http://en.wikipedia.org/w/index.php?title=Unix_shell
http://en.wikipedia.org/w/index.php?title=COMMAND.COM
http://en.wikipedia.org/w/index.php?title=AppleScript
http://en.wikipedia.org/w/index.php?title=Macro_%28computer_science%29%23Keyboard_and_mouse_macros
http://en.wikipedia.org/w/index.php?title=Operating_system
http://en.wikipedia.org/w/index.php?title=Pixel
http://en.wikipedia.org/w/index.php?title=Computer_game
http://en.wikipedia.org/w/index.php?title=Non-player_character
http://en.wikipedia.org/w/index.php?title=QuakeC
http://en.wikipedia.org/w/index.php?title=Emacs_Lisp
http://en.wikipedia.org/w/index.php?title=Lisp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Domain-specific_programming_language
http://en.wikipedia.org/w/index.php?title=Web_browser
http://en.wikipedia.org/w/index.php?title=ECMAScript

Scripting language 138

Mozilla implementation SpiderMonkey is embedded in several environments such as the Yahoo! Widget Engine.
Other applications embedding ECMAScript implementations include the Adobe products Adobe Flash
(ActionScript) and Adobe Acrobat (for scripting PDF files).
Tcl was created as an extension language but has come to be used more frequently as a general purpose language in
roles similar to Python, Perl, and Ruby. On the other hand, Rexx was originally created as a job control language, but
is widely used as an extension language as well as a general purpose language. Perl is a general-purpose language,
but had the Oraperl (1990) dialect, consisting of a Perl 4 binary with Oracle Call Interface compiled in. This has
however since been replaced by a library (Perl Module), DBD::Oracle [3].[4][5]

Other complex and task-oriented applications may incorporate and expose an embedded programming language to
allow their users more control and give them more functionality than can be available through a user interface, no
matter how sophisticated. For example, Autodesk Maya 3D authoring tools embed the MEL scripting language, or
Blender which uses Python to fill this role.
Some other types of applications that need faster feature addition or tweak-and-run cycles (e.g. game engines) also
use an embedded language. During the development, this allows them to prototype features faster and tweak more
freely, without the need for the user to have intimate knowledge of the inner workings of the application or to rebuild
it after each tweak (which can take a significant amount of time). The scripting languages used for this purpose range
from the more common and more famous Lua and Python to lesser-known ones such as AngelScript and Squirrel.
Ch is another C compatible scripting option for the industry to embed into C/C++ application programs.

References
[1] Programming is Hard, Let's Go Scripting... (http:/ / www. perl. com/ pub/ 2007/ 12/ 06/ soto-11. html), Larry Wall, December 6, 2007
[2] IEEE Computer, 2008, In praise of scripting (http:/ / www. cse. wustl. edu/ ~loui/ praiseieee. html), Ronald Loui author
[3] https:/ / metacpan. org/ module/ DBD::Oracle
[4] Oraperl (https:/ / metacpan. org/ module/ Oraperl), CPAN]
[5] Perl (http:/ / www. orafaq. com/ wiki/ Perl), Underground Oracle FAQ

External links
• Patterns for Scripted Applications (https:/ / web. archive. org/ web/ 20041010125419/ www. doc. ic. ac. uk/ ~np2/

patterns/ scripting/) at the Wayback Machine (archived October 10, 2004)

http://en.wikipedia.org/w/index.php?title=Mozilla
http://en.wikipedia.org/w/index.php?title=SpiderMonkey_%28JavaScript_engine%29
http://en.wikipedia.org/w/index.php?title=Yahoo%21_Widget_Engine
http://en.wikipedia.org/w/index.php?title=Adobe_Systems
http://en.wikipedia.org/w/index.php?title=Adobe_Flash
http://en.wikipedia.org/w/index.php?title=ActionScript
http://en.wikipedia.org/w/index.php?title=Adobe_Acrobat
http://en.wikipedia.org/w/index.php?title=PDF
http://en.wikipedia.org/w/index.php?title=Tcl
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Perl
http://en.wikipedia.org/w/index.php?title=Ruby_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Rexx
http://en.wikipedia.org/w/index.php?title=Perl
http://en.wikipedia.org/w/index.php?title=Oracle_Call_Interface
https://metacpan.org/module/DBD::Oracle
http://en.wikipedia.org/w/index.php?title=Autodesk_Maya
http://en.wikipedia.org/w/index.php?title=Autodesk_Maya%23Mel_scripting
http://en.wikipedia.org/w/index.php?title=Blender_%28software%29
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Game_Engine
http://en.wikipedia.org/w/index.php?title=Lua_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=AngelScript
http://en.wikipedia.org/w/index.php?title=Squirrel_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Ch_%28computer_programming%29
http://www.perl.com/pub/2007/12/06/soto-11.html
http://en.wikipedia.org/w/index.php?title=Larry_Wall
http://www.cse.wustl.edu/~loui/praiseieee.html
http://en.wikipedia.org/w/index.php?title=Ronald_Loui
https://metacpan.org/module/DBD::Oracle
https://metacpan.org/module/Oraperl
http://www.orafaq.com/wiki/Perl
https://web.archive.org/web/20041010125419/www.doc.ic.ac.uk/~np2/patterns/scripting/
https://web.archive.org/web/20041010125419/www.doc.ic.ac.uk/~np2/patterns/scripting/
http://en.wikipedia.org/w/index.php?title=Wayback_Machine

