
SQL Essentials

Mark McIlroy

© Blue Sky Technology 2009

© Blue Sky Technology 2009 2

1 Prerequisites

This book assumes a familiarity with relational data tables.

Readers should have access to a query environment that allows viewing data tables and running
SQL queries against a database or data warehouse.

2 Instructions

A test environment is located at

www.blueskytechnology.com.au/test_env/sql_test.php

You can try out the examples from the book in this environment.

The order of the notes is not significant.

Each of the queries listed in the notes is executable in the test environment.

Relational data tables

Relational data is stored in tables which can be represented in tabular format.

Customer_ID First_Name Surname Date_Of_Birth Postcode

0000001 Stephen Adjei 5/06/1988 4235

0000002 Sammy Adams 26/12/1983 5432

0000003 Linda Larigue 21/04/1976 2342

0000004 Sina Siva 24/07/1983 4342

0000005 Vangie Robinson 5/12/1988 5432

0000006 Christiana Majola 3/01/1973 2345

0000007 Olya Ayinoko 22/07/1968 9464

0000008 David Kellyn 14/08/1982 1242

0000009 Olusegun Aby 11/09/1982 4344

0000010 Maulesh Amoah 20/01/1965 5342

0000011 Raj Lucas 1/01/1973 6543

0000012 Emmanuel Crenshaw 6/04/1987 3456

0000013 Jessica Adesina 3/05/1977 2356

0000014 Selina Amoah 16/01/1982 5423

0000015 Ademola karmakar 11/03/1971 3474

http://www.blueskytechnology.com.au/test_env/sql_test.php

© Blue Sky Technology 2009 3

Databases are typically used to store information such as customer records, transactions,

accounting records and so on.

Data processing is used extensively in the government and corporate business sectors.

© Blue Sky Technology 2009 4

3 Joining tables

Processing typically requires that information be retrieved from several different tables.

This is done using a process known as a ‘relational join’.

In the following example, details are extracted from the customer table and the transaction table.

Transaction Table

Transaction_ID Transaction_Date Customer_ID Transaction_Code Product_Code Items Amount

0000001 6/01/2008
0000001

PURCHASE PCDE12 1 723.12

0000002 12/01/2008
0000001

PURCHASE PCDE27 1 324.12

0000003 4/01/2008 0000002 PURCHASE PCDE12 3 623.23

0000004 12/01/2008
0000002

CANCELLATION PCDE27 1 123.34

0000005 12/01/2008
0000002

PURCHASE PCDE12 2 423.23

0000006 5/01/2008 0000003 PURCHASE PCDE12 2 153.24

0000007 12/01/2008
0000004

REFUND PCDE43 1 233.22

0000008 21/01/2008
0000004

PURCHASE PCDE43 1 823.11

Customer Table

Customer_ID First_Name Surname Date_Of_Birth

1 Stephen Adjei 5/06/1988

2 Sammy Adams 26/12/1983

3 Linda Larigue 21/04/1976

4 Sina Siva 24/07/1983

© Blue Sky Technology 2009 5

Extracted Data

Transaction_ID Transaction_Date Customer_ID First_Name Surname Transaction_Code Product_Code Items Amount

0000001 6/01/2008
0000001 Stephen Adjei

PURCHASE PCDE12 1 723.12

0000002 12/01/2008
0000001 Stephen Adjei

PURCHASE PCDE27 1 324.12

0000003 4/01/2008 0000002 Sammy Adams PURCHASE PCDE12 3 623.23

0000004 12/01/2008
0000002 Sammy Adams

CANCELLATION PCDE27 1 123.34

0000005 12/01/2008
0000002 Sammy Adams

PURCHASE PCDE12 2 423.23

0000006 5/01/2008 0000003 Linda Larigue PURCHASE PCDE12 2 153.24

0000007 12/01/2008
0000004 Sina Siva

REFUND PCDE43 1 233.22

0000008 21/01/2008
0000004 Sina Siva

PURCHASE PCDE43 1 823.11

Note that data from one table has been duplicated in the columns of the result table.

In this example, the surname and first-name of the customer appears beside each transaction

relevant to that customer.

This is known as a ‘one-to-many’ join.

© Blue Sky Technology 2009 6

4 SQL

SQL, Structured Query Language, is a database query language that provides functions for

sorting, filtering and totaling information that is stored in relational data bases.

SQL is the basis for most query operations against large-scale data storage systems.

© Blue Sky Technology 2009 7

5 Single-table operations

Viewing a table can be done using a statement such as

 select * from customer;

In this case the ‘*’ represents that all columns should be included in the result table.

