
System Administrator Guide

This guide will help you configure a better and safer Web server.

Once this is done, you will be ready to install PrestaShop, using our

Getting Started guide.

PHP configuration

Manipulating php.ini

Many of the advices in this guide require you to edit the php.ini file, found

in your server's PHP install (not in PrestaShop's folder).

Not all host will allow you to edit this file, so contact your host if you

cannot access it.

For instance, you probably won't have access to php.ini on a shared

hosting. If your host doesn't provide the required configuration by default

and you cannot touch php.ini, then you should either move to a dedicated

hosting, or change to a more permissive host.

Editing the PHP configuration requires you to change some values in the

php.ini file, most of the time from "On" to "Off" or vice versa. The file

contains a lot of documentation for each line, be sure to read them in
order to better understand your changes. Be careful of what you edit, as

this has a direct impact on the way PHP runs, and therefore on your
servers stability and even security.

Required settings

Your PHP installation must feature the following settings and libraries:

 MySQL.

 GD library.
 Dom extension.

The MySQL extension enables to access your data. PrestaShop simply
cannot work without it.

The GD library enables PHP to dynamically manipulate images. PrestaShop

uses it to resize and rework the image files that are uploaded
(watermarking, trimming, etc.). Without images, an online shop loses

most of its interest, so make sure that GD is enabled!

The Dom extension enables to parse XML documents. PrestaShop uses for

various functionalities, like the Store Locator. It is also used by some

modules, as well as the pear_xml_parse library.

The allow_url_fopen directive enables modules to access remote files,

which is an essential part of the payment process, among others things. It

is therefore imperative to have it set to ON.

In short, it is imperative to have the following directives set to the

indicated values:

extension = php_mysql.dll

extension = php_gd2.dll

allow_url_fopen = On

Recommended settings

Your PHP installation should feature the following settings and libraries, for

best experience:

 GZIP support.

 Mcrypt library.

 register_globals disabled.

 magic_quotes disabled.

 allow_url_include disabled

Having GZip support enables the web server to pack web pages, images
and scripts before sending them to the browser. This makes navigating

the shop faster, and therefore a more agreeable experience.

The Mcrypt provides PHP with a hardened security layer, enable the use of
more hashing and cryptography algorithm.

The register_globals directive, when enabled, defines all environment

variables (GET, POST, COOKIE, SERVER...) as global variables. It is

unsafe to use unset variables, because a user could easily set a value
into this variable by using the GET method, for example. It is therefore

imperative to set register_globals to OFF.

The magic_quotes directive automatically escapes (or "adds slashes") to all

special character sequences (', ", \, NULL) for all environment variables
(GET, POST, COOKIE, SERVER...). This option must be set to OFF because

it will addslash each variable even if it does not need to be addslashed.
Moreover, some Web applications overlook this option, so some variables

could be addslashed twice, resulting in corrupted data.

http://php.about.com/od/phpfunctions/g/addslashes_php.htm

The allow_url_include directive is used to allow to include any file via the

require and include statements, even if it does not come from your Web

server. This option must be set to OFF, because if one application on your
web server suffers of "include vulnerability", users will be able to include

any file from any server and those will be executed on your own server.

In short, it is highly recommended to have the following directives set
to the indicated values:

register_globals = Off

magic_quotes_gpc = Off

allow_url_include = Off

MySQL configuration

MySQL often has an administrator account as default ("root", "admin"...),
which gives access to all of the databases' content, no matter who the

database is managed by. The administrator has all the rights, and can do
every possible actions. You therefore need to safekeep your databases, so

as to prevent your web applications from succumbing to SQL injections
(which can happen when a user succeeds in obtaining the admin

password).

 If you just installed MySQL, do add a password for the root account,

who has no password as default.

One user per web application

Each time you install a new web application on your server, you must

create a new MySQL user when just the necessary rights to handle that
application's data. Do NOT use the same username to handle the

databases for all of your installed web applications.

Let's say we manage MySQL with user account that can create new users.