Article Sources and Contributors 139

Article Sources and Contributors
Computer programming Source: http://en.wikipedia.org/w/index.php?oldid=608596926 Contributors: *drew, 1exec1, 206.26.152.xxx, 209.157.137.xxx, 64.24.16.xxx, 84user,
9258fahsflkh917fas, A.amitkumar, ABF, AGK, AKGhetto, AbstractClass, Acalamari, Acdx, Acroterion, AdamCox9, Adrignola, Adw2000, Aeram16, Aeternus, AgentCDE, Ahmlmh,
Ahoerstemeier, Aitias, Akanemoto, Al Lemos, Alan Liefting, AlanH, Alansohn, Alberto Orlandini, Alex.chris111, Alex.g, AlistairMcMillan, AllCalledByGod, Alyssa3467, Amiodarone,
Amire80, Anbu121, Ancheta Wis, Andonic, Andrejj, Andres, AndrewHowse, Andrewman327, Andrewpmk, Andy Dingley, Angrysockhop, AnnaFrance, Antonielly, Antonio Lopez, AquaFox,
Arnabatcal, ArnoldReinhold, Arvindn, Asijut, AtticusX, Auroranorth, Avoided, Awzrenn1, BD2412, Bakabaka, Banaticus, Bangsanegara, Bazonka, Beanztr, Betterworld, Bevo, BiT, Bigk105,
Billiam1185, Blackworld2005, Bluemoose, Bobo192, Bonadea, Bookofjude, Bootedcat, Boson, Bougainville, Breadbaker444, Brianga, Brichard12, Brighterorange, Brother Dysk, Bubba hotep,
Bucephalus, BurntSky, Butterflylunch, C.Fred, C550456, CRGreathouse, Caltas, Can't sleep, clown will eat me, CanadianLinuxUser, Cander0000, Caninja, Capi, Capi crimm, Capitalismojo,
Capricorn42, Captain Disdain, Centrx, Cflm001, Cgmusselman, CharlesC, CharlotteWebb, Chazcag, Chirp Cricket, Chocolateboy, Chovain, ChrisGualtieri, ChrisLoosley, Christopher Agnew,
Christopher Fairman, Chriswiki, Chuck369, Ciaccona, Clarkcj12, Closedmouth, Cmtam922, Cnilep, Cnkids, Colonies Chris, Cometstyles, Compsim, Connorthejones, Conversion script,
Correogsk, Crazytales, Cstlarry, Curps, Curvers, Cybercobra, Cypherquest, CzarB, DARTH SIDIOUS 2, DMacks, DVD R W, Da phenom, Daekharel, Damian Yerrick, Damieng, DanP, Danakil,
Dante Alighieri, Darkwind, Dasari12, Daverose 33, Davey-boy-10042969, DavidCary, DavidLevinson, Davidwil, Dawnseeker2000, Daydreamer302000, Dbfirs, Dcljr, Deepakr, Dekisugi,
DerHexer, Derek farn, Deryck Chan, Dfmclean, Dialectric, Diberri, Diego Moya, Digitize, Discospinster, Dkasak, Doc9871, Dominic7848, Don4of4, Donald Albury, Donhalcon, Donner60,
DoorsAjar, DoorsRecruiting.com, DotHectate, Dougofborg, Downtownee, Dravir5, Dreth, Drmies, Drphilharmonic, Dureo, Dusto4, Dylan Lake, Dysprosia, EAderhold, ERcheck, Ed Poor,
Edderso, Editor12345678901, Edward, Edward Z. Yang, Eeekster, Eiwot, El C, ElAmericano, Elektrik Shoos, Elendal, Elf, Elkman, Emca26, Emorr280, Emperorbma, Epbr123, Ephidel, Epolk,
Ericbeg, Essexmutant, Excirial, Extremist, F41t3r, Fakhr245, Falcon Kirtaran, Falcon8765, Fazdabest, Fazilati, Femto, Fg, Fgnievinski, Fraggle81, Fratrep, Frecklefoot, FreplySpang, Frosted14,
FunPika, Furrykef, Fvw, GSI Webpage, Galoubet, Gamernotnerd, Gandalf61, Garik, Gary2863, Garzo, GeorgeAhad, GeorgeBills, Geremy659, Ghewgill, Ghyll, Giftlite, Gildos, Gilliam,
Glacialfox, Glass Tomato, Gogo Dodo, GoodDamon, Goodvac, Goooogler, Gploc, Gracenotes, GraemeL, Graham87, Granpire Viking Man, GrantWishes, Gregsometimes, Grison, Grouf,
Grouphardev, Guaka, Guanaco, Gwernol, Gökhan, Habbo sg, Hadal, Hairy Dude, Hanberke, Handbuddy, Hannes Hirzel, Happyisenough, Harvester, Headbomb, Helpmehelpmehelpme,
Heltzgersworld, Helworld, Henry Flower, Hermione1980, Hernan mvs, Heron, Heymid, Hipocrite, Hustlestar4, Iamjakejakeisme, Igoldste, Ikanreed, Ikseevon, Iliketubesox, Imroy,
Inanygivenhole, Intgr, InvertRect, Inzy, IronGargoyle, Isaac Oyelowo, Iuliatoyo, Ivan Štambuk, Ixfd64, J. M., J.delanoy, J3ff, JLaTondre, Jack Greenmaven, Jackal2323, Jackol, Jacob.jose,
Jagged 85, JamesMoose, Jan1nad, Jarble, Jason4789, Jason5ayers, Jatos, Jaysweet, Jedediah Smith, Jeff02, Jeffrd10, Jeremylawless, Jim1138, Jmundo, Joedaddy09, Joel B. Lewis,
Johnpfmcguire, Jojalozzo, Jojhutton, Josh1billion, JoshCarter15, Joshua.thomas.bird, Josve05a, Jpbowen, Jph, Jschnur, Jwestbrook, Jwh335, K.Nevelsteen, KHaskell, KJS77, KMurphyP, Kaare,
Keilana, Kenny sh, Kglavin, Kifcaliph, Kkartik100, Klutzy, Kmg90, Kmurray24, Konstable, Laurusnobilis, Lee J Haywood, Leedeth, Leibniz, LeinadSpoon, Lemlwik, Lerdsuwa, Levineps,
Lgrover, Liamlearns, Lieutenant of Melkor, Lightmouse, LilHelpa, LittleOldMe, LittleOldMe old, Loadmaster, Logan, Logical Gentleman, Loren.wilton, Lorenz JJ, Luckdao, Luk, Lumos3, Luna
Santin, Lysander89, M4573R5H4K3, M4gnum0n, MER-C, MacMed, Macrakis, Macy, MadScientistX11, Magioladitis, Mahanga, Majilis, Marek69, Mark Renier, Markoschuetz, Maroux,
Marquez, Martarius, Maryreid, Materialscientist, Matthew, Matthew Stannard, Mauler90, Maury Markowitz, Maximaximax, Mdd, Mean as custard, Melody Lavender, Mentifisto, Mesimoney,
Metalhead816, Mets501, MiCovran, Michael Drüing, Michael93555, MichaelBillington, Michal Jurosz, MikeDogma, Mindmatrix, Minghong, Minimac, Minna Sora no Shita, Mipadi,
Mjchonoles, Moder1235, Moosehadley, MountainRail, Mr Stephen, MrFish, MrOllie, Msikma, MusikAnimal, Mustafasr, Mwanner, Mxn, NERIUM, NHRHS2010, Nagy, Nanshu, Narayanese,
Nbak, Neilc, Nephtes, Nertzy, Netkinetic, Netsnipe, Neurovelho, NewEnglandYankee, Newyorkadam, NickW557, Nigholith, Nikai, Nilesh G.Jadhav, Ningauble, Nk, Northamerica1000,
Notheruser, Nothingofwater, Nubiatech, Nuno Tavares, Nwbeeson, O.Koslowski, OSXfan, Obli, Ohnoitsjamie, Optim, Optimist on the run, Orangutan, Orlady, Oxymoron83, P.jansson, PLCF,
Paperfork, Paul D. Buck, Paxse, Pcu123456789, Peberdah, Pedro, Pharaoh of the Wizards, Philip Trueman, PhilipO, PhnomPencil, Phoe6, Piet Delport, Pilotguy, Pimpedshortie99, Pine,
Pinethicket, Pkalkul, Plugwash, Pm2214, Poco a poco, Pointillist, Poor Yorick, Porterjoh, Poweroid, Prashanthellina, Pratyya Ghosh, Premvvnc, Prgrmr@wrk, PrimeHunter, PrisonerOfIce,
Promooex, Pt9 9, Qasimb, Qirex, Qrex123, Quadell, RA0808, RCX, Ragib, Rajnishbhatt, Rama's Arrow, Ranak01, Rasmus Faber, RaveTheTadpole, Rawling, RedWolf, RedWordSmith, RexNL,
Ricky15233, Rl, Rmayo, Robert Bond, Robert L, Robert Merkel, Robertinventor, Robin klein, Rodolfo miranda, Ronald mathw, Ronz, Rrelf, Rror, Rsg, Rsgeorge172, Rsrikanth05, Ruud Koot,
Rwalker, Rwwww, S.K., S0ulfire84, SDC, Salv236, Sammylor095, Sanbeg, Sardanaphalus, Sasajid, Satansrubberduck, SchfiftyThree, SchreyP, Schrödinger's Neurotoxin, Schwarzbichler,
SciAndTech, Scoop Dogy, Scwlong, Sean7341, Senator Palpatine, Seyda, Sgr927, Shahidsidd, Shanak, ShaunBebbers, Shirik, Silvrous, Simeon, SimonEast, Skizzik, Skr15081997, SkyWalker,
Smalljim, Someone42, SpacemanSpiff, Splang, Starionwolf, Steel1943, SteinbDJ, SteloKim, Stephen Gilbert, Stephenb, Stephenbooth uk, Steven Zhang, Studerby, Suisui, SunCountryGuy01,
Surfer43, Suruena, Svemir, Tablizer, TakuyaMurata, Tanalam, Tangent747, TarkusAB, Taylor Bohl, Techman224, Tedickey, Tedlin01, Teknopup, Teo64x, TestPilot, Texture, Tgeairn, The
Divine Fluffalizer, The Herald, The Mighty Clod, The Thing That Should Not Be, The Transhumanist, The Transhumanist (AWB), TheIronWill, TheRanger, TheTito, Thebestofall007,
Thedjatclubrock, Thedp, Thingg, Thisma, Tide rolls, Tifego, Timhowardriley, Tnxman307, Tobby72, Tobias Bergemann, Tom2we, TomasBat, TonyClarke, Touch Of Light, Tpbradbury,
Trusilver, Turnstep, Tushar.kute, TuukkaH, Tweak232, Twest2665, Twsx, Tysto, Tyw7, Udayabdurrahman, Ukexpat, Umofomia, Uncle Dick, Unforgettableid, Uniquely Fabricated, Unknown
Interval, Urville86, Userabc, Vanished User 8a9b4725f8376, Vanished user 9i39j3, Vasywriter, Versus22, Vipinhari, Viriditas, Vishsangale, Vladimer663, WBP Boy, Wadamja, WadeSimMiser,
Wangi, Werieth, Whazzups, Whiskey in the Jar, Wickorama, Wiki alf, WikiMichel, Wikiklrsc, Wikipelli, Wilku997, Wing (usurped), Witchwooder, Wizard191, Worldeng, Wre2wre, Wtf242,
Wtmitchell, Wwagner, Xagyg creator programmer, Xavier Combelle, Yellobelly64, YellowMonkey, Yintan, Yk Yk Yk, Youssefsan, Yoyosolodolocreolo, Yummifruitbat, Zeboober, Zkac050,
Zoul1380, Zsinj, Zvn, Σ, 1363 anonymous edits

History of programming languages Source: http://en.wikipedia.org/w/index.php?oldid=608616865 Contributors: 1exec1, Abcarter, Acaciz, Alexanderaltman, Aljullu, Altenmann, Ancheta
Wis, Andrzejsliwa, Antic-Hay, Arch dude, Arohanui, Ashawley, B3tamike, Banus, Beland, Ben Standeven, Bgeron, Capricorn42, Cassowary, CharlesGillingham, Chris the speller,
ChrisGualtieri, Christophe.billiottet, Clarince63, Cleme263, Cnilep, DEddy, Danakil, Denbosch, DiarmuidPigott, Diego Moya, Discospinster, Djsasso, Duncandewar, Dylan Lake, Entropy,
Epicgenius, Excirial, Firsfron, Funandtrvl, Fuzheado, Gerweck, Gf uip, Ghettoblaster, GraemeL, Greenrd, Griffin700, Hairy Dude, Happysailor, Hossein bardareh, Hotcrocodile, Huffers,
ISTB351, IanOsgood, Icey, Id1337x, Indeterminate, JLaTondre, JMK, Jack Greenmaven, Jasssonpet, Jim1138, John Vandenberg, Jost Riedel, Jpbowen, Jrgdelrisco, Jrm2007, Juhovuori, KevM,
Khazar2, Kooku10, KoshVorlon, Kpengboy, Lakinekaki, Lambiam, Logan, Lulu of the Lotus-Eaters, Macaldo, Mahanga, Malcolmxl5, Marc Mongenet, Mdd, Michael Fourman, Moe Epsilon,
Mojo Hand, Mortense, Mr700, Nibios, Noodleki, NumberByColors, Nvourvachis, Oxymoron83, Pankaj.nith, Paulo torrens, Pgan002, Pgr94, PhilKnight, PhnomPencil, Pi, Pwjb, Quinntaylor, R.
S. Shaw, Raees Iqbal, RedWolf, Reeve, Rheostatik, Rp, Rursus, Ruud Koot, Rwwww, Sabre23t, Sammi84, Sceptre, Schmettow, Sietse Snel, Simmonsandrew75, Sinbadbuddha, Skizzik,
Skolastika, Skäpperöd, Sligocki, Soxey6, Steve2011, Szyslak, T-bonham, Tablizer, The Thing That Should Not Be, Tommy2010, Tony Sidaway, Torc2, Totlmstr, UdayanBanerjee, Ugog
Nizdast, Ukexpat, Valodzka, Vb4ever, Wikid77, Wikiklrsc, Wikipelli, Yuriz, Zawersh, Zoicon5, 284 anonymous edits