5.1 Selecting columns

In many cases only a selection of columns is needed in the result set.

This is specified as follows.

 select
surname,

first_name,
date_of_birth

from

customer;

Result

surname first_name date_of_birth

Adjei Stephen 1988-06-05

Adams Sammy 1983-12-26

Larigue Linda 1976-04-21

Patel Sabina 1973-07-24

Robinson Vangie 1988-12-05

Majola Christiana 1973-01-03

Ayinoko Olya 1968-07-22

Kellyn David 1982-08-14

Aby Olusegun 1982-09-11

© Blue Sky Technology 2009 8

Amoah Maulesh 1965-01-20

Lucas Raj 1973-01-01

Crenshaw Emmanuel 1987-04-06

Adesina Jessica 1977-05-03

Amoah Selina 1982-01-26

Karmakar Ademola 1971-03-11

The ‘from’ clause specifies the table that is used as the source of the data.

The ‘select’ column names indicate which columns to select.

Column definitions

In general the ‘select’ list will include a list of column names.

SQL also supports expressions in place of column names

For example

 select

 surname || ‘ ‘ || firstname as full_name,
 from

 customer

 select
 amount * items as value

 from
 transactions

Expressions can include the concatenation operator || which combines two text values and

mathematical operators.

Note: the || operator is the standard SQL operator for string concatenation.

Due to the variation of SQL used in the test environment, the function ‘concat()’ must be used

instead.

 select
 concat(first_name , ' ', surname) as full_name,

© Blue Sky Technology 2009 9

 from
 customer

Result

Query Results

full_name

Stephen Adjei

Sammy Adams

Linda Larigue

Sabina Patel

Vangie Robinson

Christiana Majola

Olya Ayinoko

David Kellyn

Olusegun Aby

Maulesh Amoah

Christopher Lucas

Emmanuel Crenshaw

Jessica Adesina

Selina Amoah

Ademola Karmakar

© Blue Sky Technology 2009 10

5.2 Selecting rows

Generally rows are filtered so that only rows matching certain criteria are included in the result

set or the table calculations.

For example,

select

 *
from
 transactions

where
 trans_date > '2008-01-04' and

product_code = 'PCDE12'

Result

transaction_id trans_date customer_id transaction_code product_code items amount

1 2008-01-06 00:00:00 1 PURCHASE PCDE12 1 723.12

5 2008-01-12 00:00:00 2 PURCHASE PCDE12 2 423.23

6 2008-01-12 00:00:00 2 PURCHASE PCDE12 2 423.23

7 2008-01-05 00:00:00 3 PURCHASE PCDE12 2 153.24

Multiple conditions can be combined using ‘and’ and ‘or’.

Brackets should be used when the ‘where’ expression includes a combination of ‘and’ and ‘or’
expressions.

‘in’ operator

Comparisons can also be done with another table using the ‘in’ operator.

 select
 *

 from
 transactions

where

 product_code in (select product_code from sample_list)

© Blue Sky Technology 2009 11

Result

transaction_id trans_date customer_id transaction_code product_code items amount

1 2008-01-06 00:00:00 1 PURCHASE PCDE12 1 723.12

3 2008-01-04 00:00:00 2 PURCHASE PCDE12 3 623.23

5 2008-01-12 00:00:00 2 PURCHASE PCDE12 2 423.23

6 2008-01-12 00:00:00 2 PURCHASE PCDE12 2 423.23

7 2008-01-05 00:00:00 3 PURCHASE PCDE12 2 153.24

8 2008-01-12 00:00:00 4 REFUND PCDE43 1 233.22

9 2008-01-21 00:00:00 4 PURCHASE PCDE43 1 823.11

‘like’ operator

The ‘like’ operator allows for a selection of records matching similar patterns.

For example

 select
 *
 from

 customer
 where

 surname like ‘A%’

This selects all customers with surnames starting with ‘A’

Result

customer_id first_name surname date_of_birth postcode

1 Stephen Adjei 1988-06-05 4235

2 Sammy Adams 1983-12-26 5432

7 Olya Ayinoko 1968-07-22 9464

9 Olusegun Aby 1982-09-11 4344

10 Maulesh Amoah 1965-01-20 5342

13 Jessica Adesina 1977-05-03 2356

14 Selina Amoah 1982-01-26 5423

© Blue Sky Technology 2009 12

6 Sorting result tables

Rows returned from an SQL query may be returned in a random order.