Let's do just that, using the following command line:

mysql -u USERNAME -p PASSWORD

...or using the following SQL query:

mysql> USE mysql;

mysql> CREATE USER 'username'@'servername' IDENTIFIED BY 'new_password';

Note that your host might give you access to an online tool to do MySQL
administration tasks more easily, such as cPanel. Do use that, since you
probably won't have access to the command line in that case.

http://en.wikipedia.org/wiki/SQL_injection

Now we have a username with just enough rights to connect to the local

database.

We need to allow this user to use the 'prestashop' database, and configure

his rights at the same time. Here is a template for the SQL query to do
that:

mysql> GRANT SELECT, INSERT, UPDATE, DELETE, CREATE, DROP, ALTER

 > ON 'prestashop'.* TO 'new_user'@'localhost';

mysql> FLUSH PRIVILEGES;

We now have one user just for our 'prestashop' database. Remember to
do this for each new web application you add to your server.

You can now install PrestaShop safely.

Basic authentication establishment
(.htaccess)

In order to better protect your PrestaShop install, we need to establish a
basic authentication on the admin directory.

One of the aim of the {{.htaccess}} file is to protect your folders and all

its sub-folders. It only works on Apache servers, and a few others. Make

sure your web server is Apache before creating a .htaccess file.

To achieve basic authentication on your admin folder, we need to add a

.htaccess file in that folder (for instance, /var/www/prestashop/admin):

AuthUserFile /var/www/.prestashop_admin

AuthName "Prestashop Admin Access"

AuthType Basic

Require valid-user

Options -Indexes

Explanation:

 AuthUserFile: Shows the path to the file containing allowed users and

their passwords. .prestashop_admin is a text file.

 AuthName: Defines the message to show when the authentication

window pops up.

 AuthType: Defines the authentication type.

 Require: Requires users to log in in order to access the content.

valid-user enables multiple users to connect and access the folder.

 Options: Defines the folder's options. -Indexes disables automatic

generation of a directory index if no index file is available.

Here is a sample content for the .prestashop_admin file, with a login and a

password:

login1:$apr1$/wJeliK8$e9OzgRaVL8J8wSsFBXjor1

login2:$apr1$yV65Kqqz$cFt3sV2.Q7hhLRRUJDo5a/

This file contains logins and hashed password who are allowed to access

to the folder.
To hash password, you can follow this link: .htpasswd file generation.

It is strongly recommended to put this file into a directory that is

inaccessible to your web applications, so before the /openbase_dir folder. It

prevents .htpasswd file injection, in case one of yours web applications is

vulnerable.

Example:

http://en.wikipedia.org/wiki/Htaccess
http://aspirine.org/htpasswd.html

It is also possible to perform IP and domain restrictions using your

.htaccess file:

Order Allow, Deny

Deny from all

Allow from .myprestashop.com

Allow from 127.0.0.1

However, you should not put this kind of directive:

<LIMIT GET POST>

Require valid-user

</LIMIT>

Indeed, <LIMIT GET POST>

Making your PrestaShop install more secure

The recommendations below are sorted by order of importance:

1. Secure your back-office

1. Rename your /admin folder after the PrestaShop installation.

This is a must, and you actually cannot access your
PrestaShop administration if you haven't performed that

change. Make sure to pick a really unique name, ideally a mix

of letter and number, such as "my4dm1n".

2. Protect your admin folder with a .htaccess or .htpasswd file, or

ask your web host to do it for you.
3. Do not let your computer keep trace of your password (cookie

or any other helper).

4. Pick a complex password, by mixing letters, numbers and

even punctuation marks, such as "5r3XaDR#". You can us an
only password generated, such as PCTools's or GRC's.

2. Securing your PHP installation

1. See the required and recommended PHP settings, at the
beginning of this page.

3. Always delete the /install folder after having installed or updated

PrestaShop

4. Always delete useless files from production server:

1. all readme_xx.txt files.

2. the CHANGELOG file.

3. the /docs folder.