Comparison of programming languages Source: http://en.wikipedia.org/w/index.php?oldid=607673620 Contributors: AdultSwim, Alik Kirillovich, Andreas Kaufmann, Bazonka, Bender235,
Bh3u4m, BiT, Btx40, Bwoebi, Caesura, Cedar101, Christopher Kraus, Cjullien, Classicalecon, Coren, Crashie, Cybercobra, Damian Yerrick, DanBishop, EdwardH, Erik Garrison, Ethically
Yours, Frietjes, Garyzx, Ghettoblaster, Giftlite, Hans Bauer, IanOsgood, J.delanoy, Jakarr, Jncraton, Jonathan de Boyne Pollard, Jwmwalrus, Kaly J., Kubanczyk, LilHelpa, Logicalvue,
LuoShengli, Magioladitis, Mandarax, Maxim, Michaeldadmum, Mike92591, MizardX, Mmernex, Mr1278, Mrhmouse, Murray Langton, Neuralwarp, NevilleDNZ, Niout, OlavN, Oli Filth, Pavel
Senatorov, Philipolson, RCX, Regenspaziergang, Robert Einhorn, Ronaldo Aves, Rwessel, Schneidr, Sekelsenmat, Short Circuit, Slippyd, Spoon!, Sun Creator, The Thing That Should Not Be,
Tony Sidaway, Torc2, Txt.file, Ty8inf, Vadmium, Wiki Tesis, Woohookitty, Xqsd, Ysangkok, Zhaohan, Zzo38, 颓 猥 翁, 은빛냇물, 633 anonymous edits

Computer program Source: http://en.wikipedia.org/w/index.php?oldid=606564295 Contributors: 10metreh, 16@r, ABF, AKGhetto, AVRS, Abdullais4u, Adrianwn, AdultSwim,
Ahoerstemeier, Airada, Alansohn, Aldaron, Aldie, Ale jrb, AlefZet, Aleksd, Alisha0512, AlistairMcMillan, Allan McInnes, Anaxial, Ancheta Wis, Andre Engels, Andrejj, Andres, Angrytoast,
Animum, Anja98, Ans-mo, Antandrus, Arthena, Artichoker, Ash211, Atlant, Auric, Barkingdoc, Barts1a, Bcastell, Behnam8419, Bfinn, Bhadani, Blainster, Bob1960evens, Boothy443,
Born2cycle, Bornhj, Bryan Derksen, Callanecc, Can't sleep, clown will eat me, CanadianLinuxUser, Cap'n Refsmmat, CardinalDan, Carrot Lord, Cartiman, Children.of.the.Kron, Chriswiki,
Chun-hian, CommonsDelinker, Conversion script, CopperMurdoch, CurranH, Cybercobra, DARTH SIDIOUS 2, DMacks, DVdm, Danakil, Dannyruthe, David Kernow, Deliv3ranc3, Derek farn,
DexDor, Dicklyon, Diego Moya, Diptytiw, Discospinster, DonToto, Donner60, Duncharris, ERobson, ESkog, Edward, Ehheh, ElKevbo, Elassint, EncMstr, Enchanter, Epbr123, FF2010,
Fabartus, Filemon, Firemaker117, FleetCommand, Flyer22, Frencheigh, Frietjes, Frosted14, Funandtrvl, Furrykef, Gaga654, Gaius Cornelius, Ghyll, Giftlite, Greenrd, Grstain, Grunt, Guppy,
Gurchzilla, Guy Harris, Guyjohnston, HappyDog, Hoo man, HotQuantum3000, Hu12, I dream of horses, I'll suck anything, Inaaaa, Incnis Mrsi, Ipsign, IslandHopper973, Islescape, Iulianu,
JGNPILOT, Jaanus.kalde, JackLumber, Jackmatty, Jackol, JamesMoose, Jerome Kelly, Jerryobject, Jesant13, John Fader, John5678777, JohnWittle, JohnnyRush10, Jonnyapple, Josh Parris,
Josve05a, Jotomicron, Jpbowen, Jpgordon, Jusjih, K.Nevelsteen, K.lee, KANURI SRINIVAS, Karlzt, Kbh3rd, Kdakin, Keilana, KellyCoinGuy, Kenny sh, Khalid hassani, Kongr43gpen,
Kusunose, Kwekubo, Larry_Sanger, Laurens-af, Lev, Lfdder, Liberty Miller, Liempt, Lightmouse, Ligulem, Longhair, LuchoX, Lucky7654321, Lulu of the Lotus-Eaters, Luna Santin, M,
MAG1, Mac, Madhero88, Maestro magico, Magister Mathematicae, Mani1, Manop, Martijn Hoekstra, MartinRe, Martynas Patasius, Marudubshinki, Matty4123, Maximaximax, Mayur,
McGeddon, Mercer island student, Mermaid from the Baltic Sea, Metrax, Miguelfms, Mike Rosoft, Mike Van Emmerik, Mikrosam Akademija 2, Mild Bill Hiccup, Mindmatrix, Mlpkr,
MmisNarifAlhoceimi, Mohamedsayad, Mortenoesterlundjoergensen, Murray Langton, Nanshu, Nickokillah, Nikai, Nixdorf, Noctibus, Noosentaal, NovaSTL, Ohnoitsjamie, Oicumayberight,
Oliver Pereira, Onopearls, Orange Suede Sofa, OrgasGirl, Palnu, Paulkramer, Pearle, PetterBudt, Pharaoh of the Wizards, Philip Trueman, Poor Yorick, Power User, Proofreader77, Quota,
Quuxplusone, R. S. Shaw, R. fiend, Racerx11, Radarjw, Radon210, Raise exception, Raven in Orbit, Rdsmith4, RedWolf, Rich Farmbrough, Rjwilmsi, Robert123R, Roybristow, Rusty Cashman,
Ruud Koot, S.Örvarr.S, Sadi Carnot, Sae1962, Sannse, Saros136, Satellizer, Sean.hoyland, Sebbb-m, Sfahey, Shanes, SigmaEpsilon, Silver hr, SimonD, Sir Anon, Sir Nicholas de
Mimsy-Porpington, Sjö, Skizzik, SlackerMom, Slady, Slashem, Slowking Man, Smiller933, SqlPac, Stephenb, Stevertigo, Storm Rider, Subdolous, Suisui, Symphony Girl, TBloemink,
TakuyaMurata, Template namespace initialisation script, Tgeairn, Tharkowitz, The Anome, The Thing That Should Not Be, TheTechnoKid, Thecheesykid, Thegreenflashlight, Thingg,
Thumperward, TiagoTiago, Tide rolls, Timhowardriley, Timshelton114, Tobias Bergemann, Tobiasjwt, TomasBat, Tommy2010, TonyClarke, Tpbradbury, Troels Arvin, True Genius, Ukexpat,
UrbanBard, VIKIPEDIA IS AN ANUS!, Vcelloho, WJetChao, Welsh, Wereon, Wernher, Wesley, WhatamIdoing, Wiki alf, WikiDan61, Wikijens, Wikiloop, Wolfkeeper, XJaM, Xn4, Xp54321,
Yidisheryid, Yintan, Ykhwong, Yonaa, Zipircik, ZonkBB6, Zundark, Zzuuzz, 470 anonymous edits