The ordering of the rows can be specified using an ‘order by’ clause

For example

 select
 *

 from
 transactions

order by

 customer_id,
 trans_date desc;

Rows can be sorted in descending order by adding ‘desc’ after the column name.

Result

transaction_id trans_date customer_id transaction_code product_code items amount

2 2008-01-12 00:00:00 1 PURCHASE PCDE27 1 324.12

1 2008-01-06 00:00:00 1 PURCHASE PCDE12 1 723.12

4 2008-01-12 00:00:00 2 CANCELLATION PCDE27 1 425.54

5 2008-01-12 00:00:00 2 PURCHASE PCDE12 2 423.23

6 2008-01-12 00:00:00 2 PURCHASE PCDE12 2 423.23

3 2008-01-04 00:00:00 2 PURCHASE PCDE12 3 623.23

7 2008-01-05 00:00:00 3 PURCHASE PCDE12 2 153.24

9 2008-01-21 00:00:00 4 PURCHASE PCDE43 1 823.11

8 2008-01-12 00:00:00 4 REFUND PCDE43 1 233.22

© Blue Sky Technology 2009 13

7 Counting rows

count(*) can be used to count the number of records in a table.

For example

 select
 count(*)
 from

 transactions

Result

count(*)

9

A “where’ clause can be used to count a sub-set of the rows in the table

 select
 count(*)
 from

 transactions
 where
 trans_date > '2008-01-06'

Result

count(*)

6

Counting sets of records can be done using the ‘Group By’ clause.

© Blue Sky Technology 2009 14

Advanced Topics

8 Summing totals

A ‘group by’ clause can be used to calculate totals, averages and counts of records.

‘Group by’ is a complex use of SQL functionality and is not recommending for initial use.

Example

select

 customer_id,
 trans_date,
 sum(amount)

from
 transactions

group by
 customer_id;

Result

customer_id trans_date sum(amount)

1 2008-01-06 00:00:00 1047.24

2 2008-01-04 00:00:00 1895.23

3 2008-01-05 00:00:00 153.24

4 2008-01-12 00:00:00 1056.33

SQL has an open syntax that will allow many combinations of queries to be written.

Only some combinations of clauses will produce meaningful results.

The following rules should be used to produce meaningful result sets when ‘group by’ is used.

1. Select the ‘group by’ columns.

One row will be produced in the result set for each combination of the ‘group by’ columns.

For example,

© Blue Sky Technology 2009 15

 group by customer_id

Will produce one set of values for each customer.

 group by customer_id, trans_date

Would produce a row for each date on which a customer transaction occurred.

2. Include each ‘group by’ column as a column in the ‘select’ section.

Example

select
 customer_id

from

 customer
 group by

 customer_id;

3. Select the aggregate functions

The aggregate functions include:

 sum(column) Sum the column values

min(column) Select the minimum value
max(column) Select the maximum value

 avg(column) Calculate the average value

count(*) Count the number of rows
 count(column) Count the number of rows with non-NULL values

 …

For example

 select

 customer_id,
 count(*) as transaction_count,

sum(amount) as transaction_total

from
 transactions

 group by
 customer_id;

© Blue Sky Technology 2009 16

Result

customer_id transaction_count transaction_total

1 2 1047.24

2 4 1895.23

3 1 153.24

4 2 1056.33

This query will return one row for each customer who has transaction records, with the following
columns:

 customer_id The customer number

 count(*) The number of transactions
 sum(amount) The total value of the transactions

When an expression is used in place of a column name, the naming of the result column is

database-dependant.

In these cases it is preferable to name the result column.

Columns can also be renamed in the result set in this way.

4. Do not include additional columns in the ‘select’ column list

This may result in an undefined result set.

Aggregate functions in row selection

A ‘having’ clause can be added to a ‘group by’ clause when aggregate functions are used.

For example

 select

 customer_id,
 count(*) as trans_count,

sum(amount) as trans_total
from

 transactions

 group by

© Blue Sky Technology 2009 17

 customer_id
 having

 sum(amount) > 200

Result

customer_id trans_count trans_total

1 2 1047.24

2 4 1895.23

4 2 1056.33

© Blue Sky Technology 2009 18

9 Cartesian Joins

A Cartesian join involves creating a result set containing all combinations of the records from the

input tables.

This is usually unintended.

For example

 select

 *
 from
 customer,

transaction

This would not be a meaningful result set, as transaction data would appear beside customer
details of a customer unrelated to the transaction.

The lack of a ‘where’ or ‘join’ clause will result in all combinations of records being returned.