5. Forbid access to your theme's files/templates, using a .htaccess file

with the following content:
6.
7. <FilesMatch "\.tpl$">
8. order deny,allow
9. deny from all
10. </FilesMatch>

Fine-tuning & performances

This section will help you better understand configuration variables than
are not handled using the back-office, but directly in configuration files.

There are four configuration files in PrestaShop, all in the /config folder:

 config.inc.php: core configuration file for PrestaShop.

 defines.inc.php: contains all of PrestaShop constant values.

Previously defined in settings.inc.php.

 settings.inc.php: contains the access information to the database, as

well as the PrestaShop version number.

 smarty.config.inc.php: contains all configuration pertaining to

Smarty, the template/theme engine used by PrestaShop.

config.inc.php file

In production mode:

 make sure to leave @ini_set('display_errors', 'Off'); to "Off".

 make sure to leave define('PS_DEBUG_SQL', false); to "false".

On contrary, in development/test mode, you can get help tracing possible
errors by:

 changing @ini_set('display_errors', 'Off'); to "On".

 changing define('PS_DEBUG_SQL', false); to "true".

http://www.pctools.com/guides/password/
https://www.grc.com/passwords.htm

defines.inc.php file

Among other constant values, this file contains the location for all files and
folders. If you need these changed, do not forget to keep the original at

hand, in case you wish to go back to the original path.

smarty.inc.php file

 $smarty->caching = false;: Smarty's cache system must be disabled

because it is not compatible with PrestaShop.

 IMPORTANT: in production mode, $smarty->force_compile must be

set to "false", as it will give a 30% improvement on page load time.

On the other hand, when editing a .tpl file, you will have to delete

the content of the /tools/smarty/compile folder (except index.php) in

order to see the changes live. Note that this setting can also be
done in the back-office, in the "Preferences" > "Performance" sub-

tab, in the "Smarty" section.

 $smarty->compile_check should be left to "false".

 $smarty->debugging gives you access to Smarty's debugging

information when your pages are displayed.

Improving PrestaShop's performances

Here are a few tips that should enable you to optimize PrestaShop.

 Enable MySQL's cache (or ask your web host to do it for you), and
give it a high value (for instance, 256M).

 Do not forget to put the $smarty->force_compile to "false" when in

production mode, either via the smarty.inc.php file or the back-office.

 Whenever possible, use an opcode cache (or ask your web host to

install one for you), in order to alleviate the server's processing
load. PrestaShop is compatible with eAccelerator. Opcode means

"operation code", and defines the compiled state of the dynamic
files, which can processed faster.

 If possible, split your static elements betweens different domains
and sub-domains, in order to get parallel HTTP connexions. To put

that in place, open the /config/defines.inc.php file and add these

lines (adapted to your needs):

if ($_SERVER['REMOTE_ADDR'] != '127.0.0.1')

{

 define('_THEME_IMG_DIR_', 'http://img2.xxx.com/');

 define('_THEME_CSS_DIR_', 'http://css.xxx.com/');

 define('_THEME_JS_DIR_', 'http://js.xxx.com/');

 define('_THEME_CAT_DIR_', 'http://img1.xxx.com/c/');

 define('_THEME_PROD_DIR_', 'http://img1.xxx.com/p/');

 define('_THEME_MANU_DIR_', 'http://img1.xxx.com/m/');

 define('_PS_IMG_', 'http://img1.xxx.com/');

http://eaccelerator.net/

 define('_PS_ADMIN_IMG_', 'http://img1.xxx.com/admin/');

} else {

 define('_THEME_IMG_DIR_', _THEMES_DIR_ . _THEME_NAME_ . '/img/');

 define('_THEME_CSS_DIR_', _THEMES_DIR_ . _THEME_NAME_ . '/css/');

 define('_THEME_JS_DIR_', _THEMES_DIR_ . _THEME_NAME_ . '/js/');

 define('_THEME_CAT_DIR_', __PS_BASE_URI__ . 'img/c/');

 define('_THEME_PROD_DIR_', __PS_BASE_URI__ . 'img/p/');

 define('_THEME_MANU_DIR_', __PS_BASE_URI__ . 'img/m/');

 define('_PS_IMG_', __PS_BASE_URI__ . 'img/');

 define('_PS_ADMIN_IMG_', _PS_IMG_.'admin/');

}

Other recommendations

Safe Mode

PHP's Safe Mode is deprecated in the latest version of PHP, and
should not be used anymore. For PrestaShop in particular, having Safe

Mode on can render your payment modules useless.