Article Sources and Contributors 140

Programming language Source: http://en.wikipedia.org/w/index.php?oldid=608959153 Contributors: -Barry-, 10.7, 151.203.224.xxx, 16@r, 198.97.55.xxx, 199.196.144.xxx, 1exec1,
203.37.81.xxx, 212.188.19.xxx, 2988, 96.186, A. Parrot, A.amitkumar, A520, AJim, Abednigo, Abeliavsky, Abram.carolan, Acacix, Acaciz, AccurateOne, Addicted2Sanity, Ahoerstemeier,
Ahy1, Akadruid, Alansohn, Alex, AlexPlank, Alhade, Alhoori, Alksub, Allan McInnes, Alliswellthen, Altenmann, Amire80, Amitkumargarg88, AmosWolfe, Ancheta Wis, Andonic, Andre
Engels, Andres, Andylmurphy, Angela, Angusmclellan, Antonielly, Ap, Apwestern, ArmadilloFromHell, AstroNomer, Asukite, Autocratique, Avono, B4hand, Behnam, Beland, Ben Ben, Ben
Standeven, Benjaminct, Bevo, Bgwhite, Bh3u4m, BigSmoke, Bill122, BioPupil, BirgitteSB, Blaisorblade, Blanchardb, Bobblewik, Bobbygammill, Bobo192, Bonaovox, Booyabazooka, Borislav,
Brandon, Brentdax, Brianjd, Brick Thrower, Brion VIBBER, Bubba73, Burkedavis, CSProfBill, Calltech, Can't sleep, clown will eat me, CanisRufus, Capricorn42, Captain Conundrum,
Captain-n00dle, CarlHewitt, Carmichael, Carrot Lord, Catgut, Cedar101, Centrx, Charlesriver, Charlie Huggard, Chillum, Chinabuffalo, Chun-hian, Cireshoe, Ckatz, Closedmouth, Cmdodanli,
Cmichael, Cnilep, Cobaltbluetony, Cogiati, ColdFeet, Compfreak7, Conor123777, Conversion script, Cp15, Cybercobra, DBigXray, DMacks, DVD R W, Damian.rouson, Damieng, Dan128,
Danakil, Danielmask, Danim, Dave Bell, David.Monniaux, DavidHOzAu, Davidfstr, Davidpdx, Dcoetzee, DeadEyeArrow, DenisMoskowitz, DennisDaniels, DerHexer, Derek Ross, Derek farn,
Diannaa, Diego Moya, Dl2000, Dolfrog, Dominator09, Don't Copy That Floppy, Donhalcon, Doradus, DouglasGreen, DragonLord, Dreftymac, Dsimic, Dtaylor1984, Duke Ganote, Dysprosia,
EJF, ESkog, EagleOne, Edward, Edward301, Eivind F Øyangen, ElAmericano, Elembis, EncMstr, EngineerScotty, Epbr123, Esap, Evercat, Everyking, Ewlyahoocom, Ezrakilty, Fantom,
Faradayplank, Fastdrummer, Fayt82, Fieldday-sunday, Finlay McWalter, Fl, Foobah, Forderud, Four Dog Night, Fplay, Fraggle81, François Robere, Fredrik, Friedo, Fubar Obfusco, Funandtrvl,
FvdP, Gaius Cornelius, Galoubet, Gazpacho, Gbruin, Georg Peter, Giftlite, Gilliam, Ginsuloft, Giorgios (usurped), Gioto, Goodgerster, Gploc, Green caterpillar, GregAsche, Grin, Grouphardev,
Gurch, Gutza, Guy Harris, Gwicke, Hadal, Hairy Dude, Hammer1980, Hans Adler, HarisM, Harmil, Hayabusa future, Headbomb, HeikoEvermann, HenryLi, Hfastedge, HopeChrist, Hoziron,
Hut 8.5, Hyad, INkubusse, IanOsgood, Icey, Ideogram, Ilario, Imran, Inaaaa, Indon, Infinoid, Iridescent, It Is Me Here, Iuliatoyo, Iwantitalllllllll, Ixfd64, J.delanoy, J991, JMSwtlk, JPINFV,
JaK81600, JanSuchy, Jarble, Jason5ayers, Jaxad0127, Jaxl, Jeffrey Mall, Jeltz, Jeronimo, Jerryobject, Jesant13, Jguy, Jim1138, Jitse Niesen, Jj137, Johann Wolfgang, John lindgren, John254,
JohnLai, JohnWittle, Jonesey95, Jonik, Jorend, Jossi, Joyous!, Jpbowen, Jpk, Jprg1966, Jschnur, JulesH, Juliancolton, Jusjih, Jwissick, K.lee, K12308025, KHaskell, KSmrq, KTC, Karingo,
Karthikndr, Katieh5584, Kbdank71, Kbh3rd, Kedearian, Ketiltrout, Khalid Mahmood, Kickstart70, Kiminatheguardian, Kimse, Kinema, Klasbricks, KnowledgeOfSelf, Knyf, Komarov om,
Kooginup, Koyaanis Qatsi, Kragen, Krauss, Krawi, Kris Schnee, Krischik, Kuciwalker, Kungfuadam, Kwertii, KymFarnik, L Gottschalk, L33tminion, LC, Lagalag, Leibniz, Liao, Lightmouse,
Ligulem, LindsayH, LinguistAtLarge, Logarkh, LordCo Centre, Loriendrew, Lradrama, Lucian1900, Lucky7-phool, Lulu of the Lotus-Eaters, Luna Santin, Lupo, MER-C, MK8, Mac c, Macaldo,
Macrakis, Magnus Manske, Mahanga, Majilis, Malcolm Farmer, Malleus Fatuorum, Mangojuice, Manpreett, Marcos, Mark Renier, MarsRover, MartinHarper, MartyMcGowan, Marudubshinki,
Materialscientist, Matthew Woodcraft, Mattisse, Mav, Maxis ftw, McSly, Mccready, Mean as custard, MearsMan, MegaHasher, Mellum, Mendaliv, Merbabu, Merphant, Mesoderm, Michael
Hardy, Michael Zimmermann, Midinastasurazz, Mike Rosoft, Mild Bill Hiccup, Minesweeper, MisterCharlie, Miym, Mkdw, Monz, Mpils, Mpradeep, Mrjeff, Ms2ger, Mschel, Muro de Aguas,
Murray Langton, MusikAnimal, Mwaisberg, Mxn, Mìthrandir, N5iln, Naderi 8189, Nameneko, Nanshu, Napi, Natalie Erin, Natkeeran, NawlinWiki, Nbarth, Nbrothers, Necklace,
NewEnglandYankee, NewbieDoo, Nick125, Nikai, Nima1024, Ningauble, Nixdorf, Noctibus, Noformation, Noisy, Noldoaran, Noodleki, Noosentaal, NotQuiteEXPComplete, Nottsadol,
Novasource, Ntalamai, Nuggetboy, Nutsnbolts222, Oblivious, Ohms law, Ohnoitsjamie, Oldadamml, Oleg Alexandrov, Olmerta, Omphaloscope, OrgasGirl, Orphan Wiki, Ottershrew,
Papercutbiology, Paul August, PaulFord, Pcap, Peter, Peter Flass, Peterdjones, Pharaoh of the Wizards, Phil Sandifer, PhilKnight, Philg88, Photonique, Phyzome, Pieguy48, Piet Delport,
PlayStation 69, Poor Yorick, Pooryorick, Positron, Prolog, Ptk, Pumpie, Pwv1, Quagmire, Quiddity, Quota, Quuxplusone, Qwyrxian, RainerBlome, Raise exception, Ranafon, RayAYang,
RedWolf, Reddi, Reelrt, Reinis, RenamedUser2, Revived, RexNL, Rezonansowy, Rich Farmbrough, Rjstott, Rjwilmsi, Rlee0001, Robbe, Robert A West, Robert Skyhawk, Robo Cop, Roland2,
Romanm, Ronhjones, Roux, Royboycrashfan, Rrburke, Rursus, Rushyo, Russell Joseph McCann, Ruud Koot, S.Örvarr.S, Saccade, Sam Korn, Science History, Seanhalle, Seaphoto, SeeAnd,
Sekelsenmat, Sgbirch, Shadowjams, Shane A. Bender, Shanes, ShelfSkewed, SimonP, Simplyanil, Sjakkalle, Skytreader, Slaad, Slakr, Slashem, SmartBee, Snickel11, Sonicology,
SparsityProblem, Specs112, Speed Air Man, SpeedyGonsales, Speuler, SpuriousQ, Steel1943, Stephen B Streater, Stephenb, Stevertigo, SubSeven, Suffusion of Yellow, Suruena, Swatiri,
Swirsky, Switchercat, Systemetsys, TakuyaMurata, Tarret, Taxman, Teammm, Techman224, Tedickey, Template namespace initialisation script, Tentinator, Teval, Tewy, Tgeairn, Tgr, The
Thing That Should Not Be, TheTechFan, Thetimperson, Thniels, Thomasuniko, Thumperward, Thv, Tiddly Tom, Tide rolls, Tim Starling, Timhowardriley, Tizio, Tobias Bergemann, TomT0m,
Tomatensaft, Tony1, TonyClarke, Torc2, Toussaint, Trusilver, TuukkaH, Tysto, Ubiq, Ulric1313, Ultra two, Undeference, Useight, Usman&muzammal, Vadmium, Vahid83, Vaibhavkanwal,
Vald, VampWillow, VictorAnyakin, Victorgrigas, Vivin, Vkhaitan, Vriullop, Vsion, WAS 4.250, Waterfles, Wavelength, Wiki alf, Wiki13, Wiki4Blog, WikiTome, Wikibob, Wikibofh,
Wikisedia, Wimt, Windharp, Wlievens, Wmahan, Woohookitty, Ww, Xaosflux, Xavier Combelle, Yana209, Yath, Yk Yk Yk, Yoric, Zaheen, Zarniwoot, Zawersh, ZeWrestler, Zero1328,
Zoicon5, Zondor, ²¹², Σ, 1003 ,ئاراس نوری anonymous edits

Abstraction Source: http://en.wikipedia.org/w/index.php?oldid=605774945 Contributors: A520, Abednigo, AbstractTruth, Acdx, Aeons, Ahoerstemeier, Allan McInnes, Andre Engels, Andreas
Kaufmann, Atoll, Benc, Bluemoose, Brad7777, C5st4wr6ch, CanisRufus, CarlHewitt, Causa sui, CharlesC, Codename Lisa, Cybercobra, Daclyff, David.Monniaux, Dawidl, Diego Moya, Dnas,
Doug Bell, Dysprosia, Ellmist, Esap, Fgnievinski, FritzSolms, Gadfium, GateKeeper, Gilderien, Hans Dunkelberg, Hede2000, InYOUen0, JC Chu, JRR Trollkien, Jamelan, Jamesday, Jesse V.,
Jim1138, Jimpoz, JonHarder, Jpbowen, K.Nevelsteen, KeyStroke, Kuroi2014, Leafyplant, Libcub, Lighthill, Lotje, Luciole2013, MZMcBride, Maghnus, Maria Vargas, Mark Renier, Maurice
Carbonaro, Mblumber, Michael Hardy, MikeSchinkel, Minesweeper, Mjb, Mohamed Magdy, Montalvo, Monural plural, Mordomo, Mwoolf, Node42, O, Oleg Alexandrov, Paulo Jorge Tomé,
Pcap, Pjvpjv, Pnm, RRM, Ramu50, RedWolf, Rich Farmbrough, Rigadoun, Ru.spider, Sam Pointon, Sam Staton, SchreiberBike, Scott Ritchie, Sereine52, Shahid nx, Shawn wiki, Shervinafshar,
Shimei, Slaggart, Snuffkin, Spiel496, TakuyaMurata, Template namespace initialisation script, TeunSpaans, The Anome, Thv, Tobias Bergemann, Torfason, Treygdor, TuukkaH, VictorAnyakin,
Vonkje, Vroo, Wamiq, Wbm1058, Wik, Woohookitty, Zoicon5, 172 anonymous edits