In cases where a Cartesian join is required, the number of records returned is m * n * p *…

Where m, n, p,… is the number of rows in the input tables.

© Blue Sky Technology 2009 19

10 Retrieving data from multiple tables

Most queries involve retrieving data from several input tables.

Tables must be connected using key fields.

These are generally columns such as customer number, product code, transaction date, etc.

Key fields identify a record, rather than being stored data such as amounts, text values, etc.

Joins may be specified in one of two ways.

Join syntax

 select
 t.customer_id,
 t.trans_date,

 c.postcode
 from

 transactions t
 inner join
 customer c

 on
 t.customer_id = c.customer_id;

Result

customer_id trans_date postcode

1 2008-01-06 00:00:00 4235

1 2008-01-12 00:00:00 4235

2 2008-01-04 00:00:00 5432

2 2008-01-12 00:00:00 5432

2 2008-01-12 00:00:00 5432

2 2008-01-12 00:00:00 5432

3 2008-01-05 00:00:00 2342

4 2008-01-12 00:00:00 4342

4 2008-01-21 00:00:00 4342

© Blue Sky Technology 2009 20

The join types are

Inner join Only records with matching keys are returned

Left join All records are returned from the first table, and matching records from the
second table

Right join All records are returned from the second table, and matching records from
the first table

Alias names

Alias names do not affect the result of a query however they can be useful in expressing the

query more simply.

For example

This query uses alias names ‘t’ and ‘c’

 select
 t.customer_id,

 t.trans_date,
 c.postcode

 from
 transactions as t
 inner join

 customer as c
 on

 t.customer_id = c.customer_id;

Alias names are necessary in the rare case in which an input table appears more than once in a
‘select’ statement.

Also, if a column name appears in more than one input table, then an alias name should be used
to identify the relevant input table.

This problem typically results in an ‘ambiguous column name’ error.

Columns can also be specified using alias names in the format ‘a.*’.

This indicates that all columns from table ‘a’ should be included in the result set.

More than two join tables.

© Blue Sky Technology 2009 21

The following layout is recommended when more than two input tables are included in a join

 select
 t.customer_id,
 t.trans_date,

 c.postcode,
p.product_code as product,

 cu.description as currency

 from

 transactions as t
 inner join

 customer as c
 on
 t.customer_id = c.customer_id

 inner join
 product as p

 on
 t.product_code = p.product_code
 left join

 currency as cu
 on

 cu.code = p.currency_code;

Result

customer_id trans_date postcode product currency

1 2008-01-06 00:00:00 4235 PCDE12 US Dollars

1 2008-01-12 00:00:00 4235 PCDE27 Hong Kong Dollars

2 2008-01-04 00:00:00 5432 PCDE12 US Dollars

2 2008-01-12 00:00:00 5432 PCDE27 Hong Kong Dollars

2 2008-01-12 00:00:00 5432 PCDE12 US Dollars

2 2008-01-12 00:00:00 5432 PCDE12 US Dollars

3 2008-01-05 00:00:00 2342 PCDE12 US Dollars

4 2008-01-12 00:00:00 4342 PCDE43 Japanese Yen

4 2008-01-21 00:00:00 4342 PCDE43 Japanese Yen

© Blue Sky Technology 2009 22

In the case of left joins and right joins, the order of tables in the query may affect the result set.
Each table is joined to the result of the previous joins. Field names in ‘on’ expressions should

only refer to tables that are specified earlier in the join list.

Where syntax

Joins can also be specified by listing multiple tables in the ‘from’ clause, and matching the keys

within the ‘where’ clause.

This syntax is equivalent to using ‘inner join’ on all the joined tables.

A ‘where’ format does not facilitate ‘left’ or ‘right’ joins

 select
 t.customer_id,

 t.trans_date,
 c.postcode,

p.product_code as product,
 cu.description as currency

 from
 transactions as t,

 customer as c,
 product as p,
 currency as cu
 where

 t.customer_id = c.customer_id and

 cu.code = p.currency_code and
 t.product_code = p.product_code

Multiple join fields

In some cases records will be identified by a single value such as transaction_id,

customer_number etc.

In other cases tables may be joined by a number or fields, such as product_class,
product_subclass

In these cases use a syntax similar to the following

…

© Blue Sky Technology 2009 23

…

 on

 a.product_class = b.product_class and
 a.product_subclass = b.product_subclass

11 Distinct values

Distinct values can be returned using the ‘distinct’ keyword or a ‘group by’ clause.