Updates

Your applications' PHP code is the only vulnerable path to your server. It is
therefore strongly recommended to always update your server's

applications: PHP, MySQL, Apache and any other application on which
your website runs.

Miscellaneous

The PrestaShop file structure

The PrestaShop developers have done their best to clearly and intuitively
separate the various parts of the software.

Here is how the files are organized:

 /admin: contains all the PrestaShop files pertaining to the back-

office. When accessing this folder with your folder, you will be ask to

provided proper identification, for security reasons. Important: you

should make sure to protect that folder with a .htaccess or .htpasswd

file!

 /cache: contains temporary folders that are generated and re-used in

order to alleviate the server's load.

 /classes: contains all the files pertaining to PrestaShop's object

model. Each file represents (and contains) a PHP class, and its

methods/properties.

 /config: contains all of PrestaShop's configuration files. Unless asked

to, you should never edit them, as they are directly handled by
PrestaShop's installer and back-office.

 /controllers: contains all the files pertaining to PrestaShop

controllers – as in Model-View-Controller (or MVC), the software

architecture used by PrestaShop. Each file controls a specific part of
PrestaShop.

 /css: contains all CSS files that are not attached to themes – hence,

these are mostly used by the PrestaShop back-office.

 /docs: contains some documentation. Note: it should be deleted in a

production environment.

 /download: contains your digital products, which can be downloaded:

PDFs, MP3s, etc.

 /img: contains all of PrestaShop's default images, icons and picture

files – that, those that do not belong to the theme. This is were you

can find the pictures for product categories (/c sub-folder, those for

the products (/p sub-folder) and those for the back-office itself

(/admin sub-folder}}.

 /install: contains all the files related to PrestaShop's installer. You

will be required to deleted after installation, in order to increase

security.

 /js: contains all JavaScript files that are not attached to themes.

Most of them belong to the back-office. This is also where you will
find the jQuery framework.

 /localization: contains all of PrestaShop's localization files – that is,

files that contain local information, such as currency, language, tax

rules and tax rules groups, states and the various units in use in the

chosen country (i.e., volume in liter, weight in kilograms, etc.).

 /log: contains the log files generated by PrestaShop at various

stages, for instance during the installation process.

 /mails: contains all HTML and text files related to e-mails sent by

PrestaShop. Each language has its specific folder, where you can
manually edit their content if you wish.

 /modules: contains all of PrestaShop's modules, each in its own

folder. If you wish to definitely remove a module, first uninstall it

from the back-office, then only can you delete its folder.

 /override: this is a special that appeared with PrestaShop 1.4. By

using PrestaShop's regular folder/filename convention, it is possible

to create files that override PrestaShop's default classes or
controllers. This enables you to change PrestaShop core behavior

without touching to the original files, keeping them safe for the next
update.

 /themes: contains all the currently-installed themes, each in its own

folder.

 /tools: contains external tools that were integrated into PrestaShop.

For instance, this were you'll find Smarty (template/theme engine),

FPDF (PDF file generator), Swift (mail sender), PEAR XML Parser
(PHP tool).

 /translations: contains a sub-folder for each available language.

However, if you wish to change the translation, you must do so

using the PrestaShop internal tool, and not edit them directly in this

folder.

 /upload: contains the files that would be uploaded by clients for

customizable products (for instance, a picture that a client wants

printed on a mug).

 /webservice: contains files that enable third-party applications to

access PrestaShop through its API.