Programmer Source: http://en.wikipedia.org/w/index.php?oldid=609111778 Contributors: 16@r, 217.98.151.xxx, 7, A Man In Black, Aan10akbar, Aatif.haider, Achraf52, AdjustShift,
Adriaan, Adv94, AgentPeppermint, Akjar13, Alansohn, Aldaron, Alphaios, Alpunin, AndrewDressel, Antandrus, Arbsn, ArmadilloFromHell, ArnoldReinhold, Artemis.Fowl.Osborn, Ary29, Asa,
Ata Sanderson, Azeri.programmer, AznAcorn, BananaFiend, Banej, Barticus88, Bdon190, Beland, Belovedfreak, Bevo, Billjoeme, Billpg, Blehfu, Bobrayner, Boofer908, Borgx, Bradtem, Brick
Thrower, BrokenSegue, C.Fred, CONFIQ, CalendarWatcher, CalumH93, Cannolis, Carbonite, CasualVisitor, Cazzchazz, CesarB, Chocorisu, Clpo13, Conversion script, Curtis23, Cybercobra,
DARTH SIDIOUS 2, DDerby, DEddy, DVD R W, DagErlingSmørgrav, Dahn, DancingPhilosopher, Dancter, Davewho2, David Biddulph, David Gerard, Davidruben, DeadEyeArrow,
Denisarona, DerHexer, Dgmjr05, Diamondland, Dipankan001, Discospinster, Dylan620, Dysprosia, EIEIO, Eaglepuffs, EgyptAlex, Emperorbma, EncMstr, Epbr123, Epicgenius, Everyking,
Evilcookies, Fadikaouk, Fidlej, Fissionfox, Fluzwup, Flyer22, Fraggle81, Frap, Frecklefoot, Fredrik, Galzigler, Geniac, Glane23, Gogo Dodo, Graham87, Greenrd, Greyhood, Gtdp, Gtstricky,
Gwern, Gwernol, H, Hadal, Hajhouse, Hallows AG, Harris7, Harvester, Havrer0, Hcobb, Hekerui, HelgeStenstrom, Hellknowz, Hereticam, Hex539, Heymid, Hfc1875, Hollak4, Hu12, Iridescent,
IronGargoyle, Ivan Štambuk, IvanLanin, Ixfd64, JForget, JLaTondre, JNW, Jaek112j, Jaka14, Jakezing, JamminBen, Jan1nad, Jarble, JasonMacker, Jatkins, Javierito92, Jay Gatsby, Jbsingh86,
Jdpipe, JeR, Jed S, Jeff G., Jeh, Joaquin008, Joaquindesalva, Jojalozzo, Joncnunn, Jsharpminor, Jérôme, K.Nevelsteen, Kaare, Kbdank71, KeithH, KeithMatthew, Kenny sh, Kkm010, Konstable,
Kostisl, Krashlandon, Ksnow, Kurniasan, Kyorosuke, L Kensington, Lalamax, LeadSongDog, Leafyplant, Lefteh, Leszek Jańczuk, Lightmouse, Liridon, Little Mountain 5, LittleOldMe, Lliberto,
Longgg johnnn?, Loomisd, MER-C, Mabdul, Makled, Mark Renier, Matbeeche, Materialscientist, Matt Crypto, Matusz, Mekong Bluesman, Metalwario, Mgiganteus1, Michael Hardy, Michael
Snow, Midgrid, Mike.lifeguard, Mild Bill Hiccup, Mindmatrix, Mountain, Moverton, MrOllie, Muckmed, MusikAnimal, Myork, Mythdon, NeonMerlin, NerdyNSK, Netoholic, Nikhilb239,
Ohnoitsjamie, Oli Filth, Olly150, Omegamormegil, OrgasGirl, Ozonew4m, PMLawrence, Park3r, Pedant17, Peiman67, Perfectblue97, Petrb, Phantomsteve, Philip Trueman, Phillabust, Piet
Delport, Piotrus, Prettydove, Prolog, Prunesqualer, Psyno, Pxtreme75, Quigabyte, Qute, R0pe-196, RA0808, Radarjw, Radiant!, RainbowOfLight, RandomAct, RandyGBrooks, Rdsmith4, Reedy,
Rich Farmbrough, Richard R White, RobertG, Romanm, Rompe, Rongrongcheng, Ruud Koot, Rwwww, Saforrest, Sajisss, Salgueiro, Sam Hocevar, SciAndTech, Shafaet, Shoessss, SimonP, Sin
Harvest, Sionus, Sjakkalle, Skittleys, Skylar Harrison, Slady, Slowking Man, Snoyes, Sooner Dave, Sorib, Starionwolf, Steel1943, Steevo714, Steven Zhang, Strmore, SyntaxError55, Tablizer,
Tagishsimon, Taohinton, Tedickey, Terrek, The Grant Guy, Tim Starling, Time3000, Timotab, Tobby72, Tojge, TomasBat, Torc2, Torla42, Tpbradbury, Turkish soldier69, UR6LAD,
Unforgettableid, User 38, Van helsing, Varundbest10, Veinor, Vendettax, Versageek, Waiwai933, Wiki alf, WikiMichel, Wikidenizen, Wikiklrsc, Wikipelli, XCC2, Xiaomao123, Yaron K.,
Yiliang, Yworo, Zayani, Zondor, Zvar, Σ, 483 anonymous edits

Language primitive Source: http://en.wikipedia.org/w/index.php?oldid=586895716 Contributors: A Stop at Willoughby, Andreas Kaufmann, Bhny, ChrisGualtieri, Diego Moya, Giraffedata,
GoingBatty, Pcap, R'n'B, SchreiberBike, Woohookitty, 6 anonymous edits

Assembly language Source: http://en.wikipedia.org/w/index.php?oldid=608280492 Contributors: 16@r, 212.188.19.xxx, 28bytes, 3Nigma, 594rk, A.R., AMRAN AL-AGHBARI, Abdull,
Accatagon, Ahoerstemeier, Ahy1, Aitias, Akamad, Akyprian, Alan d, Ale jrb, Aleph Infinity, Alex.g, Alfio, An-chan, Andonic, Andre Engels, Andres, Andy Dingley, Angela, Anger22, Angusus,
Anna Lincoln, AnnaFrance, Another-anomaly, AnthonyQBachler, Anwar saadat, Ap, Apokrif, Arbabarehman, ArchiSchmedes, Areebmajeed, Ashmoo, Athaenara, Atlant, Audriusa, Autodmc,
Backslash Forwardslash, Beefball, Beland, Ben Moore, Bender235, Beno1000, Bevo, Bfitzh2o, Bigdumbdinosaur, Bilbo1507, BillyPreset, Binrapt, Bison bloke, Blainster, Blakegripling ph,
Blashyrk, Brage, BroodKiller, Bryan Derksen, Bumm13, ButOnMethItIs, CRGreathouse, CUTKD, Can't sleep, clown will eat me, CanOfWorms, CanisRufus, Capi crimm, Capitalismojo,
Casascius, Cedar101, Chasingsol, Chatul, ChazZeromus, Cheeselet, Chester Markel, Chieffancypants, Chopin1810, Chris Chittleborough, ChrisGualtieri, Christian List, Cognoscent,
Colejohnson66, Compfreak7, Conversion script, Coolv, Cpiral, Cquarksnow, Crotalus horridus, CultureDrone, DMacks, Damian Yerrick, Daniel Santos, Darktemplar, Darrien, Dasnov,
DavidCary, Dawkcodave, Dcoetzee, Dead Horsey, DeanHarding, DekuDekuplex, Denispir, Derek Ross, Derek farn, Dexter Nextnumber, Discospinster, Dmbrunton, Doug, DouglasGreen,
Dragon DASH, Drlegendre, Dsavi.x4, Dtgm, Eagle246, Eagleal, Easyas12c, Edward, Edward.in.Edmonton, Eleolar, Elving, Emperorbma, Emuguru, Epbr123, EricR, Everyking,
EvilKeyboardCat, Evilfishy1, FDD, FallingGravity, Feezo, Femto, Ferkelparade, Filemon, Flewis, Fmiddleton, Fraggle81, François Robere, Frap, Fred Bradstadt, Frosty, Furrykef, Fuzzbox,
Gaius Cornelius, Galoubet, Galzigler, Gannimo, Garas, Geau, GermanX, Giddie, Giftlite, Giobe2000, Gioto, GoldenMeadows, Gondooley, Goodone121, Grafen, Graham87, Greenrd,
Greensburger, Gutsul, Guy Harris, Gwern, Haiviet, Hans Dunkelberg, HenkeB, Henriok, Herzleid, Hirzel, Hoo man, Hotdogger, HumphreyW, Hvn0413, IanOsgood, Inzy, ItsProgrammable,
Ixfd64, JaGa, Jack O exiled, Jacob.jose, James086, JamesBWatson, Jamesx12345, JavierMC, Jeffrey Mall, Jeh, Jerome Charles Potts, Jerryobject, Jesant13, Jiveshwar, JoeBruno, JohnCJWood,
Jorgon, Jpsowin, Jth299, Jukrat, Just Another Dan, KD5TVI, KP-Adhikari, Karada, Kaster, Kbdank71, Kbrose, Kdakin, Keilana, Kglavin, Khunglongcon, Kindall, Kjp993, Koektrommel,
Konstable, Kubanczyk, Kwamikagami, LOL, LeaveSleaves, LeeZ, LizardJr8, Lkopeter, Loadmaster, Locke Cole, Longtt89, Lousyd, Lowellian, MCWNT, MER-C, MP64, Macofe, Manatee0,
Marasmusine, Mario Blunk, Martarius, Martynas Patasius, Masgatotkaca, MasterProf, Materialscientist, Matt B., Mcandre, Mdanh2002, Mdwh, Meera123, Mellamokb, Mellum, Mendalus,
Michal Jurosz, Michele.alessandrini, Miguelito Vieira, Mike Field, Mikellewellyn, Mindmatrix, Mkouklis, Mmernex, MonstaPro, Monz, Moonlit Knight, Mozillaman, Mr.Do!, MrOllie, Msikma,
Mtpaley, Murray Langton, Mustafazamany, Mykk, NERIUM, Nandesuka, Nanshu, Nigelj, NightFalcon90909, Nikai, Nmcclana, Nusumareta, Ohnoitsjamie, Okane, OldCodger2, Oldhamlet,