For example

 select distinct

 customer_id
 from

 transactions;

This query will return a list of the customer_id values that appear in the transaction table

Result

customer_id

1

2

3

4

This function can be used with any query, but is most useful when there is a single result column
or a small number of result columns.

If a count of these values is required, the ‘group by’ syntax should be used

 select
 customer_id,

 count(*)
 from

 transactions
 group by
 customer_id;

© Blue Sky Technology 2009 24

Result

customer_id count(*)

1 2

2 4

3 1

4 2

© Blue Sky Technology 2009 25

12 Union

The ‘union’ statement can be used to combine the results of two queries into a single result set.

select * from

(select * from sample_list

union all

select * from sample_list_ext) a

‘union all’ combines the two result sets, while ‘union’ selects only the distinct records

Result

id product_code

1 PCDE43

2 PCDE52

3 PCDE12

1 PCDE27

2 PCDE12

© Blue Sky Technology 2009 26

13 Subqueries

An SQL query can be used in place of a table name.

The query should be placed within brackets, and used in place of a table name within another
query.

For example

select

 count(*)
from
 transactions as t

inner join
(

 select distinct
 product_code

from

product
) as p

on
 t.product_code = p.product_code

In this example a bracketed query has been used in place of a table name.

In this case, a count of records is calculated from customer records joined to product codes.

The statement within the brackets is equivalent to a table containing the same data.

© Blue Sky Technology 2009 27

14 Updating data

The following sections describe SQL statements for updating data.

In many cases it is not possible to recover data that is accidently altered or deleted.

Caution should be used when using these statements. For example

 delete from transactions

Will delete all records from the database table ‘transactions’.

14.1 Inserting records

Individual rows can be inserted into a table using the following syntax

insert into
currexchange (name, amount, exchdate)

values

('name1', 12.52, '2003-02-01')

Importing large quantities of records is dependant on the functions provided by the database
environment.

14.2 Updating records

Tables can be updated using the following syntax.

update
currexchange

set
amount = 32.23

where
exchdate = ‘2003-02-01’

© Blue Sky Technology 2009 28

Implementations vary in their ability to perform updates on views created by joining several
tables.

14.3 Deleting records

Deletion takes the format

delete from table [where condition]

For example

delete from currexchange where exchdate < '2003-03-04'

© Blue Sky Technology 2009 29

15 NULL values

NULL values represent missing data.

This may indicate that a data item is not known, or is not re levant in that particular case.

Visual tools may display this result in several formats including NULL, (null), a blank field etc.

In ‘where’ expressions the following syntax should be used

 select
 customer_id,
 amount

 from
 transactions

 where
 amount is not NULL

Result

customer_id amount

1 723.12

1 324.12

2 623.23

2 425.54

2 423.23

2 423.23

3 153.24

4 233.22

4 823.11

© Blue Sky Technology 2009 30

16 Appendix A

The SQL statements described here should be executable in most SQL environments.

Some differences may occur with issues such as specifying date constants.

For example

‘1990-04-12’

to_date(‘01JUL2009’)

etc.

Major implementations frequently have added syntax which is not compatible across alternative

implementations.

Examples include variations on join types such as OUTER JOIN, CROSS JOIN etc.

© Blue Sky Technology 2009 31

17 Appendix B

Operators

Mathematical

* Multiplication
/ Division

+ Addition
- Subtraction

Relational

< Less than

<= Less than or equal to
> Greater than
>= Greater than or equal to

= Equal
<> Not equal

!= Not equal

String

|| Concatenate

Aggregate

sum Sum

avg Average
count Count

min Minimum value
max Maximum value
stdev Standard Deviation

© Blue Sky Technology 2009 32

 Appendix C

Other Issues

SQL includes the following groups of statements.

These statements are not widely used as these functions are more easily performed using database
administration tools.

Data Definition statements

Statements for creating tables and altering table formats

CREATE TABLE transactions (id INTEGER NOT NULL,
transact_date DATE,
amount DOUBLE,

description VARCHAR(255),
PRIMARY KEY (‘id’))

Administration statements

Statements for creating user accounts and assigning security privileges.

GRANT SELECT ON TABLE1 TO USERNAME1

Descriptive statements

Statements for returning the information about the database, such as the list of tables.

SHOW TABLES

© Blue Sky Technology 2009 33

18 Appendix D

Test data environment

Tables

currency id, code, description

currexchange name, amount, exchdate

customer customer_id, first_name, surname, date_of_birth, postcode

product id, product_code, currency_code, description

sample_list id, product_code

sample_list_ext id, product_code

transactions transaction_id, trans_date, customer_id, transaction_code,
product_code, items, amount