Article Sources and Contributors 141

Ospix, Owl3638, PJonDevelopment, PamD, Paresthesias, Patrick, Paul August, Pcap, Peetz1, Peter Flass, Pgk, Piano non troppo, Pinethicket, Pingveno, Pneuhaus, Pnm, Pol098, Poolisfun,
Popsracer, Praefectorian, Quadell, Quarryman, R. S. Shaw, RCX, RHaworth, Ramu50, Rasmus Faber, Rbakels, Rdnk, Reaper Eternal, Red Prince, Regancy42, Reinderien, RexNL, Rezonansowy,
Rfc1394, Rich Farmbrough, Rivanov, Rjwilmsi, Robbe, Robert Merkel, Ronz, Rotundo, Ruud Koot, Sanbec, Sanoj1234, Sanpnr, Schultkl, Scientus, Scipius, Scott Gall, Shadanan, Shadow
demon, Shadowjams, SilentC, Simon80, SimonP, SkyWalker, Slaryn, Slashme, Sleigh, Slightsmile, Solidpoint, Soumyasch, Spalding, SpareHeadOne, SpeedyGonsales, Spinality, Sploonie,
SpooK, SpuriousQ, Srice13, Starionwolf, Starnestommy, Startswithj, StealthFox, SteinbDJ, Stewartadcock, Stmrlbs, Stormy Ordos, Struway, Stuart Morrow, Subversive.sound, Superm401,
Surturz, Suruena, Swtpc6800, Syjsoc, System86, TParis, Tarikes, Tbhotch, Tcsetattr, TeaDrinker, Tedickey, Teply, Th1rt3en, The Editors United, The Thing That Should Not Be, TheStarman,
ThomasHarte, Ththrthtrh, Tide rolls, Tim32, Tobias Bergemann, Toksyuryel, Tomasz Tybulewicz, Tonymec, Toussaint, Trijnstel, True Pagan Warrior, Trusilver, Tsetsee yugi, Tusonchaz,
Tzarius, Uli, Ultimus, Utvik, VampWillow, Vanished user 9i39j3, Vanished user ikijeirw34iuaeolaseriffic, Vegaswikian, Velle, Versus22, Vid512, Vobis132, Vwollan, Wavelength, Wengier,
Wereon, Wernher, Wesley, Whitehatnetizen, Wiki alf, Wikiklrsc, Wilky DiFendare, Wizardman, Wjl2, Wknight8111, Wolfmankurd, Wre2wre, Wrp103, Wtshymanski, Wwmbes, XJaM,
Xymmax, Ysangkok, Yworo, Zarel, Zonination, Zundark, Zx-man, ZyMOS, 810 anonymous edits

Machine code Source: http://en.wikipedia.org/w/index.php?oldid=606726190 Contributors: .:Ajvol:., 10metreh, 16@r, 192.35.241.xxx, 6a4fe8aa039615ebd9ddb83d6acf9a1dc1b684f7,
AKismet, AdmN, AgadaUrbanit, Aguinaldo, Alfio, Algebra, Altenmann, Andre Engels, Beland, BiT, Bigdumbdinosaur, Bnugia, Burnishe, CanisRufus, Causa sui, CharlesC, Chester Markel,
Cjewell, Cmdrjameson, Coinmanj, Conversion script, Cst17, Cyan.aqua, DJ Clayworth, DMacks, DarkShroom, Darkchoc4, Dav4is, Dawnseeker2000, Derek Andrews, Dgw, Discospinster,
Donner60, Dori, El C, Eric-Wester, Everyking, Fabrictramp, Faizan, Feezo, François Robere, FrederikHertzum, Furrykef, G0gogcsc300, Galzigler, Georg Peter, GeorgeLouis, HLachman, Hans
Dunkelberg, Helix84, HenkeB, Husond, Imjustmatthew, Inaaaa, Incnis Mrsi, Instinct, Ipsign, IronInforcer, Isarra, IvanLanin, J.delanoy, JDP90, Jacob.jose, Jagdeepyadav, Javert, Jeff02, Jesant13,
Jesdisciple, Jeshan, Johnny 0, JonHarder, Jpk, Jusjih, Kappa, Karol Langner, Katieh5584, Kbdank71, Kim Bruning, Klaser, Kvng, LazyEditor, Lee.crabtree, Lekrecteurmasque, LiDaobing,
LilHelpa, Lowellian, Lyricmac, Manop, Mark, Mark viking, Mastergreg82, Meadowbert, Mega Chrome, Megatronium, Melchoir, Microprofessor, Midzata, Mike Van Emmerik, Mindmatrix,
Mirror Vax, MmisNarifAlhoceimi, Modest Genius, Muad, Murray Langton, Mxn, Nanshu, NawlinWiki, Nikai, OrgasGirl, Ost316, PBS, Pantergraph, Paul Stansifer, Prolog, Punctilius,
QofASpiewak, Quuxplusone, Randomguy121, Reatlas, Rocketrod1960, Romanm, RussBlau, Rwpostiii, Salsa Shark, Sam Vimes, Sannse, Shmuel, Simoneau, Sky Harbor, Slady, Slipstream,
Smalljim, Soumyasch, Spiritia, Stmrlbs, Sychen, TPIRFanSteve, Tedp, The Magician, Tisane, Tobias Bergemann, Toussaint, Tximist, UnfriendlyFire, VKokielov, Waggers, Walk&check,
Wayfarer, WikiBully, Wikinerd, Wtshymanski, Xihix, Xod, Yanco, Yunshui, ZedaPhi, రవిచంద్ర, 255 anonymous edits

Source code Source: http://en.wikipedia.org/w/index.php?oldid=607815799 Contributors: -Barry-, 0x6D667061, 16@r, Abc 123 def 456, Ablonus, Adam majewski, Aeolien, Ahy1, Alansohn,
AlimanRuna, Allens, AnOddName, Anaraug, Andres, Angosso.com1, Ann O'nyme, AstroNomer, Barf73, Beland, Betacommand, Betterworld, Bevo, Bharatkumar, Brandalone, Bstnz,
BurnDownBabylon, C17GMaster, CO, CYD, Calbaer, Can't sleep, clown will eat me, CanisRufus, CesarB, Chaojoker, CharlesC, Chris Pickett, Christiancatchpole, Chuunen Baka, Cleardelta,
Conan, Conversion script, DC, Danakil, Darksun, Darkwind, DavidCary, Demonkoryu, DerHexer, Derek farn, Devourer09, Diego Moya, Dillard421, Discospinster, Doc glasgow, Domenico De
Felice, Drano, Drdick, Dream Focus, Dreftymac, Dysprosia, ESkog, Ed Poor, EduardoCruz, Edward, Elcriz000, Epbr123, Erkan Yilmaz, Excirial, Faller, Ferengi, Fram, Frazzydee,
FrenchIsAwesome, G0gogcsc300, GRAHAMUK, Gabeedwards, Gailtb, Galoubet, Gary, Gayathri prl, Giftlite, Ginsuloft, Grandscribe, GrayFullbuster, Green Tentacle, Greensburger, Gustavb,
Gutworth, HYH.124, Haakon, Habj, Hans Dunkelberg, Harald Hansen, Hazard-SJ, Heron, Hooperbloob, Hu12, IRP, Ictlogist, Inaaaa, Incnis Mrsi, Inonit, Instigate cjsc (Narine),
InverseHypercube, Iridescent, IvanLanin, J.delanoy, JLaTondre, JNW, Jackbrear, Jauhienij, Jay-Sebastos, Jeremy Visser, Jesse V., Jjalexand, Jjc259, Jni, Jsled, Kaare, Karlzt, Katieh5584, Kenny
sh, Kop, Lantay77, LeaveSleaves, Longhair, Lord Anubis, Lotje, Lowellian, Lugia2453, M, MONGO, Mac, Maelnuneb, Manop, Mark viking, Martarius, Marudubshinki, Materialscientist, Mav,
Mentifisto, Mesoderm, Midnightcomm, Mike Van Emmerik, Mindmatrix, Minimac's Clone, Mononomic, Mormegil, Mwtoews, Mxn, My name is not dave, Namazu-tron, Nanshu, NetRolller 3D,
Neutrality, Nickj, Nova77, Nurg, Ohnoitsjamie, Onearc, Ormers, Oxymoron83, Pallas44, Papa November, Patrick, Paul Stansifer, Pdcook, Peter513414, Philip Trueman, Plrk, Ptrb, Pufferfish101,
Pyrospirit, Quasipalm, Qwertyus, R Lowry, RavennaMoeba, Recognizance, Rettetast, Rholton, Rjaf29, Rob Hooft, Robert Merkel, Roboshed, RockMFR, Romanm, Romanski, RossPatterson,
RoyBoy, Rp, Rrelf, Sanchezluis2020, SchnitzelMannGreek, Schzmo, Scott, Sean 1996, Shreevatsa, Sibian, Simetrical, Star767, Stewartadcock, Synergy, Taeshadow, Tassedethe, Taw,
Tdavies24, Technopat, Techtonik, Tegel, Thumperward, Tiddly Tom, Timwi, Tobias Bergemann, TomasBat, Tompsci, TotoBaggins, Ttudor, Turlo Lomon, Turnstep, Tysto, Ultimus, Unyoyega,
Uriyan, Vancouver Outlaw, Vgranucci, VictorAnyakin, Virtualphtn, Voomoo, Wapcaplet, Wbm1058, Wendy Ferguson, WhisperToMe, Wikibofh, WikipedianMarlith, Wikisaver62, Wiooiw,
Yahia.barie, Yaris678, Yuejia, Yug1rt, Zfr, Zhaladshar, Zomglolwtfzor, Zop1997, Zzuuzz, ماني, 㓟, 344 anonymous edits

Command Source: http://en.wikipedia.org/w/index.php?oldid=599042908 Contributors: 354d, Al Lemos, Amikeco, AndreasPraefcke, Andres, AnnaP, Astatine-210, Avinash7075, BiT,
Bjankuloski06en, ChrisGualtieri, Christopherlin, Cpiral, DBigXray, DanielRigal, DiddyElliott, Dysprosia, Favonian, Fryed-peach, Georg Peter, Gerben1974, Ghettoblaster, Graham87, Gregbard,
Harvest day fool, HendrixEesti, Incnis Mrsi, Jamelan, Jarble, Jim McKeeth, JonHarder, Josh the Nerd, Kim Bruning, Krallja, Mdsam2, Minnaert, Mxn, Patrick, Pinar, Pnm, Poulpy, Redvers,
Rossami, Sethearls, Sonett72, TakuyaMurata, Thumperward, Tigga, Titodutta, Uncle G, Vadmium, Wbm1058, Ykhwong, ZeroOne, 45 ,دالبا anonymous edits

Execution Source: http://en.wikipedia.org/w/index.php?oldid=608396494 Contributors: 16@r, AJim, Abdull, AbstractBeliefs, Akavel, Alansohn, Altenmann, Arthur Rubin, Biscuittin, Can't
sleep, clown will eat me, Cndonovan, Diego Moya, Everyking, Excirial, Fluffernutter, François Robere, Green caterpillar, Greensburger, Isderion, J04n, JonHarder, Kbdank71, Kku, Koveras,
Magioladitis, Marciam66, Marius, Maurice Carbonaro, Michael Hardy, NawlinWiki, Neutral current, Pooryorick, RedWolf, Rilak, Robin S, Rwwww, Sae1962, SebastianHelm, Shyland,
Slipstream, TomT0m, Waldir, Wikipelli, Winterst, Ykhwong, 40 anonymous edits

Programming language theory Source: http://en.wikipedia.org/w/index.php?oldid=588108839 Contributors: Akmalzhon, Alan Moraes, Allan McInnes, Andy Dingley, Antonielly,
AshtonBenson, Christopher Monsanto, Cogiati, Cybercobra, DagErlingSmørgrav, Denispir, Diego Moya, Dysepsion, Edgar181, EngineerScotty, Eumolpo, Fredrik, Galzigler, Gary, Headbomb,
Hossein bardareh, Jrtayloriv, K.lee, LittleWink, MilerWhite, Miym, PMLawrence, Pcap, Pgr94, Quackor, R'n'B, Ruud Koot, SDC, Schmonyon, Seidenstud, Spayrard, Steven shaw, Tom Duff,
Warlordwolf, Zophar1, 歡 顏, 47 anonymous edits

Type system Source: http://en.wikipedia.org/w/index.php?oldid=607895987 Contributors: 121a0012, 1exec1, A3 nm, Aaron Rotenberg, Adavidb, Administration, AdrianLozano, Adrianwn,
Agarwal1975, Ahy1, Aleksd, Allan McInnes, AllenDowney, Altenmann, Alterego, AnAbsolutelyOriginalUsername42, AnAj, Ancheta Wis, AngryBear, Anshee, Antonielly, Anuroop Sirothia,
Anwar saadat, Ash211, Atreyu42, Audriusa, AutumnSnow, AvicAWB, Barabum, Beland, Blaisorblade, Bluemoose, Bob O'Bob, Bosmon, Bubba73, Caesura, Carlosayam, Cartsiltolt, Cedar101,
CheesyPuffs144, ChorizoLasagna, Chridd, CiudadanoGlobal, Cjoev, Classicalecon, Clements, Cntras, Comatose51, Compfreak7, Connelly, Cornellier, Cpiral, Craigbeveridge, Cybercobra, Daira
Hopwood, Damian Yerrick, Danakil, Daniel-Dane, Daniel.langdon, Darxus, DaveVoorhis, David Nicoson, Dcoetzee, Dearingj, Denny, DiscipleRaynes, Divinity76, Donhalcon, Doradus,
Dougher, DouglasGreen, Dpv, Dreftymac, Droob, Drumheller, Dsimic, Dysprosia, Edaelon, Edward, Elaz85, Electricmuffin11, Elliot.jaffe, Emperorbma, EngineerScotty, Ennui93, Epolk,
Eptified, Erc, Eric119, Erietveld, Esap, Eugeneiiim, Euyyn, Exigentsky, Ezrakilty, Feis-Kontrol, Fieldmethods, Fooblizoo, Foxxygirltamara, Fredrik, Fubar Obfusco, Funandtrvl, Furby100,
Furrykef, GB fan, Gail, Gdr, Georg Peter, Gerweck, Gf uip, Ghettoblaster, Giftlite, Gmlk, Gracenotes, Grandscribe, Grauenwolf, GrindtXX, Guppyfinsoup, Gwern, Hairy Dude, Hammer, Harmil,
Hdante, Headbomb, Hippietrail, Htmlapps, Iggymwangi, Ihope127, Imperator3733, Iridescent, JIP, JLaTondre, Jarble, Jason5ayers, Javawizard, Jbolden1517, Jeargle, Jeban, Jef-Infojef, Jen
savage, Jerome Charles Potts, Jeronimo, Jerryobject, Jfire, Jleedev, John lindgren, John of Reading, Jon Awbrey, JonHarder, Jopincar, Joswig, Jrtayloriv, Julesd, K.lee, Karl Dickman, Karouri,
Kbdank71, Kbrose, Ken Gallager, Ketil, Konklone, Krischik, Kupiakos, Kurniasan, LOL, Langec, Larry V, Lawpjc, Leibniz, LittleDan, LoStrangolatore, Lowellian, Lulu of the Lotus-Eaters,
Maclary, Mange01, MarXidad, Marclevel3, Mark Renier, Markskilbeck, Martin Hampl, Martinship, Marudubshinki, MattGiuca, MattOConnor, Maximaximax, Maximilianklein, Mfc, Michael
Slone, Michal Jurosz, Mikeblas, Mikon, Minesweeper, Mjamja, Mjb, Mmdoogie, Mmernex, Mnduong, Mokhov, Moonwolf14, MrBlueSky, Mshonle, NHSavage, Nabla, Neilc, Nightstallion,
Norm mit, Norman Ramsey, Nuno Tavares, Officiallyover, OlEnglish, OriumX, OrthogonalFrog, OwenVersteeg, P00r, Paddy3118, Palmcluster, Patrick, Paul Richter, Pcap, Pedant17, Peepeedia,
Pengo, Peterdjones, Pfeilspitze, Phil Boswell, Phorgan1, Pit, Pjb3, Pomoxis, Poor Yorick, Prodego, Qwertyus, Qwfp, R. S. Shaw, Raise exception, RandalSchwartz, RedWolf, Reinderien,
Richardpianka, Riley Huntley, Rjwilmsi, Robykiwi, Rogper, Rookkey, Ross Fraser, Roybristow, Ruud Koot, SLi, SadaraX, Sae1962, Sagaciousuk, SashaMarievskaya, Scmerlin, Seanhalle,
Seliopou, Servel333, Simeon, Simetrical, SimonP, Simoneau, Slaniel, Smeatish, Snoyes, Stevenj, Strake, Sun Creator, Suruena, Svick, Swift, Sykopomp, Tablizer, TakuyaMurata, Tasc, Teemu
Leisti, That Guy, From That Show!, The Anome, TheNightFly, TheProgrammer, Therog1, Thincat, Thumperward, Tim Starling, Tim Watson, Tobias Bergemann, TomStuart, Torc2, TuukkaH,
Twilsonb, Updatebjarni, Urhixidur, VampWillow, VictorAnyakin, VladimirReshetnikov, Washi, Wavelength, Wgunther, WhiteCat, Wiki.Tango.Foxtrot, Wjhonson, Wlievens, Wrp103, Ww,
YahoKa, Yahya Abdal-Aziz, Yoric, Ysoldak, Zron, Σ, 402 anonymous edits

Strongly typed programming language Source: http://en.wikipedia.org/w/index.php?oldid=556816448 Contributors: Bananabruno, Batiste93, Biscuittin, CJ1992, Chris the speller,
Cybercobra, Dekart, Epicgenius, Gerrit, Grauenwolf, Haruth, Hydrox, Jarble, Kullanari, Lexlex, Niceguyedc, Odedrim, Paddy3118, Phil Boswell, RedWolf, Rjwilmsi, Ruud Koot,
SashaMarievskaya, Sszydelko, Strombrg, 28 anonymous edits

Weak typing Source: http://en.wikipedia.org/w/index.php?oldid=556813945 Contributors: Bananabruno, Batiste93, Biscuittin, CJ1992, Chris the speller, Cybercobra, Dekart, Epicgenius,
Gerrit, Grauenwolf, Haruth, Hydrox, Jarble, Kullanari, Lexlex, Niceguyedc, Odedrim, Paddy3118, Phil Boswell, RedWolf, Rjwilmsi, Ruud Koot, SashaMarievskaya, Sszydelko, Strombrg, 28
anonymous edits

Syntax Source: http://en.wikipedia.org/w/index.php?oldid=598492976 Contributors: 28bytes, Aaron Rotenberg, Allan McInnes, Bjankuloski06en, BlakeCS, CRGreathouse, Cedar101, Chris the
speller, Cleared as filed, Cpiral, Derek R Bullamore, Derek farn, Diego Moya, Dom96, Edward, FrenchIsAwesome, Fusion7, Gf uip, Hurmata, Iskander s, It Is Me Here, Jarble, Jeffreykegler,
Johan1298, Lokentaren, Mblumber, MmisNarifAlhoceimi, Natkeeran, Nbarth, Octahedron80, Pcap, Pjposullivan, RCX, RobertL, SemanticMantis, Thiago Miotto Amaral, Tijfo098, TomasBat,
Zron, 27 anonymous edits

Scripting language Source: http://en.wikipedia.org/w/index.php?oldid=608376582 Contributors: -Barry-, 156.153.254.xxx, 217.99.96.xxx, Aavviof, Abstudio, AdmN, Ae-a, Alansohn, Aldie,
Alexia Death, Ancheta Wis, Andre Engels, Antandrus, Antonielly, Ap0ught, Arvindn, Assasin Joe, AxelBoldt, B3rt0h, Bcward, Be..anyone, Beetstra, Bender235, Betterusername, Bevo, Bgwhite,
Bilalis, Billposer, Bizza123, Bkengland, Blehfu, Bmdavll, Bongwarrior, BonzoESC, Breawycker, Bstepno, Burschik, Buzgun, C.lekberg, Capitalismojo, Captain Conundrum, Ccacsmss,

Article Sources and Contributors 142

Chasingsol, Chinju, Cic, Cindamuse, Cmertayak, Colonies Chris, Conversion script, Corn cheese, Corsairtux, Corvus, CrazyChemGuy, Cryoboy, DARTH SIDIOUS 2, DNewhall, Danhash,
DanteEspinoza1989, Darth Panda, Dc987, Dckelly, Dcoetzee, Deathbuilder, Der Golem, Diego Moya, Digichoron, Discospinster, DmitTrix, Dollyd, DonToto, Dori, Dougher, Dr.queso,
Dreamfly1024, Dreftymac, Dsmdgold, Duffman, Dungodung, Dycedarg, ED1T3R, Easwarno1, EdC, Edupedro, Ehheh, Elcidia, Elfguy, Elwikipedista, Eman2129, EmeryD, Emurphy42,
Ericcnelson, Etu, Exert, Exidor, Fabartus, FatalError, Flockmeal, Fluffernutter, Fraggle81, Frecklefoot, Fredrik, Freeman45Fighter, Freshraisin, Friedo, Fubar Obfusco, Func, Fırat KÜÇÜK,
Gaius Cornelius, Galoubet, Geary, Generic Player, Geniac, Ghettoblaster, Gilliam, GjeDeeR!, Gogo Dodo, Gokudo, Graham87, Grendelkhan, Grinchfizzlekrump, Grunt, Gryllida, Gwernol,
HQCentral, Hadal, Hajhouse, Hans Adler, Hao2lian, Harmil, Hassanbird, Hazel77, Helpersatan, HenkvD, Henry hedden, Hexacoder, Hobophobe, Hu12, HurricaneSpin, Hyperlink, IanManka,
Immsubodh, Interiot, Israel Walker, Ivan Pozdeev, IvanLanin, JLaTondre, JMJimmy, JRocketeer, Jarble, Jcdietz03, Jcuevas, Jeenuv, Jeltz, Jerome Charles Potts, Jesant13, Jim Douglas,
Jk2q3jrklse, Joeblakesley, Jonik, Jordancpeterson, Jsnover, Jwink3101, K.Nevelsteen, Karada, Karl Dickman, Keilana, Kenyon, Khalid hassani, Kiamlaluno, Kim Bruning, Kiski7c5, Kjetil r,
Komarov om, Krauss, Ksn, Kvdveer, Kwi, L Kensington, Ledgerbob, Leujohn, Logan, Lorenzarius, Lrenh, Luk, LuoShengli, MER-C, MadSurgeon, Makecat, Marco Krohn, Mark Foskey, Mark
Renier, Marqueed, Martyulrich, Marudubshinki, Maslen, Masterdeath01, Materialscientist, Matt Deres, Matusz, Mav, Maxim, Maximaximax, Mgr, Mike92591, Miles, Minghong, Minna Sora no
Shita, Mipadi, MontyB, Moondyne, Mr. Wheely Guy, MrH, MrOllie, Mrzaius, Nanshu, NawlinWiki, Nbarth, Neilc, NellieBly, Nepenthes, NerdyNSK, Nickjames90, Night day, Nigosh, Niqueco,
Nitin jeewan, Noamatari, NurAzije, OMPIRE, Olathe, OlavN, Olopez, Oosh, OracleGuy01, Orange Suede Sofa, Orb4peace, Ottershrew, PMDrive1061, Pavel Vozenilek, Peter Flass, Philip
Trueman, Phillsmith01, Piet Delport, Pol098, Policechiefronaldo, PonThePony, Ppp extr, Pratyya Ghosh, Prestonmag, ProgJones, RadioFan, Raffaele Megabyte, Raghith, Ramir, Random account
47, Ranjithsutari, Raybob95, RenamedUser01302013, Rich Farmbrough, RichardOSmith, Ricvelozo, RobertL, Rowfilter, Rp, Ryzol, S0aasdf2sf, SMC, Satori, Sbasith, Scarlet, Scorwin, Shlomif,
Shlomital, Simetrical, SimonEast, SimonP, Siodhe, Sjbrown, Skizzik, SkyWalker, Sligocki, SoCalSuperEagle, Softarch Jon, Spalding, Srushe, Startswithj, Stefan Urbanek, Stevietheman, Style, T
Long, TOReilly, TShilo12, Tagishsimon, Tarquin, Tekeek, Teltek, TerezaS, TexasAndroid, Tfgbd, Thane, Thapthim, The High Magus, Thomas Veil, TianzhouChen, Tic260, TimoMax, Tobias
Bergemann, Todobo, Tontito, Tony Sidaway, Toussaint, TowerDragon, Travis Evans, Tuntable, Turnstep, Twas Now, Two Bananas, Twsx, Tyw7, Uhai, Uriyan, User86654, VKokielov,
Vampireq, Verloren, Visage, Waldir, WalterGR, Warren, Wermlandsdata, Wernher, Widr, Wiki alf, Wilfrednilsen, Wlievens, WookieInHeat, Wootery, Writers Bond, Writtenonsand, Xioxox,
Xjas05, Xtremejames183, Yaron K., Yunshui, Yzt, ZX81, Zeimusu, Zuixro, Zzuuzz, 639 ,ماني anonymous edits

Image Sources, Licenses and Contributors 143

Image Sources, Licenses and Contributors
file:Coding Shots Annual Plan high res-5.jpg Source: http://en.wikipedia.org/w/index.php?title=File:Coding_Shots_Annual_Plan_high_res-5.jpg License: Creative Commons
Attribution-Sharealike 3.0 Contributors: User:Matthew (WMF)
File:Ada lovelace.jpg Source: http://en.wikipedia.org/w/index.php?title=File:Ada_lovelace.jpg License: Public Domain Contributors: Aavindraa, Coyau, Dcoetzee, DutchHoratius, Kaldari,
Kelson, Kilom691, Michael Barera, 1 anonymous edits
File:PunchCardDecks.agr.jpg Source: http://en.wikipedia.org/w/index.php?title=File:PunchCardDecks.agr.jpg License: Creative Commons Attribution-Sharealike 2.5 Contributors: mehul
panchal
File:IBM402plugboard.Shrigley.wireside.jpg Source: http://en.wikipedia.org/w/index.php?title=File:IBM402plugboard.Shrigley.wireside.jpg License: Creative Commons Attribution 2.5
 Contributors: User:ArnoldReinhold
File:H96566k.jpg Source: http://en.wikipedia.org/w/index.php?title=File:H96566k.jpg License: Public Domain Contributors: Courtesy of the Naval Surface Warfare Center, Dahlgren, VA.,
1988.
File:Object-Oriented-Programming-Methods-And-Classes-with-Inheritance.png Source:
http://en.wikipedia.org/w/index.php?title=File:Object-Oriented-Programming-Methods-And-Classes-with-Inheritance.png License: Creative Commons Attribution-Sharealike 3.0 Contributors:
Carrot Lord
File:USB flash drive.JPG Source: http://en.wikipedia.org/w/index.php?title=File:USB_flash_drive.JPG License: GNU Free Documentation License Contributors: User:Nrbelex
File:Dg-nova3.jpg Source: http://en.wikipedia.org/w/index.php?title=File:Dg-nova3.jpg License: Copyrighted free use Contributors: User Qu1j0t3 on en.wikipedia
File:Classes and Methods.png Source: http://en.wikipedia.org/w/index.php?title=File:Classes_and_Methods.png License: Creative Commons Attribution-Sharealike 3.0 Contributors:
Bobbygammill
File:Bangalore India Tech books for sale IMG 5261.jpg Source: http://en.wikipedia.org/w/index.php?title=File:Bangalore_India_Tech_books_for_sale_IMG_5261.jpg License: Creative
Commons Attribution-Sharealike 3.0 Contributors: User:Victorgrigas
Image:Python add5 parse.png Source: http://en.wikipedia.org/w/index.php?title=File:Python_add5_parse.png License: Public Domain Contributors: User:Lulu of the Lotus-Eaters
Image:Python add5 syntax.svg Source: http://en.wikipedia.org/w/index.php?title=File:Python_add5_syntax.svg License: Copyrighted free use Contributors: Xander89
Image:Data abstraction levels.png Source: http://en.wikipedia.org/w/index.php?title=File:Data_abstraction_levels.png License: Public Domain Contributors: Doug Bell, Perey
File:Bundesarchiv B 145 Bild-F031434-0006, Aachen, Technische Hochschule, Rechenzentrum.jpg Source:
http://en.wikipedia.org/w/index.php?title=File:Bundesarchiv_B_145_Bild-F031434-0006,_Aachen,_Technische_Hochschule,_Rechenzentrum.jpg License: Creative Commons
Attribution-Sharealike 3.0 Germany Contributors: ArnoldReinhold, Martin H., YMS
Image:Ada Lovelace portrait.jpg Source: http://en.wikipedia.org/w/index.php?title=File:Ada_Lovelace_portrait.jpg License: Public Domain Contributors: Jean-Frédéric, Jkadavoor, Julia W,
Kaldari, Mindmatrix, Mywood, Pine, Piotrus, Shir-El too, SirHenryNorris, Tokorokoko, 1 anonymous edits
File:Офис Яндекса работа.jpg Source: http://en.wikipedia.org/w/index.php?title=File:Офис_Яндекса_работа.jpg License: Creative Commons Attribution 2.0 Contributors: Alpunin,
Kaganer
File:Motorola 6800 Assembly Language.png Source: http://en.wikipedia.org/w/index.php?title=File:Motorola_6800_Assembly_Language.png License: Public Domain Contributors:
Swtpc6800 en:User:Swtpc6800 Michael Holley
File:W65C816S Machine Code Monitor.jpeg Source: http://en.wikipedia.org/w/index.php?title=File:W65C816S_Machine_Code_Monitor.jpeg License: Creative Commons
Attribution-Sharealike 3.0 Contributors: User:Bigdumbdinosaur
Image:CodeCmmt002.svg Source: http://en.wikipedia.org/w/index.php?title=File:CodeCmmt002.svg License: GNU Free Documentation License Contributors: Original uploader was
Dreftymac at en.wikipedia
File:Lambda lc.svg Source: http://en.wikipedia.org/w/index.php?title=File:Lambda_lc.svg License: Public Domain Contributors: Cathy Richards, Luks, Vlsergey, 2 anonymous edits
Image:Python add5 parse.svg Source: http://en.wikipedia.org/w/index.php?title=File:Python_add5_parse.svg License: Public Domain Contributors: User:Lulu of the Lotus-Eaters

License 144

License
Creative Commons Attribution-Share Alike 3.0
//creativecommons.org/licenses/by-sa/3.0/

